## **ELECTRONIC SUPPLEMENTARY INFORMATION**

Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptor and anti-proliferative activity of bis(terpyridine)copper(II) complexes

Dharmasivam Mahendiran<sup>a</sup>, Raju Senthil Kumar<sup>b</sup>, Vijayan Viswanathan<sup>c</sup>, Devadasan Velmurugan<sup>c</sup> and Aziz Kalilur Rahiman<sup>\*a</sup>

<sup>a</sup>Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India.

<sup>b</sup>Department of Pharmaceutical Chemistry, Swami Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu 637 205, India.

<sup>c</sup>CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.

## Section 1

Chemical potential  $(\mu) = -\chi = \frac{E_{LUMO} + E_{HOMO}}{2}$ Chemical hardness  $(\eta) = \frac{E_{LUMO} - E_{HOMO}}{2}$ Electrophilicity  $(\omega) = \frac{\mu^2}{2\eta}$ 

The nuclear independent chemical shift

(NICS)<sup>1</sup> values were calculated using the gauge-including atomic orbitals (GIAO) method at the B3LYP level of theory using Gaussian-03 software.

1. Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, and P.R. Schleyer, *Chem. Rev.*, 2005, **105**, 3842–3888.

Table S1 Selected bond lengths (Å) and bond angles (°) for complex  $2 \cdot CH_3OH \cdot (H_2O)_6$ 

| Bond length (Å) |          |  |  |  |
|-----------------|----------|--|--|--|
| N(1)–Cu         | 2.235(7) |  |  |  |
| N(2)–Cu         | 1.975(7) |  |  |  |
| N(3)–Cu         | 2.212(8) |  |  |  |
| N(4)–Cu         | 2.110(7) |  |  |  |
| N(5)–Cu         | 1.954(7) |  |  |  |
| N(6)–Cu         | 2.127(8) |  |  |  |
| Bond a          | ngle (°) |  |  |  |
| C(5)–N(1)–Cu    | 113.6(5) |  |  |  |
| C(1)–N(1)–Cu    | 128.2(7) |  |  |  |
| C(6)–N(2)–Cu    | 122.0(6) |  |  |  |
| C(10)–N(2)–Cu   | 120.2(6) |  |  |  |
| C(11)–N(3)–Cu   | 112.7(6) |  |  |  |
| C(15)–N(3)–Cu   | 127.6(8) |  |  |  |
| C(23)–N(4)–Cu   | 126.4(7) |  |  |  |
| C(27)–N(4)–Cu   | 114.1(5) |  |  |  |
| C(28)–N(5)–Cu   | 119.8(5) |  |  |  |
| C(32)–N(5)–Cu   | 119.6(6) |  |  |  |
| C(33)–N(6)-Cu   | 114.0(6) |  |  |  |
| C(37)–N(6)–Cu   | 127.1(7) |  |  |  |
| N(5)–Cu–N(2)    | 178.6(3) |  |  |  |
| N(5)-Cu-N(4)    | 78.3(3)  |  |  |  |
| N(2)-Cu-N(4)    | 100.7(3) |  |  |  |
| N(5)-Cu-N(6)    | 77.7(3)  |  |  |  |
| N(2)–Cu–N(6)    | 103.4(3) |  |  |  |
| N(4)-Cu-N(6)    | 155.9(3) |  |  |  |
| N(5)-Cu-N(3)    | 101.8(3) |  |  |  |
| N(2)–Cu–N(3)    | 77.2(3)  |  |  |  |

| D-H···A                 | d(D-H) Å | d(H···A) Å | $d(D \cdot \cdot \cdot A) Å$ | (D-H…A)° |
|-------------------------|----------|------------|------------------------------|----------|
| C(4)-H(4)···Cl(1)       | 0.93     | 2.69       | 3.620(12)                    | 174      |
| C(17)-H(17)···Cl(1)     | 0.93     | 2.74       | 3.620(17)                    | 157      |
| C(22)-H(22A)····Cl(2)#1 | 0.96     | 2.81       | 3.743(19)                    | 166      |
| C(23)-H(23)····O(2)#1   | 0.93     | 2.52       | 3.200(15)                    | 130      |
| C(34)-H(34)···Cl(2)     | 0.93     | 2.82       | 3.728(16)                    | 167      |
| C(43)-H(43)···Cl(2)     | 0.93     | 2.75       | 3.651(18)                    | 165      |

