Pyridinium-Phosphonium Dications: Highly Electrophilic

Phosphorus-based Lewis Acid Catalysts

Julia M. Bayne, Michael H. Holthausen and Douglas W. Stephan

Supporting Information

This PDF file includes:

1.	Spectroscopic Data	
	1.1 NMR Spectra of (o-NC5H4)PF2Ph2 (1)	S 3
	1.2 NMR Spectra of [(o-NC5H4)PFPh2][O3SCF3] (2a)	S4
	1.3 NMR Spectra of [(o-NC5H4)PFPh2][B(C6F5)4] (2b)	S 5
	1.4 Reaction of 2b with one equivalent of Et ₃ SiH	S7
	1.5 NMR Spectra of [(o-HNC5H4)PPh2][O3SCF3]	S9
	1.6 NMR Spectra of [(o-MeNC5H4)PF2Ph2][O3SCF3] (3)	S10
	1.7 NMR Spectra of [(o-MeNC5H4)PFPh2][O3SCF3]2(4a)	S12
	1.8 NMR Spectra of [(<i>o</i> -MeNC5H4)PFPh2][B(C6F5)4]2 (4b)	S13
	1.9 NMR Spectra of [(o-MeNC5H4)P(CH3)Ph2][O3SCF3]2 (5a)	S15
	1.10 NMR Spectra of [(o-MeNC5H4)P(CH3)Ph2][B(C6F5)4]2 (5b)	S16
	1.11 General Procedure for Gutmann-Beckett Tests	S18
	1.111 Reaction of [(o-NC5H4)PFPh2][O3SCF3] (2a) with Et3PO	S18
	1.112 Reaction of [(o-NC5H4)PFPh2][B(C6F5)4] (2b) with Et3PO	S18
	1.113 Reaction of [(o-MeNC5H4)PFPh2][O3SCF3]2 (4a) with Et3PO	S19
	1.114 Reaction of [(<i>o</i> -MeNC ₅ H ₄)PFPh ₂][B(C ₆ F ₅) ₄] ₂ (4b) with Et ₃ PO	S19
	1.115 Reaction of [(o-MeNC5H4)P(CH3)Ph2][O3SCF3]2 (5a) with Et3P	O S20
	1.116 Reaction of [(<i>o</i> -MeNC5H4)P(CH3)Ph2][B(C6F5)4]2 (5b) with Et3l	PO S20
	1.12 General Procedure for the Catalysed Dimerization of 1,1-diphenylethyl	eneS20
	1.13 General Procedure for the Hydrodefluorination of 1-fluoropentane	S22
	1.14 General Procedure for the Hydrosilylation of α -methylstyrene	S23
	1.15 General Procedure for the Dehydrocoupling of Phenol with Et ₃ SiH	S25
	1.16 General Procedure for the Hydrodeoxygenation of Benzophenone	S26
2. Cryst	allographic Details	S28

1. Spectroscopic Data (in some instances pentane impurities arise from trace contamination of the NMR solvent)

Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of (*o*-NC₅H₄)PF₂Ph₂(1).

Figure S4. ¹³C{¹H} NMR spectrum (CD₂Cl₂) of $(o-NC_5H_4)PF_2Ph_2(1)$.

1.2 NMR Spectra of [(o-NC5H4)PFPh2][O3SCF3] (2a).

Figure S6. ¹⁹F NMR spectrum (CD₂Cl₂) of [(*o*-NC₅H₄)PFPh₂][O₃SCF₃] (2a).

ppm

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂) of [(*o*-NC₅H₄)PFPh₂][O₃SCF₃] (2a).

1.3 NMR Spectra of [(o-NC5H4)PFPh2][B(C6F5)4] (2b).

Figure S9. ¹H NMR spectrum (C₆D₅Br) of [(*o*-NC₅H₄)PFPh₂][B(C₆F₅)₄] (**2b**).

