Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information For

N-Heterocyclic Olefin Stabilized Boron Dication

Wan-Hua Lee, Ya-Fan Lin, Gene-Hsiang Lee, Shie-Ming Peng, Ching-Wen

Chiu*

Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt

Rd., Taipei, Taiwan, 10617.

General Information:

All experimental procedures are carried under N₂ atmosphere using standard Schlenk techniques or inside a glove box. Hexane was degased and dried with molecular sieves packed column under nitrogen. Chlorobenzene, 1,2-difluorobenzene, diethyl ether, C₆D₆, CD₂Cl₂ and CD₃NO₂ were dried with appropriate drying agents and distilled under nitrogen atmosphere (CaH₂ for chlorobenzene, 1,2-difluorobenzene and CD₃NO₂; P₂O₅ for CD₂Cl₂; Na/K alloy for ether and C₆D₆). 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene olefin (NHO) was prepared according to the published procedures.^[1] ¹H, ¹¹B, ¹³C and ³¹P NMR spectra were recorded using Bruker AVIII 400 MHz NMR spectrometer. Chemical shifts are reported in ppm (δ) with respect to the signal of solvent residual (¹H and ¹³C NMR) or external standards (BF₃-OEt₂ for ¹¹B NMR and phosphoric acid for ³¹P NMR). Elemental analysis was performed on a Heraeus varioIII-NCH elemental analyzer.

Synthesis:

Cp*BCl₂-NHO adduct (1): A solution of NHO (200 mg, 0.50 mmol) in hexane (5 mL) was allowed to react with Cp*BCl₂ (108 mg, 0.50 mmol) at room temperature for 3 hours. White powder was insoluble in hexane, and was collected by filtration to yield **1** (280 mg, yield: 90 %). ¹H NMR (C₆D₆, 400.2 MHz, ppm): δ 7.21 (t, 2 H, *p*-Dipp), 7.06 (d, 4 H, *m*-Dipp), 6.42 (s, 2 H, NCH), 2.65~2.72 (m, 4 H, CHMe₂), 1.99 (s, 2H, IPr=CH₂), 1.96 (s, 6H, Cp*), 1.71 (s, 6H, Cp*), 1.63 (s, 3H, Cp*), 1.39 (d, 12 H, CHMe₂), 0.90 (d, 12 H, CHMe₂); ¹¹B NMR (128.4 MHz, C₆D₆, ppm): δ = 7 ppm; ¹³C NMR (C₆D₆, 100.6 MHz, ppm): δ 160.3 (NCN), 146.0 (Cp*), 145.8 (*ipso*-C, Dipp), 132.2 (*o*-C, Dipp), 131.6 (Cp*), 131.3 (*p*-C, Dipp), 124.9 (*m*-C, Dipp), 122.0 (NCH), 58.5 (Cp*), 29.3 (CHMe₂, Dipp), 26.4 (CHMe₂, Dipp), 25.1 (CH₂), 22.3 (CHMe₂, Dipp), 17.1 (Me, Cp*), 14.7 (Me, Cp*), 11.5 (Me, Cp*). Anal. Calcd. for C₃₈H₅₃N₂BCl₂: C, 73.67; H, 8.62; N, 4.52. Found: C, 72.88; H, 8.42; N, 4.57.

[Cp*BCI-NHO][OTf] ([2][OTf]): Compound **1** (51 mg, 0.08 mmol) and excess TMSOTf (48 mg, 0.22 mmol) were mixed in 2 mL of benzene in a vial inside a glove box. The reaction mixture was allowed to sit at room temperature for 24 hours to yield colorless crystalline products. After filtration and dried under vacuum, **[2]**[OTf] was isolated as white solid (41 mg, yield: 67.9 %). Single crystals of **[2]**[OTf] and **[2]**[AlCl₄] were obtained from solution consisting of **1** (15 mg, 0.02 mmol) and one equivalent of TMSOTf or AlCl₃ in C₆D₆ (0.4 mL). ¹H NMR (CD₂Cl₂, 400.2 MHz, ppm): δ 7.71 (s, 2 H, NCH), 7.70 (t, 2 H, *p*-Dipp), 7.47 (d, 4 H, *m*-Dipp), 2.34~2.44 (m, 4 H, *CH*Me₂), 2.26 (s, 2H, IPr=CH₂), 1.38 (s, 15H, Cp*),

¹ Y. Wang, M. Y. Abraham, R. J. Gilliard, D. R. Sexton, P. Wei and G. H. Robinson, *Organometallics*, 2013, **32**, 6639-6642.