Table S2 Hydrogen bonding parameters for complex  $2 \cdot CH_3OH \cdot (H_2O)_6$  [Å and °]

Symmetry transformations used to generate equivalent atoms:

#1: 1–y, x–y, –1/3+z

| Bond length (Å)  | Calculated Experimental |       |       | Experimental |       |          |
|------------------|-------------------------|-------|-------|--------------|-------|----------|
| Complexes        | 1                       | 2     | 3     | 4            | 5     | 2        |
| Cu–N1            | 2.243                   | 2.243 | 2.127 | 2.100        | 2.182 | 2.235(7) |
| Cu–N2            | 1.912                   | 1.984 | 1.932 | 1.983        | 1.980 | 1.975(7) |
| Cu–N3            | 2.118                   | 2.218 | 2.121 | 1.983        | 2.212 | 2.212(8) |
| Cu–N4            | 2.136                   | 2.121 | 2.113 | 2.102        | 2.047 | 2.110(7) |
| Cu–N5            | 2.180                   | 2.139 | 2.120 | 1.893        | 1.900 | 1.954(7) |
| Cu–N6            | 2.276                   | 2.238 | 2.289 | 2.021        | 2.012 | 2.127(8) |
| Bond angle (deg) |                         |       |       |              |       |          |
| C(5)-N(1)-Cu     | 113.1                   | 113.7 | 112.8 | 113.9        | 112.9 | 113.6(5) |
| C(1)-N(1)-Cu     | 126.8                   | 126.2 | 126.5 | 126.9        | 125.9 | 128.2(7) |
| C(6)-N(2)-Cu     | 120.8                   | 120.1 | 120.3 | 120.9        | 120.0 | 122.0(6) |
| C(10)-N(2)-Cu    | 117.3                   | 118.6 | 118.1 | 118.9        | 117.8 | 120.2(6) |
| C(11)-N(3)-Cu    | 109.4                   | 112.7 | 110.2 | 107.6        | 107.1 | 112.7(6) |
| C(15)-N(3)-Cu    | 134.2                   | 128.2 | 132.9 | 122.4        | 139.7 | 127.6(8) |
| C(27)-N(4)-Cu    | 121.1                   | 114.0 | 109.2 | 111.0        | 126.4 | 114.1(5) |
| C(23)-N(4)-Cu    | 127.9                   | 127.5 | 121.3 | 112.3        | 134.6 | 126.4(7) |
| C(28)-N(5)-Cu    | 124.8                   | 123.1 | 118.2 | 121.3        | 121.9 | 119.8(5) |
| C(32)-N(5)-Cu    | 103.3                   | 122.0 | 134.5 | 142.5        | 120.4 | 119.6(6) |
| C(37)-N(6)-Cu    | 132.2                   | 129.2 | 127.4 | 127.9        | 128.6 | 127.1(7) |
| C(33)-N(6)-Cu    | 113.9                   | 111.3 | 117.2 | 109.3        | 121.4 | 114.0(6) |
| N(5)–Cu–N(2)     | 163.8                   | 179.2 | 186.3 | 192.4        | 181.3 | 178.6(3) |
| N(5)-Cu-N(4)     | 69.3                    | 77.2  | 82.0  | 86.8         | 77.2  | 78.3(3)  |
| N(2)–Cu–N(4)     | 89.2                    | 101.3 | 92.1  | 90.2         | 99.9  | 100.7(3) |
| N(5)–Cu–N(6)     | 80.3                    | 79.3  | 91.0  | 86.3         | 81.2  | 77.7(3)  |
| N(2)–Cu–N(6)     | 104.4                   | 102.6 | 108.3 | 107.2        | 96.4  | 103.4(3) |
| N(4)–Cu–N(6)     | 160.1                   | 153.7 | 148.9 | 159.3        | 147.3 | 155.9(3) |
| N(5)–Cu–N(3)     | 98.5                    | 102.9 | 101.2 | 108.3        | 106.2 | 101.8(3) |