Figure S10. ¹¹B{¹H} NMR spectrum (C₆D₅Br) of [(*o*-NC₅H₄)PFPh₂][B(C₆F₅)₄] (**2b**).

Figure S11. ¹⁹F NMR spectrum (C₆D₅Br) of [(*o*-NC₅H₄)PFPh₂][B(C₆F₅)₄] (**2b**).

Figure S12. ${}^{31}P{}^{1}H$ NMR spectrum (C₆D₅Br) of [(*o*-NC₅H₄)PFPh₂][B(C₆F₅)₄] (**2b**).

Figure S13. ¹³C{¹H} NMR spectrum (C₆D₅Br) of $[(o-NC_5H_4)PFPh_2][B(C_6F_5)_4]$ (2b).

1.4 Reaction of 2b with one equivalent of Et₃SiH

Triethyl silane (Et₃SiH, 5.5 μ L, 0.03 mmol, 1.0 eq.) was added to a solution of **2b** (31.5 mg, 0.03 mmol, 1.0 eq.) in CD₂Cl₂ (0.6 mL). The reaction mixture was left at ambient temperature for 3 h and then monitored with multi-nuclear NMR spectroscopy. The reaction mixture was transferred to a vial and the solvent/volatiles were removed *in vacuo* to remove the triethylsilylfluoride (Et₃SiF) side product.

Figure S14. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of the crude reaction mixture.

Figure S15. ¹⁹F NMR spectrum (CD₂Cl₂) of the crude reaction mixture.

Figure S16. ¹H NMR spectrum (CD₂Cl₂) of the crude reaction mixture.

Figure S17. ¹H NMR spectrum(CD₂Cl₂) of the product after drying *in vacuo*.

Figure S18. ¹⁹F NMR spectrum (CD₂Cl₂) of the product after drying *in vacuo*.

Figure S19. ¹H NMR spectrum (CD₂Cl₂) of [(*o*-HNC₅H₄)PPh₂][O₃SCF₃].

Figure S20. ¹⁹F NMR spectrum (CD₂Cl₂) of [(*o*-HNC₅H₄)PPh₂][O₃SCF₃].

Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of [(*o*-HNC₅H₄)PPh₂][O₃SCF₃].

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂) of [(*o*-HNC₅H₄)PPh₂][O₃SCF₃].

Figure S23. ¹H NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] (**3**).

Figure S24. ¹⁹F NMR spectrum (CD_2Cl_2) of [(*o*-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] (3).

Figure S25. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] (**3**).

Figure S26. ¹³C{¹H} NMR spectrum (CD₂Cl₂) of $[(o-MeNC_5H_4)PF_2Ph_2][O_3SCF_3]$ (3).

1.7 NMR Spectra of [(o-MeNC5H4)PFPh2][O3SCF3]2 (4a).

Figure S27. ¹H NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (4a).

Figure S28. ¹⁹F NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (**4a**).

Figure S29. ${}^{31}P{}^{1}H$ NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (4a).

Figure S30. ¹³C{¹H} NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (4a).

Figure S32. ¹¹B{¹H} NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PFPh₂][B(C₆F₅)₄]₂ (**4b**).

Figure S33. ¹⁹F NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PFPh₂][B(C₆F₅)₄]₂ (4b).

Figure S34. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PFPh₂][B(C₆F₅)₄]₂ (**4b**).

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)PFPh₂][B(C₆F₅)₄]₂ (4b).

1.9 NMR Spectra of [(o-MeNC5H4)P(CH3)Ph2][O3SCF3]2 (5a).

Figure S36. ¹H NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄N)P(CH₃)Ph₂][O₃SCF₃]₂ (5a).

Figure S37. ¹⁹F NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][O₃SCF₃]₂ (5a).

Figure S38. ³¹P{¹H} NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][O₃SCF₃]₂ (5a).

Figure S39. ¹³C{¹H} NMR spectrum (CD₃CN) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][O₃SCF₃]₂ (5a).