1.31 (d, 12 H, CH*Me*₂), 1.23 (d, 12 H, CH*Me*₂); ¹¹B NMR (128.4 MHz, CD₂Cl₂, ppm): $\delta = 66$ ppm; ¹³C NMR (CD₂Cl₂, 100.6 MHz, ppm): δ 150.2 (NCN), 145.6 (*o*-C, Dipp), 133.2 (*p*-C, Dipp), 129.5 (*ipso*-C, Dipp), 129.0 (NCH), 126.3 (*m*-C, Dipp), 125.6 (C₅, Cp*), 125.5 (C₅, Cp*), 29.8 (*C*HMe₂, Dipp), 26.5 (CH*Me*₂, Dipp), 23.0 (CH*Me*₂, Dipp), 20.7 (CH₂), 12.2 (Me-C5, Cp*). Anal. Calcd. for C₃₉H₅₃N₂BClSO₃F₃: C, 63.89; H, 7.29; N, 3.82. Found: C, 62.95; H, 7.06; N, 3.77.

[Cp*B-NHO][AlCl₄]₂ ([3][AlCl₄]₂): Compound 1 (105 mg, 0.17 mmol) and excess AlCl₃ (100 mg, 0.75 mmol) were mixed in 5 mL of chlorobenzene in a glove box to yield amber oil at the bottom of the reaction flask. After stirring for additional two hours at 80 °C, ether (15 mL) was added to the reaction mixture to convert the amber oil into pale pink solid. The solid was then collected and washed with ether for three times to yield [3][AlCl₄]₂ (128 mg, yield: 85 %). Single crystals of [3][AlCl₄]₂ were obtained from slow cooling a saturated difluorobenzene solution of [3][AlCl₄]₂ from 80 °C to room temperature inside a glove box. To replace [AlCl₄], large excess of TMSOTf (0.1 mL) was added to a [3][AlCl₄]₂ suspension in difluorobenzene (128 mg, 0.14 mmol). The resulting mixture was allowed to stir at room temperature for 4 hours before the addition of ether (15 mL). The resulting white solids were collected and washed with ether for three times to give [3][OTf]₂ (108 mg, yield: 89 %). Since [3][AlCl₄]₂ is not stable in solution, only the spectral data of [3][OTf]₂ are reported. ¹H NMR (CD₃NO₂, 400.2 MHz, ppm): δ 8.00 (s, 2 H, NCH), 7.84 (t, 2 H, *p*-Dipp), 7.69 (d, 4 H, *m*-Dipp), 2.35~2.42 (m, 4 H, CHMe₂), 2.16 (broad, 2H, IPr=CH₂), 1.89 (s, 15H, Cp*), 1.47 (d, 12 H, CHMe₂), 1.21 (d, 12 H, CHMe₂); ¹¹B NMR (128.4 MHz, C₆D₆, ppm): $\delta = -45.9$ ppm; ¹³C NMR (CD₃NO₂, 100.6 MHz, ppm): δ140.7 (*o*-C, Dipp), 139.0 (NCN), 129.3 (*p*-C, Dipp), 125.1 (ipso-C, Dipp), 122.7 (NCH), 122.4 (m-C, Dipp), 109.9 (C₅, Cp*), 25.4 (CHMe₂, Dipp), 20.8 (CHMe₂, Dipp), 17.4 (CHMe₂, Dipp), 6.9 (Me, Cp*), -5.51 (CH₂). Anal. Calcd. for C₃₈H₅₃N₂BAl₂Cl₈ ([**3**][AlCl₄]₂) : C, 51.50; H, 6.03; N, 3.16. Found: C, 51.27; H, 6.01; N, 2.82.

Lewis Acidity Measurements:

The Lewis acidity of $B(C_6F_5)_3$, $[3]^{2+}$ and $[D]^{2+}$ was determined with the Gutmann-Beckett method using the ³¹P NMR chemical shift change of Et₃PO in CD₃NO₂. In all cases, Lewis acids were mixed with one equivalent of Et₃PO in CD₃NO₂, and the measured ³¹P NMR resonances were compared to the value determined for free Et₃PO in CD₃NO₂ (50.5 ppm). The ³¹P NMR signals at 79.8, 80.1, and 52.4 ppm were observed for $B(C_6F_5)_3$, $[3]^{2+}$ and $[D]^{2+}$, respectively.