Table S3 The optimized geometrical parameters of bis(terpyridine)copper(II) complexes(1-5) in the ground state at the B3LYP/LANL2DZ level, together with the crystal data of 2

|                      |      |        | Wavelength ( $\lambda$ ), nm |                     |                                                                                                     |  |
|----------------------|------|--------|------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|--|
| Complexes E (ev) (j) | (7)  | Calc.  | Exp.                         | Major contributions |                                                                                                     |  |
|                      | 1.39 | 0.0026 | 746.25                       | 716                 | HOMO→LUMO+2 (34%) HOMO-2→LUMO+2 (2%)                                                                |  |
|                      | 1.51 | 0.0039 | 556.64                       | 526                 | HOMO−1→LUMO (14%), HOMO→LUMO+1 (36%) HOMO−LUMO (3%)                                                 |  |
|                      | 1.75 | 0.0047 | 346.31                       | 338                 | HOMO→LUMO (40%) HOMO-2→LUMO+2 (4%), HOMO-1→LUMO (2%),<br>HOMO-1→LUMO+1 (7%), HOMO→LUMO+1 (3%)       |  |
| 1                    | 2.01 | 0.0002 | 297.63                       | _                   | HOMO-2 $\rightarrow$ LUMO+2 (27%), HOMO-1 $\rightarrow$ LUMO+2 (14%) HOMO-1 $\rightarrow$ LUMO (2%) |  |
| 2                    | 2.68 | 0.0008 | 271.33                       | 286                 | HOMO-2 $\rightarrow$ LUMO+2 (51%) HOMO-1 $\rightarrow$ LUMO (2%), HOMO-1 $\rightarrow$ LUMO+2 (8%)  |  |
|                      | 3.42 | 0.0002 | 227.42                       | —                   | HOMO-1→LUMO (60%), HOMO→LUMO+1 (31%) HOMO-1→LUMO+2 (5%)                                             |  |
|                      | 1.64 | 0.0004 | 748.32                       | 747                 | HOMO→LUMO (15%) HOMO-2→LUMO (9%)                                                                    |  |
|                      | 2.00 | 0.0001 | 558.01                       | 516                 | HOMO-2→LUMO (72%) HOMO-2→LUMO+1 (3%)                                                                |  |
|                      | 2.27 | 0.0005 | 348.04                       | 337                 | HOMO-1→LUMO (24%) HOMO-1→LUMO+1 (6%)                                                                |  |
| 2                    | 2.79 | 0.0054 | 293.27                       | —                   | HOMO−1→LUMO+2 (47%), HOMO→LUMO+1 (21%)                                                              |  |
|                      | 3.26 | 0.005  | 272.23                       | 285                 | HOMO−1→LUMO+1 (41%), HOMO→LUMO+2 (13%)                                                              |  |
|                      | 5.80 | 0.0009 | 226.64                       | _                   | HOMO−1→LUMO+1(A) (27%), HOMO→LUMO+1 (14%), HOMO→LUMO+2 (51%), HOMO−1→LUMO+2 (6%)                    |  |
|                      | 1.62 | 0.0005 | 749.63                       | 743                 | HOMO $\rightarrow$ LUMO (15%)                                                                       |  |
|                      | 1.88 | 0.0001 | 546.82                       | 519                 | HOMO-2→LUMO (78%) HOMO-2→LUMO+1 (5%)                                                                |  |
|                      | 2.21 | 0.0009 | 348.89                       | 327                 | HOMO−1→LUMO (23%), HOMO−1→LUMO+1 (11%)                                                              |  |
| 3                    | 2.73 | 0.005  | 289.04                       | 286                 | HOMO−1→LUMO+2 (45%), HOMO→LUMO+1 (24%)                                                              |  |
|                      | 3.57 | 0.0042 | 271.54                       | _                   | HOMO−1→LUMO+1 (28%), HOMO→LUMO+2 (21%)                                                              |  |
|                      | 5.71 | 0.0005 | 221.54                       | _                   | HOMO−1→LUMO+1 (34%), HOMO→LUMO+1 (12%), HOMO→LUMO+2 (46%) HOMO−1→LUMO+2 (6%)                        |  |

