Supporting Information

Unidirectional thermal expansion in KZnB₃O₆: role of alkali metals

Yanfang Lou,^a Dandan Li,^a Zhilin Li,^a Han Zhang,^a Shifeng Jin^{*a} and Xiaolong Chen^{*a,b}

^aResearch & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

^bCollaborative Innovation Center of Quantum Matter, Beijing 100190, China.

1

Correspondence and requests for materials should be addressed to S.F.J (email: <u>shifengjin@iphy.ac.cn</u>) or to X.L.C (email: <u>chenx29@iphy.ac.cn</u>).

1. Experimental methods

2. Computational methods

3. **Table S1.** The lattice constants for $K_{0.5}M_{0.5}ZnB_3O_6$ ($M = Na, K^5$ and Rb) at 298K.

4. **Figure S1.** The variation of lattice constants with temperatures for $K_{0.5}M_{0.5}ZnB_3O_6$ (*M* = Na, K⁵ and Rb).

5. **Table S2.** The calculated bondlengths of *M*-O in $MZnB_3O_6$ ($M = Na, K^5$ and Rb) at ground states.

6. **Figure S2.** Specific heat of $K_{0.5}M_{0.5}ZnB_3O_6$ (*M* = Na, K and Rb) and their fitting results.

7. **Figure S3.** The phonon dispersion of $MZnB_3O_6$ ($M = Na, K^5$ and Rb).

8. References

Experimental methods

Samples. Polycrystalline samples of K_{1-x}*M*_xZnB₃O₆ (*M* = Na and Rb) (x ≤ 0.8) were synthesized by traditional solid-state reaction techniques. The stoichiometric mixtures of A.R. Na₂CO₃/K₂CO₃/Rb₂CO₃, H₃BO₃ and ZnO were ground well and packed into Al₂O₃ crucible. In order to compensate for volatilization of alkali metals, 15% excess of Na₂CO₃/K₂CO₃/Rb₂CO₃ (A.R.) is required. They were preheated at 500 °C for 12 h to decompose the carbonate and eliminate the water. Then they were intermediate grindings adequately, and calcined at 700 °C for 48 h. The single-phase powder of them was obtained. The purity of the samples was confirmed by powder X-ray diffraction (XRD) analysis. The powder XRD data were carried out with a Panalytical diffractometer (X'Pert PRO MRD) operating in Bragg–Brentano geometry with CuKα (λ = 1.5418 Å) radiation and a graphite monochromator. The diffraction patterns were taken from 10° to 80° (2θ) with a scan step width of 0.017° at room temperature.

High temperature XRD measurements. Temperature-dependent *in situ* X-ray diffractometry was performed on an XPERT-PRO powder diffractometer system (CoK α 1; 1.78901 Å) equipped with an Anton Paar HTK-1200N Oven Sample stage. The room-temperature diffraction pattern in the angular range from 10 ° to 80 ° with a scanning step width of 0.017 ° was firstly obtained as a standard, and then the sample was heated from 373 K to 973 K at intervals of 100 K. Each diffraction pattern was obtained 30 min after the required

temperature was reached. Unit cell parameters were then calculated by using the pattern indexing software Dicvol06.¹

Computational methods

The first-principles calculations presented in our work were performed with the CASTEP program code with the plane-wave pseudopotential method.² We adopted the generalized gradient approximation (GGA) in the form of the Perdew-Burke-Ernzerhof for the exchange-correlation potentials.³ The ultrasoft pseudopotential with a plane-wave energy cutoff of 410 eV and a $4\times4\times4$ Monkhorst Pack k-point mesh in the reciprocal space were used for all the calculations.⁴ The self-consistent field was set as 5×10^{-7} eV/atom. Based on the experimental lattice parameters, all independent internal atomic coordinates were optimized (Broyden Fletcher Goldfarb Shanno algorithm) with the convergence standard given as follows: energy change less than 5×10^{-6} eV/atom, residual force less than 0.01 eV/Å, stress less than 0.02 GPa, and displacement of atom less than 5×10^{-4} Å. The phonon frequencies and phonon density of states (PHDOS) were obtained with the finite displacement method based on the optimized structures.

	$K_{0.5}Na_{0.5}ZnB_3O_6$	$KZnB_{3}O_{6}^{5}$	$K_{0.5}Rb_{0.5}ZnB_3O_6$
a (Å)	6.716(1)	6.742(1)	6.803(2)
b (Å)	6.785(1)	6.921(1)	6.949(1)
c (Å)	6.986(1)	7.068(1)	7.106(1)
α (°)	63.40(1)	63.13(1)	63.18(1)
β (°)	71.73(1)	72.40(1)	73.19(1)
γ (°)	69.02(1)	69.08(1)	69.08(1)
V (Å ³)	261.26	270.89	276.73

Table S1. The lattice constants for $K_{0.5}M_{0.5}ZnB_3O_6$ ($M = Na, K^5$ and Rb) at

Figure S1. The variation of lattice constants with temperatures for $K_{0.5}M_{0.5}ZnB_3O_6$ (*M* = Na, K⁵ and Rb).

a) K_{0.5}Na_{0.5}ZnB₃O₆; b) KZnB₃O₆;⁵ c) K_{0.5}Rb_{0.5}ZnB₃O₆.

at ground states.				
Bonds	M = Na	$M = K^5$	M = Rb	
M-01	2.493	2.863	3.062	
M-O2	3.433	3.228	3.255	
M-O2	2.340	2.665	2.820	
M-O3	2.997	3.115	3.286	
M-O4	2.655	2.852	2.943	
M-O5	3.307	3.276	3.268	
M-O5	2.595	2.871	3.016	
M-06	2.631	2.884	2.992	
M-06	2.882	2.885	2.958	
Δ %*	31.8%	18.7%	14.2%	

Table S2. The calculated bondlengths of *M*-O in $MZnB_3O_6$ (*M* = Na, K⁵ and Rb)

* Δ %: Nonuniformity of the bond lengths

 Δ % = [(bond length) max - (bond length) min] / (bond length) max

Figure S2. Specific heat of $K_{0.5}M_{0.5}ZnB_3O_6$ (*M* = Na, K and Rb) and their fitting results. a) $K_{0.5}Na_{0.5}ZnB_3O_6$; b) $KZnB_3O_6$; c) $K_{0.5}Rb_{0.5}ZnB_3O_6$. The symbols stand for experimental data; the red lines are the fitting results of the fraction of the Debye model; the blue short dashes are the fitting results of the fraction of the Einstein model; the black lines are the sum fitting results of Debye and Einstein model.

Figure S3. The phonon dispersion of $MZnB_3O_6$ ($M = Na, K^5$ and Rb). a) NaZnB₃O₆; b) KZnB₃O₆;⁵ c) RbZnB₃O₆. It shows that the phonon dispersions above 20meV are similar, but downshifting on going from Na to K, and then to Rb below 20meV.

References

- 1. A. Boultif and D. Louer, J. Appl. Crystallogr., 2004, 37, 724-731.
- 2. S. J. Clark, et al., Z. Kristallogr., 2005, 220, 567-570.
- J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 4. H. J. Monkhorst, J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- 5. Y. F. Lou, D. D. Li, Z. L. Li, S. F. Jin and X. L. Chen, *Sci. Rep.*, 2015, **5**, 10996.