X-ray Crystallography:

Diffraction data of **1**, **[2]**[OTf], **[2]**[AlCl₄], and **[3**][AlCl₄]₂ were collected at T = 200(2) K with a Bruker AXS APEX CCD diffractometer with Mo-K α radiation (λ = 0.71073 Å). Diffraction data were collected over the full sphere and were corrected for absorption. Cell parameters were retrieved and refined using DENZO-SMN software on all reflections. Data reduction was performed with DENZO-SMN software. Structural analysis was conducted with SHELXTL, and the structure was solved and refined using SHELXL-97 by full-matrix least-squares on F² values. Hydrogen atoms were added to the structure models in calculated positions. Crystallographic data of 1, **[2**][AlCl₄], **[2**][OTf], and **[3**][AlCl₄]₂ have been deposited at the Cambridge Crystallographic Data Center with deposition number of CCDC-1429029, CCDC-1429031, CCDC-1429030, and CCDC-1429032, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Figure S1: Molecular structure of 1.

Figure S2: Molecular structure of [2][OTf].

Figure S3: The two independent molecules found in the crystal data of [3][AlCl₄]₂.

Identification code	ic17103	
Empirical formula	C56 H71 B Cl2 N2	
Formula weight	853.86	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 10.1478(3) Å	α= 90°.
	b = 16.7606(5) Å	β= 90°.
	c = 30.0835(6) Å	$\gamma = 90^{\circ}$.
Volume	5116.7(2) Å ³	
Ζ	4	
Density (calculated)	1.108 Mg/m ₃	
Absorption coefficient	0.163 mm-1	
F(000)	1840	
Crystal size	0.50 x 0.16 x 0.07 mm ₃	
Theta range for data collection	1.35 to 25.00°.	
Index ranges	-12<=h<=11, -14<=k<=19	9, - 35<=l<=35
Reflections collected	17499	
Independent reflections	8793 [R(int) = 0.0523]	
Completeness to theta = 25.00°	99.5 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9887 and 0.9228	
Refinement method	Full-matrix least-squares	on F ₂
Data / restraints / parameters	8793 / 18 / 563	
Goodness-of-fit on F2	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0645, wR2 = 0.154	42
R indices (all data)	R1 = 0.1407, wR2 = 0.182	27
Absolute structure parameter	0.00(17)	
Largest diff. peak and hole	0.449 and -0.428 e.Å-3	

 Table S1.
 Crystal data and structure refinement for ic17103. (1)

Table S2.	Crystal data and structure refin	nement for ic17094. ([2][O	Γf])
Identificatio	on code	ic17094	
Empirical for	ormula	C45 H59 B Cl F3 N2 O3	S
Formula we	ight	811.26	
Temperature	e	200(2) K	
Wavelength		0.71073 Å	
Crystal syst	em	Monoclinic	
Space group)	P2(1)/c	
Unit cell dir	nensions	a = 11.6683(3) Å	α= 90°.
		b = 11.9885(3) Å	β=91.8376(12)°.
		c = 32.9526(7) Å	$\gamma = 90^{\circ}$.
Volume		4607.22(19) Å ³	
Ζ		4	
Density (cal	culated)	1.170 Mg/m ³	
Absorption	coefficient	0.179 mm ⁻¹	
F(000)		1728	
Crystal size		0.50 x 0.10 x 0.10 mm ³	
Theta range	for data collection	1.24 to 25.00°.	
Index range	S	-13<=h<=13, -13<=k<=14	4, -39<=l<=25
Reflections	collected	16645	
Independent	treflections	8079 [R(int) = 0.0557]	
Completene	ss to theta = 25.00°	99.6 %	
Absorption	correction	Semi-empirical from equi	valents
Max. and m	in. transmission	0.9823 and 0.9158	
Refinement	method	Full-matrix least-squares	on F ²
Data / restra	ints / parameters	8079 / 120 / 512	
Goodness-o	f-fit on F ²	1.140	
Final R indi	ces [I>2sigma(I)]	R1 = 0.1182, wR2 = 0.27	62
R indices (a	ll data)	R1 = 0.2215, $wR2 = 0.32$	93
Largest diff	peak and hole	1.328 and -1.553 e.Å-3	

