Novel $B(Ar')_2(Ar'')$ hetero-tri(aryl)boranes: a systematic study of

Lewis acidity

Robin J. Blagg,* Trevor R. Simmons, Georgina R. Hatton, James M. Courtney, Elliot L. Bennett, Elliot J. Lawrence and Gregory G. Wildgoose* School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K.

* <u>g.wildgoose@uea.ac.uk</u> ; <u>r.blagg@uea.ac.uk</u>

Experimental

B{3,5-(CF₃)₂C₆H₃}₂(OH)

¹H NMR (500.21 MHz, CD₂Cl₂, 25 °C, δ): +8.20 (s, 4H, Ar^{F6} 2,6-H), +8.10 (s, 2H, Ar^{F6} 4-H), +6.61 (s, 1H, OH); ¹¹B NMR (160.49 MHz, CD₂Cl₂, 25 °C, δ): +44.3 (br.s); ¹³C{¹H} NMR (125.78 MHz, CD₂Cl₂, 25 °C, δ): +134.9 (br.q, ³J_{CF} = 3.7 Hz, Ar^{F6} 2,6-C), +131.9 (q, ²J_{CF} = 33.0 Hz, Ar^{F6} 3,5-C), +125.8 (sept., ³J_{CF} = 3.7 Hz, Ar^{F6} 4-C), +124.0 (q, ¹J_{CF} = 273 Hz, Ar^{F6} 3,5-CF₃); ¹⁹F NMR (470.67 MHz, CD₂Cl₂, 25 °C, δ): -63.4 (s, 12F, Ar^{F6} 3,5-CF₃).

B{3,5-(CF₃)₂C₆H₃}(OMe)₂

¹H NMR (500.21 MHz, C₆D₆, 25 °C, δ): +7.86 (s, 2H, Ar^{F6} 2,6-H), +7.79 (s, 1H, Ar^{F6} 4-H), +3.30 (s, 6H, OMe); ¹¹B NMR (160.49 MHz, C₆D₆, 25 °C, δ): +27.2 (br.s); ¹⁹F NMR (470.67 MHz, C₆D₆, 25 °C, δ): -62.7 (s, 6F, Ar^{F6} 3,5-CF₃).

X-ray Crystallography

To ensure the refinement of **6** converged it was necessary to treat the boron atom as isotropic. Additionally one of the CF₃ groups is modelled with crystallographic disorder of the fluoride atoms over two positions (58:42) due to rotation about the $C(17)-C(20)F_3$ bond.

Figure S1a X-ray crystallographic structure of B{3,5-(CF₃)₂C₆H₃}₂(C₆Cl₅) **5**

Figure S1b X-ray crystallographic structure of B(C₆Cl₅)₂{3,5-(CF₃)₂C₆H₃} **6**

Computational Calculations – DFT

Figure S2a DFT optimised structure of $B(C_6F_5)_3$ **1** (reproduced from reference 34)

Figure S2b DFT optimised structure of $B(C_6F_5)_2\{3,5-(CF_3)_2C_6H_3\}$ **2**

Figure S2c DFT optimised structure of $B{3,5-(CF_3)_2C_6H_3}_2(C_6F_5)$ **3**

Computational calculations were performed using density functional theory (DFT) using the Gaussian 09 (revision C.01) computational package.^{S1} Calculations were carried out using the three-parameter exchange functional of Becke (B3) with the correlation functional of Lee, Yang, and Parr (LYP), B3LYP;^{S2, S3} together with applying the 6-311+G(d,p) basis set for all atoms.^{S4} Structures were geometry optimised in the gas phase with the default convergence criteria, and confirmed as minima through frequency calculations.

^{S1} *Gaussian 09, Revision C.01*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.
J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and
D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

- ^{S2} A. D. Becke, J. Chem. Phys., 1993, **98**, 5648-5652.
- ^{S3} C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B Condens. Matter*, 1988, **37**, 785-789.
- ⁵⁴ P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta.*, 1973, **28**, 213-222.

Electrochemical Studies

Figure S3aExperimental (line) and simulated (open circles) cyclicvoltammograms for the reduction of $B(C_6F_5)_3$ 1 (reproduced from reference 37)

Figure S3b Experimental (line) and simulated (open circles) cyclic voltammograms for the reduction of $B{3,5-(CF_3)_2C_6H_3}_3 4$ (reproduced from reference 37)

Cyclic voltammograms were also obtained of a pure sample of $B\{3,5-(CF_3)_2C_6H_3\}_2(OH)$, showing a one electron irreversible reduction at considerably more negative potentials (*ca.* –2.3 V *vs* $[FeCp_2]^{0/+}$) than observed for any of the tri(aryl)boranes (Figure S4).