Figure S41. ¹¹B{¹H} NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][B(C₆F₅)₄]₂ (**5b**).

Figure S42. ¹⁹F NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][B(C₆F₅)₄]₂(5b).

Figure S43. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][B(C₆F₅)₄]₂ (**5b**).

Figure S44. ¹³C{1H} NMR spectrum (CD₂Cl₂) of [(*o*-MeNC₅H₄)P(CH₃)Ph₂][B(C₆F₅)₄]₂ (5b).

1.11 General Procedure for Gutmann-Beckett Tests

A solution of the phosphonium cation (0.07 mmol) in CD_2Cl_2 (0.6 mL) was added to a separate vial containing triethylphosphine oxide (Et₃PO, 0.07 mmol). The reaction mixture was investigated by multi-nuclear NMR spectroscopy after one hour at ambient temperature.

1.111 Reaction of [(o-NC5H4)PFPh2][O3SCF3] (2a) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 150.2 (d, ¹*J*(P,F) = 955 Hz, 1P; [Et₃PF]⁺), 78.7 (d, ¹*J*(P,F) = 1000 Hz, 1P; [(*o*-NC₅H₄)PFPh₂]⁺), 64.1 (s(br), 1P; Et₃PO), 19.7 ppm (s, 1P; (*o*-NC₅H₄)Ph₂P=O). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -79.0 (s, 3F; O₃SCF₃), -136.3 (d, ¹*J*(P,F) = 1000 Hz, 1F; [(*o*-NC₅H₄)PFPh₂]⁺), -160.6 ppm (dm, ¹*J*(P,F) = 955 Hz, ³*J*(F,H) = 15 Hz, 1F; [Et₃PF]⁺).

Figure S45. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of 2a with one equivalent of Et₃PO.

1.112 Reaction of [(o-NC5H4)PFPh2][B(C6F5)4] (2b) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 148.1 (d, ¹*J*(P,F) = 965 Hz, 1P; [Et₃PF]⁺), 76.8 (d, ¹*J*(P,F) = 995 Hz, 1P; [(*o*-NC₅H₄)PFPh₂]⁺), 60.2 (s(br), 1P; Et₃PO), 20.0 ppm (s, 1P; (*o*-NC₅H₄)Ph₂P=O). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ – 133.7 (m(br), 8F; B(*o*-B₆F₅)₄), -134.0 (d, 1F; [(*o*-NC₅H₄)PFPh₂]⁺), -159.0 (dm, ¹*J*(P,F) = 965 Hz, ³*J*(F,H) = 15 Hz, [Et₃PF]⁺), -163.7 (t, ³*J*(F,F) = 20 Hz, 4F; B(*p*-C₆F₅)₄), -167.5 ppm (m(br), 8F; B(*m*-B₆F₅)₄).

Figure S46. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of **2b** with one equivalent of Et₃PO.

1.113 Reaction of [(o-MeNC5H4)PFPh2][O3SCF3]2 (4a) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 150.3 (d, ¹*J*(P,F) = 955 Hz, 1P; [Et₃PF]⁺), 52.8 (s(br), 1P; Et₃PO), 27.8 (s, 1P; [(*o*-MeNC₅H₄)PPh₂=O]⁺), -55.7 ppm (t, ¹*J*(P,F) = 700 Hz, 1P; 1). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -40.95 (d, 2F; 1), -79.0 (s, 6F; O₃SCF₃), -160.8 ppm (dm, ³*J*(F,H) = 15 Hz, [Et₃PF]⁺).

Figure S47. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of 4a with one equivalent of Et₃PO.