Table S3. Crystal data and structure refin	ement for ic17095. ([2][Al	Cl ₄])
Identification code	ic17095	
Empirical formula	C41 H56 Al B Cl5 N2	
Formula weight	791.92	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 14.9267(6) Å	α= 90°.
	b = 13.7987(5) Å	β=90.2460(10)°.
	c = 21.4098(8) Å	$\gamma = 90^{\circ}$.
Volume	4409.7(3) Å ³	
Ζ	4	
Density (calculated)	1.193 Mg/m ³	
Absorption coefficient	0.378 mm ⁻¹	
F(000)	1676	
Crystal size	0.40 x 0.30 x 0.28 mm ³	
Theta range for data collection	1.36 to 25.00°.	
Index ranges	-17<=h<=16, -16<=k<=16	6, -25<=l<=25
Reflections collected	26560	
Independent reflections	7766 [R(int) = 0.0368]	
Completeness to theta = 25.00°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9015 and 0.8634	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	7766 / 304 / 490	
Goodness-of-fit on F ²	1.152	
Final R indices [I>2sigma(I)]	R1 = 0.0680, wR2 = 0.160	04
R indices (all data)	R1 = 0.0841, wR2 = 0.172	29
Largest diff. peak and hole	0.731 and -0.423 e.Å ⁻³	

Table S4. Crystal data and structure refin	ement for ic17210. ([3][Al	$Cl_4]_2)$
Identification code	ic17210	
Empirical formula	C50 H61 Al2 B Cl8 F4 N	2
Formula weight	1114.38	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.3983(4) Å	α= 71.8270(7)°.
	b = 20.8463(6) Å	β= 86.9293(8)°.
	c = 23.5587(7) Å	$\gamma = 85.3593(7)^{\circ}$.
Volume	5763.7(3) Å ³	
Z	4	
Density (calculated)	1.284 Mg/m ³	
Absorption coefficient	0.468 mm ⁻¹	
F(000)	2312	
Crystal size	0.40 x 0.40 x 0.30 mm ³	
Theta range for data collection	0.91 to 27.50°.	
Index ranges	-16<=h<=16, -27<=k<=2	7, - 30<=1<=30
Reflections collected	68005	
Independent reflections	26408 [R(int) = 0.0394]	
Completeness to theta = 27.50°	99.7 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.8723 and 0.8348	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	26408 / 162 / 1233	
Goodness-of-fit on F ²	1.050	
Final R indices [I>2sigma(I)]	R1 = 0.0822, wR2 = 0.209	96
R indices (all data)	R1 = 0.1327, wR2 = 0.244	42
Largest diff. peak and hole	1.275 and -0.503 e.Å ⁻³	

DFT calculations:

All geometries optimization and energy calculations were performed with the Gaussian 09 program package and B3LYP density functional. The basis set employed for the calculations were 6-311G(d, p) for all atoms. Frequency calculations were performed to verify the optimized structures as minima. The solvation effects of nitromethane were evaluated using the polarized continuum model (PCM) with the universal force field (UFF) radii built from the UFF force field. The electron potential surface was generated by GaussView 5.0.8.

Table S5. CIA of [3]²⁺ and [D]²⁺

The chloride ion affinity (CIA) was calculated according to the following reactions:

$[3]^{2+} + \mathrm{AlCl}_{4^{-}} \rightarrow [2]^{+} + \mathrm{AlCl}_{3}$	Δ H(MeNO ₂) = 21.2 kcal/mol
$[\mathbf{D}]^{2+} + \text{AlCl}_4 \rightarrow [\mathbf{D} + \text{Cl}]^+ + \text{AlCl}_3$	Δ H(MeNO ₂) = 35.7 kcal/mol

Table S6. Cartesian coordinate of [3]²⁺

SCF energy (B3LYP/6-311g**) = -1614.43031587 hartree Solvation: nitromethane with PCM

Atom	Cod	Coordinates (Angstroms)			
	Х	Ŷ	Z		
 D	0 281/21	1 7/2162	1 166014		
B N	-0.963162	-1.114334	1.009301		
Ν	1.207690	-1.056962	0.875490		
С	-0.000328	0.193248	-0.960348		
Н	-0.743412	-0.319685	-1.578725		
Н	0.957263	0.011249	-1.455327		
С	0.069705	-0.565924	0.327378		
С	-0.469016	-1.964854	1.984623		
Н	-1.123049	-2.516447	2.635361		
С	0.880125	-1.929003	1.902675		
Н	1.634522	-2.449096	2.463651		
С	-2.384018	-0.944217	0.740889		
С	-2.943018	-1.700161	-0.311872		