Figure S4 Experimental cyclic voltammograms for the reduction of B{3,5- $(CF_3)_2C_6H_3\}_2(OH)$

Measurements of Lewis acidity

"Gutmann-Beckett Method" B(Ar')₂(Ar") (Lewis acid) is combined with a three-fold excess of OPEt₃ (Lewis base) in *ca*. 0.8 cm³ CD₂Cl₂ in an NMR tube, rapidly generating the Lewis acid-base adduct Et₃POB(Ar')₂(Ar"), and ¹H, ¹¹B, ¹⁹F and ³¹P{¹H} NMR spectra obtained (Tables 3 & S1).

<i>Table S1</i> NMR spectral data for the Lewis acid/base adducts 1 –OPEt ₃ – 9 –OPI

1 -OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +1.92 (dq ⁴ J _{HP} = 12.2 Hz, ³ J _{HH} = 7.7 Hz, 6H), +1.11 (dt, ³ J _{HP} = 18.7 Hz, ³ J _{HH} = 7.7 Hz, 9H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -134.4 (m, 6F), -159.1 (t, ³ J _{FF} = 19.9 Hz, 3F), -165.0 (m, 6F).	
2 –OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.79 (s, 2H), +7.68 (s 1H), +1.86 (dq, ⁴ J _{HP} = 12.0 Hz, ³ J _{HH} = 7.8 Hz, 6H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.9 (s, 6F), -132.0 (m, 4F), -158.5 (t, ³ J _{FF} = 19.9 Hz, 2F), -164.1 (m, 4F).	
3 –OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.83 (s, 4H), +7.78 (s 2H), +1.68 (dq, ⁴ J _{HP} = 11.9 Hz, ³ J _{HH} = 7.6 Hz, 6H), +1.11 (dt, ³ J _{HP} = 18.4 Hz, ³ J _{HH} = 7.6 Hz, 9H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -63.1 (s, 12F), -131.8 (m, 2F), -158.9 (t, ³ J _{FF} = 19.9 Hz, 1F), -163.9 (m, 2F).	
4–OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.79 (s, 6H), +7.74 (s 3H), +1.68 (dq, ⁴ J _{HP} = 11.9 Hz, ³ J _{HH} = 7.7 Hz, 6H), +1.10 (dt, ³ J _{HP} = 18.2 Hz, ³ J _{HH} = 7.7 Hz, 9H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -63.1 (s, 18F).	
5 –OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.90 (s, 4H), +7.75 (s 2H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -63.1 (s, 12F).	
6 –OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.94 (s, 2H), +7.65 (s 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.9 (s, 6F).	
7–OPEt ₃	no adduct formation	
8–OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +2.00 (br.m, 6H), +1.00 (br.m, 9H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -130.0 (br.m, 1F), -133.1 (br.m, 1F), -158.5 (br.m, 1F), -164.0 (br.m, 1F), -165.9 (br.m, 1F).	
9 –OPEt ₃	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +1.96 (dq ${}^{4}J_{HP}$ = 12.4 Hz, ${}^{3}J_{HH}$ = 7.7 Hz, 6H), +1.02 (dt, ${}^{3}J_{HP}$ = 18.8 Hz, ${}^{3}J_{HH}$ = 7.7 Hz, 9H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -133.1 (m, 2F), -158.8 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F), -164.8 (m, 2F).	

If resonances corresponding to the ethyl groups of the adduct are not specified, the resonances are co-incident with / obscured by free Et₃PO: ¹H NMR (500.21 MHz, CD₂Cl₂, 25 °C, δ): +1.64 (dq ⁴J_{HP} = 11.7 Hz, ³J_{HH} = 7.7 Hz), +1.11 (dt, ³J_{HP} = 16.1 Hz, ³J_{HH} = 7.7 Hz) ¹¹B NMR (160.49 MHz, CD₂Cl₂, 25 °C, δ) and ³¹P{¹H} NMR (202.49 MHz, CD₂Cl₂, 25 °C, δ) spectral data

reported in Table 3

Figure S5 Correlation between: (a) E° (borane) and δ_{B} (borane); (b) E° (borane) and δ_{P} (adduct); (c) E° (borane) and δ_{B} (adduct); (d) δ_{B} (borane) and δ_{P} (adduct); (e) δ_{B} (borane) and δ_{B} (adduct); (f) δ_{P} (adduct) and δ_{B} (adduct).