Table S4 The energy of experimental absorption bands and the electronic transitions calculated with the TD-DFT method for complexes 1–3

| Complexes | i <sub>pc</sub> (10 <sup>-5</sup> A) | $E_{pc}(V)$ |
|-----------|--------------------------------------|-------------|
| 1         | 3.30                                 | -0.771      |
| 2         | 4.73                                 | -0.766      |
| 3         | 3.84                                 | -0.783      |
| 4         | 2.86                                 | -0.738      |
| 5         | 3.21                                 | -0.743      |

 Table S5 Electrochemical parameters for bis(terpyridine)copper(II) complexes (1–5)

|           | Final intermolec<br>(kcal mo           | cular energy<br>bl <sup>-1</sup> ) |           | Final total internal                       | Torsional free<br>energy         | Unbound system's energy                    | Estimated free<br>energy of binding<br>[(1) + (2) + (3) - (4)]<br>(kcal mol <sup>-1</sup> ) |
|-----------|----------------------------------------|------------------------------------|-----------|--------------------------------------------|----------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|
| Complexes | vdW + H bond +<br>dissolving<br>energy | Electrostatic<br>energy            | Total (1) | energy<br>(kcal mol <sup>-1</sup> )<br>(2) | (kcal mol <sup>-1</sup> )<br>(3) | [=(2)]<br>(kcal mol <sup>-1</sup> )<br>(4) |                                                                                             |
| 1         | -5.07                                  | -0.32                              | -5.39     | -0.51                                      | +1.10                            | -0.43                                      | -4.37                                                                                       |
| 2         | -5.16                                  | -0.14                              | -5.31     | -0.09                                      | +0.55                            | -0.09                                      | -4.76                                                                                       |
| 3         | -5.22                                  | -0.12                              | -5.34     | +0.00                                      | +0.00                            | +0.00                                      | -5.34                                                                                       |
| 4         | -4.89                                  | -0.18                              | -5.07     | -0.11                                      | +0.98                            | -0.11                                      | -4.09                                                                                       |
| 5         | -4.78                                  | -0.12                              | -4.90     | -0.08                                      | +1.09                            | -0.08                                      | -3.88                                                                                       |

 Table S6 Molecular docking parameters of the bis(terpyridine)copper(II) complexes (1-5) with DNA

| Table S7 Quenching constant    | ant $(K_q)$ , binding cor | nstant ( $K_{bin}$ ), and num | iber of binding sites (n) |
|--------------------------------|---------------------------|-------------------------------|---------------------------|
| for the interactions of bis(te | rpyridine)copper(II)      | complexes 2 and 3 wi          | ith BSA                   |

| Complexes | $K_{q}\left(M^{-1} ight)$ | $K_{bin}(M^{-1})$      | 'n' value |
|-----------|---------------------------|------------------------|-----------|
| 3         | 2.76 × 10 <sup>5</sup>    | 3.83 × 10 <sup>5</sup> | 1.39      |