1.114 Reaction of [(o-MeNC5H4)PFPh2][B(C6F5)4]2 (4b) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 147.7 (d, ¹*J*(P,F) = 981 Hz, 1P; [Et₃PF]⁺), 27.9 ppm (s, 1P; [(*o*-MeNC₅H₄)PPh₂=O]⁺). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ – 133.7 (m(br), 16F; B(*o*-B₆F₅)₄), - 159.0 (dm, ³*J*(F,H) = 15 Hz, 1F; [Et₃PF]⁺), -163.7 (t, ³*J*(F,F) = 20 Hz, 8F; B(*p*-C₆F₅)₄), -167.5 ppm (m(br), 16F; B(*m*-B₆F₅)₄).

Figure S48. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of 4b with one equivalent of Et₃PO.

1.115 Reaction of [(o-MeNC5H4)P(CH3)Ph2][O3SCF3]2 (5a) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 51.81 (s(br), 1P; Et₃PO), 26.16 ppm (s, 1P; **5a**). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -79.9 ppm (s, 6F; O₃SCF₃).

Figure S49. ³¹P{¹H} NMR spectrum (CD₂Cl₂) of **5a** with one equivalent of Et_3PO .

1.116 Reaction of [(o-MeNC5H4)P(CH3)Ph2][B(C6F5)4]2 (5b) with Et3PO

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 55.1 (s(br), 1P; Et₃PO), 26.5 ppm (s, 1P; **5b**). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -133.0 (m(br), 16F; B(*o*-B₆F₅)₄), -163.0 (t, ³*J*(F,F) = 20 Hz, 8F; B(*p*-C₆F₅)₄), -167.2 ppm (m(br), 16F; B(*m*-B₆F₅)₄).

Figure S50. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) of **5b** with one equivalent of Et₃PO.

1.12 General Procedure for the Catalysed Dimerization of 1,1-Diphenylethylene

In a 20 mL vial, a solution of the phosphonium catalyst (2 mol%) was prepared in 0.6 mL CD₂Cl₂. 1,1diphenylethylene (0.2 mmol) was added at ambient temperature and the reaction mixture was transferred to a NMR tube. The sample was sealed, aggregated and allowed to react at ambient temperature for the desired time, giving 1-methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene. For the reaction with catalyst **4b**, the reaction mixture was dried *in vacuo* and the solid was re-dissolved in 5 mL of *n*-pentane. The suspension was filtered through a celite plug and dried *in vacuo* to afford a white microcrystalline solid. (48.7 mg, 97% Yield). ¹**H NMR** (C₆D₆, 400 MHz, Me₄Si): δ 1.5 (s, 3H; CH₃), 3.0 (d, ³*J*(H,H) = 13 Hz, 1H; CH₂), 3.4 (d, ³*J*(H,H) = 13Hz, 1H; CH₂), 6.89 - 7.23 ppm (m, 19H; Ar-H).¹³C{¹**H**} **NMR** (C₆D₆, 125 MHz, Me₄Si): δ 29.1 (s, 1C; CH₃), 51.5 (s, 1C; CH₂), 61.4 (s, 1C; CPh), 61.8 (s, 1C; CPh), 125.4 (s, 1C; Ph), 125.9 (s, 1C; Ph), 126.0 (s, 1C; Ph), 126.3 (s, 1C; Ph), 127.3 (s, 1C; Ph), 127.3 (s, 2C; Ph), 127.9 (s,

2C; Ph), 128.0 (s, 2C; Ph), 128.3 (s, 2C; Ph), 129.1 (s, 2C; Ph), 129.3 (s, 2C; Ph), 147.9 (s, 1C; Ph), 149.1 (s, 1C; Ph), 149.4 (s, 1C; Ph), 149.7 (s, 1C; Ph), 151.0 ppm (s, 1C; Ph).

Figure S51. ¹H NMR spectrum (CD₂Cl₂) of catalysis with **4b**, t = <30 min.

Figure S53. ¹H NMR spectrum (C₆D₆) of 1-methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene.

Figure S54. ¹³C{¹H} NMR spectrum (C₆D₆) of 1-methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene.