С	-4.301457	-1.520317	-0.582886	
Н	-4.762601	-2.081523	-1.385778	
С	-5.074096	-0.650275	0.174933	
Н	-6.125238	-0.518503	-0.053441	
С	-4.505873	0.032162	1.240668	
Н	-5.123419	0.685401	1.846625	
С	-3.149872	-0.101219	1.569475	
С	-2.167098	-2.761712	-1.088242	
Н	-1.106707	-2.671071	-0.846969	
С	-2.304694	-2.615211	-2.614055	
Н	-3.332328	-2.784345	-2.944353	
Н	-1.672096	-3.352718	-3.113792	
Н	-2.002790	-1.623624	-2.960328	
С	-2.602863	-4.171574	-0.636598	
Н	-2.466342	-4.308125	0.438681	
Н	-2.010313	-4.930241	-1.154364	
Н	-3.656612	-4.347308	-0.868553	
С	-2.711657	0.622811	2.849763	
Н	-3.352832	1.508586	2.888941	
С	-1.268345	1.135264	2.956054	
Н	-1.213559	1.866041	3.766247	
Н	-0.937370	1.635119	2.045993	
Н	-0.557785	0.343685	3.195877	
С	-3.068721	-0.225877	4.090098	
Н	-2.462593	-1.134100	4.142117	
Н	-4.119901	-0.520654	4.082679	
Н	-2.882976	0.351531	4.999647	
С	2.579342	-0.845326	0.425247	
С	3.053050	-1.626494	-0.647208	
С	4.381891	-1.433352	-1.037749	
Н	4.783819	-2.012647	-1.859544	
С	5.200600	-0.527785	-0.377321	
Н	6.228812	-0.398485	-0.694644	
С	4.713160	0.201061	0.700541	
Н	5.372661	0.886675	1.216330	
С	3.391919	0.061501	1.135118	
С	2.220401	-2.700600	-1.340455	
Н	1.181867	-2.598862	-1.021092	
С	2.238021	-2.569260	-2.874118	
Н	1.936256	-1.571210	-3.200901	
Н	1.547411	-3.292798	-3.314122	
Н	3.230635	-2.770886	-3.283812	
С	2.685952	-4.105992	-0.907587	
Н	3.719666	-4.285312	-1.214710	
Н	2.056743	-4.869267	-1.372750	
Н	2.628748	-4.232212	0.176083	
С	2.915426	0.821628	2.368937	

Н	1.825247	0.880288	2.333790
С	3.451649	2.262727	2.435112
Н	2.940029	2.809246	3.230875
Н	3.301748	2.801716	1.497823
Н	4.520167	2.286324	2.662262
С	3.306032	0.071583	3.660930
Н	4.393538	-0.007187	3.742792
Η	2.894449	-0.938255	3.697857
Η	2.938206	0.615698	4.534736
С	-0.140394	3.371527	-0.541829
С	-1.472352	3.014163	-0.962056
С	-1.391707	2.517597	-2.305812
С	-0.020210	2.568075	-2.717564
С	0.754215	3.090587	-1.630497
С	0.257481	3.927410	0.790382
Η	0.528680	4.977595	0.656634
Η	1.116298	3.409634	1.213256
Η	-0.559280	3.884697	1.507061
С	-2.727647	3.122971	-0.155080
Η	-2.524831	3.176063	0.912371
Η	-3.402185	2.288566	-0.339654
Η	-3.240581	4.043924	-0.444845
С	-2.529146	1.943546	-3.091571
Η	-3.049599	2.759559	-3.599907
Η	-3.248832	1.434447	-2.451347
Η	-2.182421	1.243760	-3.850789
С	0.530745	2.051389	-4.010332
Η	-0.025958	1.188816	-4.375141
Η	1.580655	1.776880	-3.920174
Η	0.453520	2.842060	-4.761434
С	2.247317	3.220647	-1.610382
Н	2.746613	2.286910	-1.874788
Η	2.603387	3.537013	-0.632572
Η	2.545598	3.977887	-2.339066

 Table S7. Cartesian coordinate of [2]⁺

SCF energy (B3LYP/6-311g**) = -2074.87615698 hartree Solvation: nitromethane with PCM