**Table S8** Effect of bis(terpyridine)copper(II) complexes (1-3) on apoptosis of MCF-7 cellsby Hoechst dye staining method

| Complexes | Apoptosis (%)    |
|-----------|------------------|
| Control   | $6.2 \pm 0.87$   |
| 1 (25 µM) | $24.6 \pm 1.67$  |
| 1 (50 µM) | $52.34 \pm 2.53$ |
| 2 (25 µM) | $26.47 \pm 2.13$ |
| 2 (50 µM) | $63.4 \pm 5.8$   |
| 3 (25 µM) | $32.14 \pm 1.41$ |
| 3 (50 µM) | $78.03 \pm 2.31$ |

Average of 3 determinations, 3 replicates



Fig. S1 ESI mass spectrum of bis(terpyridine)copper(II) complex 2.



**Fig. S2** Determination of the band-gap energy for bis(terpyridine)copper(II) complexes **1** (a) and **2** (b) from diffuse reflectance measurements.



Fig. S3 C–H··· $\pi$  interaction of complex 2·CH<sub>3</sub>OH·(H<sub>2</sub>O)<sub>6</sub>.



Fig. S4 Optimized geometries of the bis(terpyridine)copper(II) complexes 1–5.



Fig. S5 Frontier MOs of bis(terpyridine)copper(II) complex 2.



Fig. S6 Frontier MOs of bis(terpyridine)copper(II) complex 3.



Fig. S7 Frontier MOs of bis(terpyridine)copper(II) complexes 4 and 5.



Fig. S8 Powder X-band EPR spectrum of bis(terpyridine)copper(II) complex 2.



**Fig. S9** Stability of bis(terpyridine)copper(II) complexes **1** (a), **2** (b) and **3** (c) measured by UV-Vis spectroscopy.



**Fig. S10** Stern–Volmer plots of fluorescence titration of bis(terpyridine)copper(II) complexes **2** and **3** with CT–DNA.



**Fig. S11** Effect of bis(terpyridine)copper(II) complexes (1–5) on the viscosity of CT–DNA. Relative specific viscosity *versus* 1/R (R = [DNA]/[Complex],  $[DNA] = 200 \ \mu$ M,  $[Complex] = 10-100 \ \mu$ M).



**Fig. S12** Cyclic voltammograms of bis(terpyridine)copper(II) complexes **1** (a), **2** (b) and **3** (c) in DMF–Tris-HCl/NaCl buffer at pH 7.3 in the absence (solid line) and presence (dotted line) of CT–DNA and arrow indicates the current changes upon increasing DNA concentration.



Fig. S13 Optimized molecular structures of R1 (toluene), R2 (anisole) and R3 (3,4-dimethoxybenzene) obtained from Gaussian 03W at the B3LYP/6-31G\* level of calculation.



Fig. S14 Stern-Volmer plots and Scatchard plots of the fluorescence titration of the complex 3 with BSA.



Fig. S15 Non-bonding interaction diagram of bis(terpyridine)copper(II) complexes 1 (a), 2 (b) and 3 (c) docked with c-Met tyrosine kinase.



Fig. S16 (a) Gel electrophoresis diagram showing the cleavage of supercoiled pBR322 DNA (33.3  $\mu$ M) by complexes 1–3 (10  $\mu$ M) in the presence of H<sub>2</sub>O<sub>2</sub> (40  $\mu$ M): Lane 1: DNA control (33.3  $\mu$ M); Lane 2–4: DNA + 1/2/3 + H<sub>2</sub>O<sub>2</sub>. (b) Analysis of the capacity of external additives in the presence of complexes 1–3: Lane 1: DNA control, Lanes 2–4: DNA + 1/2/3 + NaN<sub>3</sub> (100  $\mu$ M), Lanes 5-7: DNA + 1/2/3 + DMSO (4  $\mu$ M), Lanes 8-10: DNA + 1/2/3 + SOD (1 U).