Supporting Information for

User-Friendly Aerobic Reductive Alkylation of Iridium(III) Porphyrin

Chloride with Potassium Hydroxide: Scope and Mechanism

Huiping Zuo, Zhipeng Liu, Wu Yang, Zhikuan Zhou and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories,

Hong Kong SAR, People's Republic of China

E-mail: ksc@cuhk.edu.hk

List of Contents

- I. Conditions Optimization (S2)
- II. X-ray Crystallographic Data (S4)
- III. Mechanistic Investigation Reactions (S7)
- IV. NMR Spectra (S8)

I. Conditions Optimization

The optimization reactions followed the general procedures described in the experimental section with the changes of atmosphere, water loading, solvents, temperatures, reaction time bases, and loadings (1-bromopentane (2a), KOH).

(1) Atmosphere and solvent effects

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), KOH (12.1 mg, 0.22 mmol), and **2a** (16.6 mg, 0.11 mmol) were added to benzene (1 mL). For the reaction conducted under N₂, the mixture was degassed for three freeze-pump-thaw cycles, filled with N₂. The mixture was heated at 120 °C for 5 h. Ir(ttp)-*n*-pentyl (**3a**) was isolated with 87% yield under N₂ and 83% yield under air.

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), KOH (12.1 mg, 0.22 mmol), and **2a** (16.6 mg, 0.11 mmol) were added to benzene (1 mL) or THF (1 mL). The mixture was heated at 120 °C under air for 5 h. Ir(ttp)-*n*-pentyl (**3a**) was isolated in 85%, 76% yield in C₆H₆ and THF, respectively.

(2) Water loading effects

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), KOH (12.1 mg, 0.22 mmol), **2a** (16.6 mg, 0.11 mmol), and H₂O (n equiv) were added to benzene (1 mL). Isolated yield of Ir(ttp)-*n*-pentyl (**3a**) with H₂O (200 equiv): 91%; H₂O (100 equiv): 90%; with H₂O (0 equiv): 84%.

(3) Temperature and time effects

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), KOH (12.1 mg, 0.22 mmol), and **2a** (16.6 mg, 0.11 mmol) were added to benzene (1 mL). Isolated yield of Ir(ttp)-*n*-pentyl (**3a**) for the reaction at 80 °C for 5 h: <10%; at 120 °C for 5 h: 84%; at 120 °C for 9 h: 83%; at 150 °C for 3 h: 73%.

(4) Base and base loading effects

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), base (20 equiv), and **2a** (16.6 mg, 0.11 mmol) were added to benzene (1 mL). Isolated yield of Ir(ttp)-*n*-pentyl (**3a**) with the base of K_2CO_3 (30.4 mg, 0.22 mmol): < 10%; KOH (12.1 mg, 0.22 mmol): 84%; no base: 0%.

S2

Ir(ttp)(CO)Cl (1; 10 mg, 0.011 mmol), KOH (m equiv), and **2a** (16.6 mg, 0.11 mmol) were added to benzene (1 mL). The mixture was heated at 120 °C. Isolated yield of Ir(ttp)-*n*-pentyl (**3a**) with 0 equiv KOH for 5 h: 0%; 1.1 equiv KOH for 12 h: 10%; 5 equiv KOH for 12 h: 79%; 10 equiv KOH for 8 h: 80%; 20 equiv KOH for 5 h: 84%.

(5) Alkyl halide loading effects

Ir(ttp)(CO)Cl (1; 10 mg, 0.011mmol), KOH (12.1 mg, 0.22 mmol), and **2a** (k equiv) were added benzene (1 mL). The mixture was heated at 120 °C for 5 h. Isolated yield of Ir(ttp)-*n*-pentyl (**3a**) with 2 equiv **2a**: 68%; 5 equiv **2a**: 80%; 10 equiv **2a**: 84%.

II. X-ray Crystallographic Data

		Ir(ttp)- <i>n</i> -pentyl	Ir(ttp)- <i>n</i> -octyl	Ir(ttp)-c-pentyl	Ir(ttp)-adamant
		(3 a)	(3e)	(3i)	yl (3k)
Empirical formula		C ₅₃ H ₄₈ IrN ₄	C ₅₆ H ₅₃ IrN ₄	$C_{54}H_{47}Cl_2IrN_4$	C ₅₈ H ₅₁ IrN ₄
Formula	a weight	933.15	974.22	1015.06	996.23
Temperature (K)		296.2	173.2	172.2	173.2
Wavelength (Å)		0.71073	0.71073	0.71073	0.71073
Crystal system		Monoclinic	Triclinic	Triclinic	Monoclinic
space group		$P2_1/n$	P^{-1}	$P2_1/n$	$P2_1/c$
	a (Å)	15.451(8)	10.4399(3)	15.5148(6)	10.8114(4)
Unit	b (Å)	12.705(6)	14.3879(4)	18.2080(8)	16.7568(6)
cell	c (Å)	22.893(12)	16.0385(4)	16.0602(7)	25.0862(9)
dimensi	a (deg.)	90	66.2380(10)	90	90
ons	β (deg.)	100.330(9)	78.2120(10)	107.5671(11)	95.283(2)
	γ (deg.)	90	83.3700(10)	90	90
Volun	ne(Å ³)	4421(4)	2156.91(10)	4325.3(3)	4525.4(3)
Z		4	2	4	4
Calculated density (g/cm ³)		1.402	1.500	1.559	1.462
Abs coef	$f(mm^{-1})$	3.059	3.139	3.254	2.994
F(000)		1884	988	2040	2016
Crystal size(mm)		0.40 x 0.30 x	0.40 x 0.30 x	0.40 x 0.30 x	0.40 x 0.30 x
		0.20	0.20	0.20	0.20
θ range for data collection(deg)		1.48 to 25.25.	1.41 to 25.25	2.24 to 25.25	1.46 to 25.25
Limiting	g indices	-17<=h<=18	-12<=h<=12	-18<=h<=18	-10<=h<=12
		-15<=k<=12	-17<=k<=17	-21<=k<=21	-20<=k<=18
		-27<=l<=27	-19<=l<=18	-19<=1<=19	-30<=l<=27
		33224 / 7989	33042 / 7813	84813 / 7831	53035 / 8122
No. of re	flections	[R(int) =	[R(int) =	[R(int) =	[R(int) =
collected / unique		0.0595]	0.0277]	0.0245]	0.0266]
Completeness to theta = 25.25		100.0 %	99.8 %	99.7 %	99.2 %
Absorp c	orrection	multi-scan	multi-scan	multi-scan	multi-scan
Max. a	nd min.	0.7456 and	0.7456 and	0.7456 and	0.7456 and