Atom	Co	ordinates (An	gstroms)
	Х	Y	Z
В	0.313036	1.052542	-1.490313

Cl	-0.130482	-0.048111	-2.819629
Ν	-1.405443	-1.465470	0.538111
Ν	0.746161	-1.784255	0.534943
С	-0.013014	0.578188	-0.001268
Н	-0.943104	1.100632	0.248302
Н	0.740438	0.989652	0.673472
С	-0.216247	-0.858855	0.316302
С	-1.184684	-2.785971	0.906129
Н	-1.996200	-3.448701	1.145615
С	0.152349	-2.983861	0.905013
Н	0.737976	-3.852645	1.145603
С	-2.725192	-0.849329	0.512933
С	-3.562460	-1.089995	-0.593594
С	-4.834636	-0.510217	-0.565930
Н	-5.509422	-0.672014	-1.396923
С	-5.251807	0.264850	0.508475
Н	-6.242015	0.705642	0.504079
С	-4.410375	0.464399	1.594996
Н	-4.757573	1.052432	2.435417
С	-3.129779	-0.095473	1.632571
С	-3.167148	-1.982942	-1.765010
Н	-2.087040	-2.135602	-1.730009
С	-3.841002	-3.366119	-1.647948
Н	-3.590817	-3.866774	-0.710012
Н	-4.929526	-3.272934	-1.696881
Н	-3.519500	-4.010390	-2.470679
С	-3.492024	-1.348755	-3.129365
Н	-3.069185	-0.346690	-3.217109
Н	-3.073852	-1.964821	-3.929649
Н	-4.569628	-1.280949	-3.298460
С	-2.277308	0.074401	2.886597
Н	-1.268747	-0.284485	2.675241
С	-2.831166	-0.793726	4.034720
Н	-2.880514	-1.847617	3.750804
Н	-2.188481	-0.707698	4.914918
Н	-3.837341	-0.472555	4.317631
С	-2.148139	1.544423	3.323394
Н	-1.463381	1.618306	4.172001
Н	-1.758094	2.171557	2.518348
Н	-3.108638	1.959364	3.638476
С	2.188262	-1.580247	0.514573
С	2.918319	-2.005327	-0.613083
С	4.305090	-1.829112	-0.574076
Н	4.904039	-2.141178	-1.420055
С	4.931983	-1.272448	0.533721
Н	6.008542	-1.146684	0.537967
С	4.186592	-0.892273	1.641922

Н	4.690990	-0.481831	2.508072
С	2.797223	-1.045910	1.666868
С	2.277182	-2.698171	-1.811351
Н	1.204620	-2.497203	-1.790147
С	2.466339	-4.226958	-1.719227
Н	2.045100	-4.637587	-0.799094
Н	1.973033	-4.716661	-2.563130
Н	3.527681	-4.489387	-1.748334
С	2.810058	-2.178738	-3.158399
Н	2.742241	-1.091718	-3.227457
Н	3.851538	-2.467350	-3.320449
Н	2.222453	-2.606922	-3.974420
С	2.030748	-0.699734	2.939509
Н	0.961589	-0.779346	2.735845
С	2.347861	-1.717034	4.054319
Н	1.751356	-1.497542	4.943809
Н	2.124176	-2.738730	3.738273
Н	3.403373	-1.674016	4.336129
С	2.297830	0.738743	3.418105
Н	2.078302	1.472560	2.638895
Н	1.668686	0.964973	4.282643
Н	3.338637	0.874871	3.722259
С	0.870957	2.496124	-1.829752
С	-0.333446	3.385934	-1.495629
С	-0.023308	4.142291	-0.410861
С	1.357799	3.858271	0.018321
С	1.900484	2.920647	-0.797659
С	1.374728	2.692666	-3.274649
Н	1.688001	3.730234	-3.417526
Н	2.228060	2.044627	-3.487882
Н	0.598044	2.466015	-4.006292
С	-1.593889	3.397203	-2.310370
Н	-2.279691	4.172664	-1.967213
Н	-1.381992	3.590345	-3.367526
Н	-2.135197	2.445298	-2.269965
С	-0.885926	5.159967	0.276234
Н	-1.868038	5.249272	-0.188178
Н	-1.037676	4.898749	1.329127
Н	-0.416434	6.149231	0.263030
С	2.001982	4.561327	1.177591
Н	3.027951	4.229639	1.338592
Н	2.022309	5.644932	1.020026
Н	1.445745	4.389333	2.105304
C	3.289501	2.356524	-0.775170
H	3.882173	2.781450	0.035822
H	3.296408	1.268689	-0.648910
Н	3.817661	2.564571	-1.712736

