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Experimental methods 

Samples. Polycrystalline samples of K1-xMxZnB3O6 (M = Na and Rb) (x ≤ 

0.8) were synthesized by traditional solid-state reaction techniques. The 

stoichiometric mixtures of A.R. Na2CO3/K2CO3/Rb2CO3, H3BO3 and ZnO were 

ground well and packed into Al2O3 crucible. In order to compensate for 

volatilization of alkali metals, 15% excess of Na2CO3/K2CO3/Rb2CO3 (A.R.) is 

required. They were preheated at 500 oC for 12 h to decompose the carbonate 

and eliminate the water. Then they were intermediate grindings adequately, 

and calcined at 700 oC for 48 h. The single-phase powder of them was 

obtained. The purity of the samples was confirmed by powder X-ray diffraction 

(XRD) analysis. The powder XRD data were carried out with a Panalytical 

diffractometer (X’Pert PRO MRD) operating in Bragg−Brentano geometry with 

CuKα (λ = 1.5418 Å) radiation and a graphite monochromator. The diffraction 

patterns were taken from 10o to 80o (2θ) with a scan step width of 0.017o at 

room temperature. 

High temperature XRD measurements. Temperature-dependent in situ 

X-ray diffractometry was performed on an XPERT-PRO powder diffractometer 

system (CoKα1; 1.78901 Å) equipped with an Anton Paar HTK-1200N Oven 

Sample stage. The room-temperature diffraction pattern in the angular range 

from 10 o to 80 o with a scanning step width of 0.017 o was firstly obtained as a 

standard, and then the sample was heated from 373 K to 973 K at intervals of 

100 K. Each diffraction pattern was obtained 30 min after the required 
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temperature was reached. Unit cell parameters were then calculated by using 

the pattern indexing software Dicvol06.1 

Computational methods 

The first-principles calculations presented in our work were performed 

with the CASTEP program code with the plane-wave pseudopotential 

method.2 We adopted the generalized gradient approximation (GGA) in the 

form of the Perdew-Burke-Ernzerhof for the exchange-correlation potentials.3 

The ultrasoft pseudopotential with a plane-wave energy cutoff of 410 eV and a 

4×4×4 Monkhorst Pack k-point mesh in the reciprocal space were used for all 

the calculations.4 The self-consistent field was set as 5×10-7 eV/atom. Based 

on the experimental lattice parameters, all independent internal atomic 

coordinates were optimized (Broyden Fletcher Goldfarb Shanno algorithm) 

with the convergence standard given as follows: energy change less than 

5×10-6 eV/atom, residual force less than 0.01 eV/Å, stress less than 0.02 GPa, 

and displacement of atom less than 5×10-4 Å. The phonon frequencies and 

phonon density of states (PHDOS) were obtained with the finite displacement 

method based on the optimized structures. 
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Table S1. The lattice constants for K0.5M0.5ZnB3O6 (M = Na, K5 and Rb) at 

298K. 

 

 

K0.5Na0.5ZnB3O6 KZnB3O6
5 K0.5Rb0.5ZnB3O6 

a (Å) 6.716(1) 6.742(1) 6.803(2) 

b (Å) 6.785(1) 6.921(1) 6.949(1) 

c (Å) 6.986(1) 7.068(1) 7.106(1) 

α (o) 63.40(1) 63.13(1) 63.18(1) 

β (o) 71.73(1) 72.40(1) 73.19(1) 

γ (o) 69.02(1) 69.08(1) 69.08(1) 

V (Å3) 261.26 270.89 276.73 
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Figure S1. The variation of lattice constants with temperatures for 

K0.5M0.5ZnB3O6 (M = Na, K5 and Rb).  

a) K0.5Na0.5ZnB3O6; b) KZnB3O6;
5 c) K0.5Rb0.5ZnB3O6. 
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Table S2. The calculated bondlengths of M-O in MZnB3O6 (M = Na, K5 and Rb) 

at ground states. 

Bonds M = Na M = K5 M = Rb 

M-O1 2.493 2.863 3.062 

M-O2 3.433 3.228 3.255 

M-O2 2.340 2.665 2.820 

M-O3 2.997 3.115 3.286 

M-O4 2.655 2.852 2.943 

M-O5 3.307 3.276 3.268 

M-O5 2.595 2.871 3.016 

M-O6 2.631 2.884 2.992 

M-O6 2.882 2.885 2.958 

∆%* 31.8% 18.7% 14.2% 

*∆%: Nonuniformity of the bond lengths  

∆% = [(bond length) max - (bond length) min] / (bond length) max 
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Figure S2. Specific heat of K0.5M0.5ZnB3O6 (M = Na, K and Rb) and their fitting 

results. a) K0.5Na0.5ZnB3O6; b) KZnB3O6; c) K0.5Rb0.5ZnB3O6. The symbols 

stand for experimental data; the red lines are the fitting results of the fraction of 

the Debye model; the blue short dashes are the fitting results of the fraction of 

the Einstein model; the black lines are the sum fitting results of Debye and 

Einstein model.
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Figure S3. The phonon dispersion of MZnB3O6 (M = Na, K5 and Rb). a) 

NaZnB3O6; b) KZnB3O6;
5 c) RbZnB3O6. It shows that the phonon dispersions 

above 20meV are similar, but downshifting on going from Na to K, and then to 

Rb below 20meV. 
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