1.13 General Procedure for the Hydrodefluorination of 1-fluoropentane

In a 20 mL vial, a solution of the phosphonium catalyst (5 mol%) was prepared in 0.7 mL CD₂Cl₂. Triethyl silane (Et₃SiH, 0.04 mmol) was added at ambient temperature, the reaction was briefly stirred, and then 1-fluoropentane was added (0.04 mmol). Fluorobenzene (C₆H₅F, 0.03 mmol) was then added as an internal standard. The reaction mixture was transferred to a NMR tube and left at ambient temperature for 4 h, before being monitored by ¹⁹F NMR spectroscopy. Conversions were determined from the proportion of Si-F bonds formed relative to C-F bonds consumed.

Figure S55. ¹⁹F NMR spectrum (CD₂Cl₂) of hydrodefluorination catalysis with 4b.

Figure S56. ¹⁹F NMR spectrum (CD₂Cl₂) of hydrodefluorination catalysis with 5b.

1.14 General Procedure for the Hydrosilylation of α-methylstyrene

In a 20 mL vial, a solution of the phosphonium catalyst (2 mol%) was prepared in 0.7 mL CD₂Cl₂. Triethyl silane (Et₃SiH, 0.05 mmol) was added at ambient temperature, the reaction mixture was briefly stirred, and then α -methylstyrene (0.05 mmol) was added. The mixture was transferred to a NMR tube and heated at 45 °C for 4 h. For the reaction with catalyst **4b**, the solvent volume was reduced *in vacuo* to *ca*. 1 mL. 3 mL of *n*-pentane was added and the suspension was filtered through a celite plug. The filtrate was dried *in vacuo*, giving colourless oil. (50 mg, 85% Yield). ¹H NMR (C₆D₅Br, 400 MHz, Me4Si): δ 0.2 (m, 6H; SiCH₂CH₃), 0.7 (t, ³*J*(H,H) = 8 Hz, 9H; SiCH₂CH₃), 0.8 (m, 2H; CH₂), 1.0 (d, ³*J*(H,H) = 7 Hz, 3H; CH₃), 2.7 (m, 1H; CH), 6.9 (m, 1H; *p*-Ph), 7.0 ppm (m, 4H; *o*- & *p*-Ph); ¹³C{¹H} NMR (C₆D₅Br, 125 MHz, Me4Si): δ 3.9 (s, 1C; SiCH₂CH₃), 7.7 (s, 1C; SiCH₂CH₃), 21.6 (s, 1C; CH₂), 26.8 (s, 1C; CH₃), 36.2 (s, 1C; CH), 125.9 (s, 1C; *p*-Ph), 126.7 (s, 2C; *o/m*-Ph), 128.4 (s, 2C; *o/m*-Ph), 149.8 ppm (s, 1C; *i*-Ph).

Figure S57. ¹H NMR spectrum (CD₂Cl₂) of crude mixture for hydrosilylation catalysis with 4b.

Figure S59. ¹H NMR spectrum (C₆D₅Br) of the isolated hydrosilylated product.

Figure S60. ¹³C $\{^{1}H\}$ NMR spectrum (C₆D₅Br) of the isolated hydrosilylated product.

1.15 General Procedure for the Dehydrocoupling of Phenol with Et₃SiH

In a 20 mL vial, a solution of the phosphonium catalyst (2 mol%) was prepared in 0.7 mL CD_2Cl_2 . Triethyl silane (Et₃SiH, 0.05 mmol) was added at ambient temperature, the reaction mixture was briefly stirred, and then added to a vial containing phenol (0.05 mmol). The mixture was transferred to a NMR