Table S8. Cartesian coordinate of [D]²⁺

SCF energy (B3LYP/6-311g**) = -1339.1859010	l hartree
Solvation: nitromethane with PCM	

Atom	Coordinates (Angstroms)			
	Х	Ŷ	Ź	
В	1.545685	-0.105346	2.537126	
Ν	3.579780	0.439477	3.074764	
Ν	1.815425	0.784350	4.991758	
С	2.307279	0.376037	3.559553	
С	2.335651	-0.336548	1.433847	
Н	1.923794	-0.718828	0.516155	
С	3.604796	0.004020	1.769042	
Н	4.518034	-0.020230	1.200658	
С	0.117025	-0.378800	2.508894	
С	-0.315944	-1.688545	2.764981	
С	-1.685087	-1.941387	2.665421	
Н	-2.043600	-2.943702	2.873953	
С	-2.598678	-0.948874	2.303578	
С	-2.111976	0.327933	2.011045	
Н	-2.803255	1.103401	1.699347	
С	-0.751956	0.636695	2.080974	
С	0.640064	-2.812892	3.079137	
Н	0.108216	-3.649837	3.531305	
Н	1.441979	-2.514044	3.755643	
Н	1.113146	-3.180583	2.163013	
С	-4.068898	-1.260532	2.184151	
Н	-4.371251	-2.029758	2.897057	
Н	-4.299500	-1.634112	1.181099	
Н	-4.679504	-0.371705	2.351522	
С	-0.259544	1.988068	1.624086	
Н	-1.088680	2.691625	1.551846	
Н	0.196708	1.912765	0.631985	
Н	0.490027	2.418155	2.288282	
С	4.795663	0.873037	3.746648	
С	5.619276	-0.102943	4.332187	
С	6.808512	0.331283	4.917634	
Н	7.453016	-0.404134	5.386821	
С	7.193898	1.674559	4.909839	
С	6.366959	2.598369	4.267801	
Н	6.667572	3.639435	4.221565	

С	5.170038	2.221642	3.652477
С	5.293955	-1.576127	4.291994
Н	5.938298	-2.124908	4.978531
Н	5.460333	-1.981248	3.289092
Н	4.258246	-1.793279	4.556104
С	8.495957	2.103902	5.536793
Н	8.496933	3.171135	5.763045
Н	9.330692	1.907952	4.855997
Н	8.692748	1.553046	6.458873
С	4.390896	3.232653	2.846790
Н	4.662316	4.246579	3.140670
Н	3.310941	3.129060	2.947349
Н	4.624021	3.125578	1.782575
С	1.639028	-0.032111	6.555513
С	2.566730	1.064534	6.571337
С	1.905219	2.216976	6.023039
С	0.567048	1.833952	5.672627
С	0.401812	0.444718	6.003152
С	1.924436	-1.430868	7.004433
Н	1.748557	-1.485902	8.082205
Н	2.958740	-1.717115	6.820011
Н	1.270916	-2.155169	6.521913
С	3.960553	1.032942	7.109661
Н	3.912569	1.365218	8.151067
Н	4.628276	1.703373	6.573268
Н	4.382510	0.031014	7.099289
С	2.507982	3.574695	5.853927
Н	2.337764	4.133384	6.778752
Н	2.047146	4.131382	5.040227
Н	3.582276	3.525354	5.687843
С	-0.479147	2.719943	5.076994
Н	-1.036890	3.176842	5.899361
Н	-1.184190	2.160422	4.465547
Н	-0.050421	3.522636	4.480206
С	-0.855045	-0.348162	5.841185
Н	-1.436292	-0.227161	6.760181
Н	-0.658169	-1.409152	5.707376
Н	-1.462009	0.004449	5.010544

Table S9. Cartesian coordinate of [D+Cl]⁺

SCF energy (B3LYP/6-311g**) = -1799.60924062 hartree Solvation: nitromethane with PCM

