Supporting information for

Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged dinuclear iron complexes

Yuhan Zhou*, Xiaoliang Dong, Yixin Zhang, Peng Tong, and Jingping Qu*

State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P.R. China

Contents

Synthesis of complex 4c	S2
Fig. S1 Absorption spectrum of 5b upon addition of various anions	S2
Fig. S2 Absorption spectrum of 5a	S2
Fig. S3 Absorption spectrum of 5c	S3
Fig. S4 Job's plot of 5b	S3
Fig. S5 Fluorescence spectrum of 5b upon addition of coexisting relevant anions	S4
Fig. S6 Fluorescence spectrum of 5c upon addition of different anions	S4
Fig. S7 Partial ¹ H NMR spectrum of 5b	S5
Fig. S8 ESI-HRMS of 5b upon addition of F ⁻	S5
References	S5

Synthesis of [Cp*Ru(µ-SEt)₂(MeCN)₂RuCp*][PF₆]₂ (4c)

To a solution of $[Cp*Ru(\mu-SEt)_2Cl_2RuCp*]^1$ (69.4 mg, 0.104 mmol) in MeCN (3 mL) was added NH₄PF₆ (67.9 mg, 0.416 mmol) and then the resulting solution was stirred at room temperature under Ar for 1 h. The solution was removed *in vacuum*. Then, the residue was extracted with CH₂Cl₂ (3 mL). After filtration, the solution was removed *in vacuum*. The residue was washed with Et₂O (2 mL × 2) to give brown solid $[Cp*Ru(\mu-SEt)_2(MeCN)_2RuCp*][PF_6]_2$ (**4c**, 80.6 mg, 80%). ¹H NMR (400 MHz, CD₂Cl₂): δ 2.92 (q, J_{H-H} = 8.0 Hz, 4H), 2.27 (s, 6H), 1.72 (s, 30H), 1.61 (t, J_{H-H} = 8.0 Hz, 6H).

Fig. S1 Absorption spectra of chemosensor 5b (1×10^{-5} M) upon addition of various anions (3 equiv) in THF solution.

Fig. S2 Absorption spectra of chemosensor **5a** $(1 \times 10^{-5} \text{ M})$ upon addition of F⁻ (as its TBA salts) in THF.

Fig. S3 Absorption spectra of chemosensor 5c (1 \times 10⁻⁵ M) upon addition of various anions (as their TBA salts) in THF.

Fig. S4 Job's plot for determining the stoichiometry for chemosensor **5b** and F^{-} in THF excited with 370 nm. Total concentration of **5b** + Fe³⁺ = 2.5×10^{-5} M. *I* represents the intensity of **5b** upon addition of F^{-} and I_{0} represents the **5b** original emission intensity at 414 nm excited with 370 nm.

Fig. S5 Fluorescence emission spectra of chemosensor 5b (1×10^{-5} M in THF) upon addition of anions in the presence of F⁻

Fig. S6 Fluorescence spectrum of **5c** (1×10^{-5} M in THF) upon addition of different anions (as their TBA salts) excited with 370 nm.

Fig. S7 Partial ¹H NMR (CD₃CN, 400 MHz) spectrum of **5b** before (a) and after (b) adding D₂O.

Fig. S8 The ESI-HRMS of chemosensor 5b upon addition of 2 equiv of F⁻.

References

[1] Y. Nishibayashi, H. Imajima, G. Onodera, Y. Inada, M. Hidai and S. Uemura, *Organometallics* 2004, **23**, 5100-5103.