Table S1 Crystallographic data and structure refinement for 3a, 3e, 3i and 3k

transmn	0.5042	0.5849	0.4297	0.6118
Definient	Full-matrix	Full-matrix	Full-matrix	Full-matrix
Remement	least-squares	least-squares	least-squares	least-squares
method	on F ²	on F ²	on F ²	on F ²
Data/ restraints / parameters	7989 / 0 / 523	7813 / 24 / 596	7831 / 0 / 550	8122 / 7 / 568
$\frac{\text{Goodness-of-fit on}}{\text{F}^2}$	1.017	1.187	1.057	1.066
Final R indices	$R_1 = 0.0353$	$R_1 = 0.0197$	$R_1 = 0.0236$	$R_1 = 0.0243$
$[I > 2\sigma(I)]$	$wR_2 = 0.0741$	$wR_2 = 0.0535$	$wR_2 = 0.0574$	$wR_2 = 0.0559$
Final R indices (all	$R_1 = 0.0704$	$R_1 = 0.0219$	$R_1 = 0.0257$	$R_1 = 0.0343$
data)	$wR_2 = 0.0868$	$wR_2 = 0.0597$	$wR_2 = 0.0590$	$wR_2 = 0.0620$
Largest diff. peak	0.804 and	0.759 and	1.427 and	1.711 and
and hole (e $Å^3$)	-0.797	-0.634	-1.681	-0.711

Fig. S1 The conformation of porphyrins showing the displacement of core atoms and of iridium atom from the 24-atom least-squares plane of porphyrin core (in pm; negative values correspond to displacement towards the alkyl group). Absolute values of the angles between pyrrole rings and the least-squares plane, and angles between phenyl substituents and the least-squares plane, are shown in bold.

III. Mechanistic Investigation Reactions

1. Competition reaction of 1-bromopentane (2a) and 1-bromocyclopentane (2g).

Fig. S2 Integrations of proton signals of 3a, 3i by ¹H NMR spectrum

IV. NMR Spectra

No.	Spectra	Page
1	¹ H NMR Spectrum of Ir(ttp)- <i>n</i> -pentyl(3a)	S9
2	¹³ C NMR Spectrum of Ir(ttp)- <i>n</i> -pentyl (3a)	S9
3	¹ H NMR Spectrum of Ir(ttp)- <i>n</i> -butyl(3c)	S10
4	¹³ C NMR Spectrum of Ir(ttp)- <i>n</i> -butyl (3 c)	S10
5	¹ H NMR Spectrum of Ir(ttp)- <i>n</i> -octyl(3 e)	S11
6	¹³ C NMR Spectrum of Ir(ttp)- <i>n</i> -octyl (3e)	S11
7	¹ H NMR Spectrum of Ir(ttp)-6-heptenyl(3f)	S12
8	¹³ C NMR Spectrum of Ir(ttp)-6-heptenyl (3f)	S12
9	¹ H NMR Spectrum of Ir(ttp)-5-hexenyl(3g)	S13
10	¹³ C NMR Spectrum of Ir(ttp)-5-hexenyl (3g)	S13
11	¹ H NMR Spectrum of Ir(ttp)- <i>c</i> -pentyl(3i)	S14
12	¹³ C NMR Spectrum of Ir(ttp)- <i>c</i> -pentyl (3i)	S14
13	¹ H NMR Spectrum of Ir(ttp)- <i>c</i> -hexyl(3j)	S15
14	¹³ C NMR Spectrum of Ir(ttp)- <i>c</i> -hexyl (3j)	S15
15	¹ H NMR Spectrum of Ir(ttp)-adamantyl(3k)	S16
16	¹³ C NMR Spectrum of Ir(ttp)-adamantyl (3 k)	S16

ppm

-10

150 140 130

¹H NMR spectrum of Ir(ttp)-*n*-pentyl (**3a**)

¹³C NMR spectrum of Ir(ttp)-*n*-butyl (3c)

¹H NMR spectrum of Ir(ttp)-*n*-octyl (**3e**)

¹³C NMR spectrum of Ir(ttp)-*n*-octyl (**3e**)

¹H NMR spectrum of Ir(ttp)-6-heptenyl (**3f**)

¹³C NMR spectrum of Ir(ttp)-6-heptenyl (**3f**)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹H NMR spectrum of Ir(ttp)-*c*-pentyl (**3i**)

¹³C NMR spectrum of Ir(ttp)-*c*-pentyl (**3i**)

ppm

¹³C NMR spectrum of Ir(ttp)-*c*-hexyl (**3j**)