Atom	Coordinates (Angstroms)			
	Х	Ŷ	Z	
В	12.640114	7.917947	9.597717	
Cl	12.688219	9.817457	10.638787	
Ν	10.562054	9.456346	9.038329	
Ν	12.003389	9.123050	9.685113	
С	13.702203	7.868667	10.479723	
С	14.332956	7.000865	10.556244	
Н	13.730937	9.050923	11.131983	
С	14.386409	9.420475	11.900122	
Н	12.494614	11.167342	11.143629	
С	11.519565	11.418695	12.119082	
С	11.448507	12.714567	12.640837	
С	10.697536	12.925685	13.395062	
Н	12.329349	13.723663	12.253427	
С	13.320459	13.411963	11.319980	
С	14.031080	14.175893	11.022327	
Н	13.428802	12.143069	10.752776	
С	10.585954	10.361109	12.652496	
С	11.016177	9.360904	12.596986	
Н	9.646347	10.342935	12.096065	
Н	10.346870	10.570940	13.696209	
Н	12.214798	15.116047	12.822007	
С	11.617819	15.753791	12.161538	
Н	13.195908	15.583922	12.927056	
Н	11.728255	15.108230	13.799106	
Н	14.543674	11.852512	9.777439	
C	14 948798	12 782754	9 378478	
Н	14.209816	11.239178	8.940152	
Н	15 366166	11 318035	10 262607	
Н	12.346387	6 802168	8 713670	
C	13 032082	6 741844	7 487090	
Č	12 760662	5 667271	6 642701	
C	13 275681	5 611457	5 689379	
H	11 866413	4 652797	7 001815	
C	11 283847	4 705893	8 265847	
C	10.635511	3 897248	8 587567	
Н	11 526259	5 757306	9 157919	
C	14 106690	7 737273	7 126027	
C	14.100050	7 638317	6.076993	
н	15 005955	7 559342	7 724349	
Н	13 804175	8 769064	7 305196	
Н	11 556703	3 526253	6 047891	
C	12 441570	3 737988	5 478474	
Ч Н	10 792132	3 832345	5 326107	
Н	11 178997	2 649246	6 576471	
11	11.1/0///	ム・マ エノム・エリ	0.010711	

Н	10.983711	5.656392	10.562808
С	11.114208	6.569111	11.138119
Н	11.499645	4.847670	11.090113
Н	9.919629	5.413649	10.552471
Н	9.965949	10.793047	8.291752
С	11.017012	11.759296	7.957720
С	11.807415	11.271418	6.922093
С	11.285903	10.012758	6.529701
С	10.157068	9.658157	7.332044
С	8.590663	11.318497	8.679875
С	8.186405	11.938699	7.874500
Н	8.644841	11.927435	9.584790
Н	7.888688	10.509031	8.868368
Н	11.098338	13.106604	8.588856
С	12.080738	13.564373	8.486786
Н	10.827776	13.080439	9.644172
Н	10.373452	13.764525	8.091362
Н	12.975520	11.954048	6.267575
С	13.241201	12.877753	6.780967
Н	12.742823	12.210775	5.229531
Н	13.863585	11.316132	6.248412
Н	11.735396	9.241543	5.336686
С	11.623520	8.166156	5.474605
Н	12.762887	9.467750	5.054580
Н	11.095651	9.520881	4.488831
Н	9.061638	8.772599	6.771732
С	9.450886	7.796027	6.475313
Н	8.620172	9.241476	5.886319
Н	8.264766	8.604077	7.492297
Н	9.301996	8.466562	9.959019

Table S10. Cartesian coordinate of AlCl₃

SCF energy (B3LYP/6-311g**) = -1623.34446781 hartree Solvation: nitromethane with PCM

Atom	Co	ordinates (Ang	gstroms)
	Х	Ŷ	Z
Al	0.000000	0.000000	0.000000
Cl	-0.000158	0.000278	0.000000
Cl	0.000305	0.000000	0.000000
Cl	-0.000158	-0.000278	0.000000

Table S11. Cartesian coordinate of [AlCl₄]-

SCF energy (B3LYP/6-311g**) = -2083.82709136 hartree Solvation: nitromethane with PCM

Atom	Coordinates (Angstroms)		
	Х	Ŷ	Z
Al	-2.621078	-1.048390	0.000266
Cl	-3.642870	0.722115	0.722495
Cl	-0.576916	-1.048380	0.722713
Cl	-3.642879	-2.818891	0.722491
Cl	-2.621096	-1.048389	-2.167966