tube and heated at 50 °C for 24 h. For the reaction with catalyst **4b**, the solvent volume was reduced *in vacuo* to *ca*. 1 mL. 3 mL of *n*-pentane was added and the suspension was filtered through a celite plug. The filtrate was dried *in vacuo*, giving a colourless oil. (56 mg, 79% Yield). ¹H NMR (C₆D₅Br, 400 MHz, Me4Si): δ 0.5 (q, ³*J*(H,H) = 8 Hz, 6H; CH₂), 0.8 (t, ³*J*(H,H) = 8 Hz, 9H; CH₃), 6.72 (m, 3H; *p*-Ph & *o/m*-Ph), 7.0 ppm (m, 2H; *o/m*-Ph); ¹³C{¹H} NMR (C₆D₅Br, 125 MHz, Me4Si): δ 5.2 (s, 3C; CH₂), 6.9 (s, 3C; CH₃), 120.0 (s, 2C; *o/m*-Ph), 121.4 (s, 1C; *p*-Ph), 129.5 (s, 2C; *o/m*-Ph), 155.7 ppm (s, 1C; *i*-Ph).

Figure S62. ¹H NMR spectrum (CD₂Cl₂) of dehydrocoupling catalysis with **5b**.

Figure S63. ¹H NMR spectrum (C_6D_5Br) of the triethyl(phenoxy)silane.

Figure S64. ¹³C{¹H} NMR spectrum (C₆D₅Br) of triethyl(phenoxy)silane.

1.16 General Procedure for the Hydrodeoxygenation of Benzophenone

In a 20 mL vial, a solution of the phosphonium catalyst (1 mol%) was prepared in 0.7 mL CD₂Cl₂. Triethyl silane (Et₃SiH, 0.04 mmol) was added at ambient temperature, the reaction was briefly stirred, and then the solution was added to a vial containing benzophenone (0.02 mmol). The reaction mixture was left to stir at ambient temperature for 2 h, before toluene (0.02 mmol) was added as an internal standard. The reaction mixture was transferred to a NMR tube and monitored by ¹H NMR spectroscopy. For catalysts **4b** and **5b**, the ³¹P{¹H} NMR spectra were obtained after 5 h at ambient temperature to monitor possible catalyst decomposition.

Figure S65. ¹H NMR spectrum (CD₂Cl₂) for the hydrodeoxygenation catalysis with 4b.

Figure S66. ¹H NMR spectrum (CD₂Cl₂) for the hydrodeoxygenation catalysis with 5b.

2. Crystallographic Details

Table 1. Crystallographic data and details of the structure refinements of compounds [(*o*-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] (**3**) and [(*o*-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (**4a**).

	3	4 a
Formula	$C_{20}H_{19}C_{12}F_5NO_3PS$	$C_{20}H_{17}F_7NO_6PS_2$
M _r [g mol ⁻¹]	550.29	595.44
Colour, habit	Block, colourless	Block, colourless
Crystal system	Monoclinic	Triclinic
Space group	P 2 ₁ /n	P -1
a [Å]	9.2119(6)	8.157(5)
b [Å]	23.8207(2)	11.063(5)
c [Å]	11.1023(7)	14.545(5)
α [°]	90	71.127(5)
β [°]	105.486(3)	77.393(5)
γ [°]	90	84.080(5)
V [Å ³]	2347.8(3)	1211.3(10)
Z	4	2
T [K]	150(2)	150(2)
Crystal size [mm]	0.20x0.20x0.10	0.20x.0.20x0.10
$\rho_c (Mg m^{-3})$	1.557	1.633
F (000)	1120	604
θ_{\min} [°]	1.71	1.51
θ _{max} [°]	32.49	32.63
	$-13 \le h \le 13$	$-12 \le h \le 12$
Index range	$-35 \le k \le 35$	$-16 \le k \le 16$
	$-13 \le 1 \le 16$	$-21 \le 1 \le 21$
$\mu \ [\mathrm{mm}^{-1}]$	0.497	0.378
Absorption correction	SADABS	SADABS
Reflections collected	33578	32906
Reflections unique	8440	8762

R _{int}	0.0299	0.0300
Parameters	298	335
GOOF	1.028	1.019
R1 $[I > 2\sigma(I)]$	0.0444	0.0397
wR_2 (all data)	0.1192	0.1090