H₂ cleavage by FLPs

Equimolar quantities of B(Ar')₂(Ar") (Lewis acid) and P('Bu)₃ (Lewis base) are combined in *ca*. 0.8 cm³ CD₂Cl₂ (*ca*. 40 mM acid/base concentrations) in an NMR tube fitted with a J.Young valve. ¹H, ¹¹B, ¹⁹F and ³¹P{¹H} NMR spectra are obtained. The solution is degassed in the NMR tube by three freeze-pump-thaw cycles, before being frozen and the head-space of the NMR tube filled with dry H₂. The NMR tube is allowed to warm to room temperature (giving a H₂ pressure of *ca*. 4 bar), shaken, and the resulting reaction monitored by ¹H and ¹¹B NMR spectroscopy. (Spectra obtained at intervals between 90 min and 12 hours until reaction reaches completion / spectra cease changes). Upon completion of the reaction a final set of ¹H, ¹¹B, ¹⁹F and ³¹P{¹H} NMR spectra are obtained (data reported in Tables 4 and S2). Reaction mixture was maintained at room temperature (*ca*. +20 °C) throughout.

[HP(^t Bu) ₃] ⁺	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +5.12 (d, ¹ <i>J</i> _{HP} = 430 Hz, 1H), +1.58 (d, ³ <i>J</i> _{HP} = 15.7Hz, 27H); ³¹ P{ ¹ H} NMR (202.49 MHz, CD ₂ Cl ₂ , 25 °C, δ): +59.8 (s).
[H 1]⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +3.60 (br.q, ¹ <i>J</i> _{HB} = 93.9 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -133.6 (m, 6F), -163.4 (m, 3F), -166.7 (m, 6F).
[H 2]⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.68 (s, 2H), +7.48 (s, 1H), +3.69 (br.q, ¹ J _{HB} = 86.1 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.4 (s, 6F), -131.6 (m, 4F), -163.9 (t, ³ J _{FF} = 19.9 Hz, 2F), -166.8 (m, 4F).
[H 3]⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.74 (s, 4H), +7.51 (s, 2H), +3.71 (br.q, ¹ <i>J</i> _{HB} = 86.1 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.5 (s, 12F), -131.8 (br.m, 2F), -163.6 (t, ³ <i>J</i> _{FF} = 19.5 Hz, 1F), -166.0 (m, 2F).
[H 4] ⁻	no terminal hydride formation
[H 5]⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.75 (s, 4H), +7.48 (s, 2H), +4.22 (br.q, ¹ J_{HB} = 86.1 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.5 (s, 12F).
[H 6] ⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +7.63 (br.s, 2H), +7.47 (s, 1H), +4.24 (br.q, ${}^{1}J_{\text{HB}} = 88.0$ Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -62.5 (s, 6F).
[H 7] ⁻	no reaction
[H 8] ⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +4.11 (br.q, ¹ <i>J</i> _{HB} = 86.1 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -133.9 (m, 4F), -164.8 (m, 2F), -167.7 (m, 4F).
[H 9]⁻	¹ H NMR (500.21 MHz, CD ₂ Cl ₂ , 25 °C, δ): +3.94 (br.q, ¹ <i>J</i> _{HB} = 90.0 Hz, 1H); ¹⁹ F NMR (470.67 MHz, CD ₂ Cl ₂ , 25 °C, δ): -133.5 (m, 4F), -164.9(m, 2F), -167.6 (m, 4F).

Table S2 NMR spectral data for the terminal hydride, H₂ cleavage products for the **1-9**/P(^tBu)₃ FLPs

¹¹B NMR (160.49 MHz, CD₂Cl₂, 25 °C, δ) spectral data reported in Table 4

Figure S6a ¹H NMR spectra showing the progress of H_2 cleavage by the $1/P(^tBu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S6b ¹¹B NMR spectra showing the progress of H_2 cleavage by the $1/P(^tBu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S7a ¹H NMR spectra showing the progress of H_2 cleavage by the $2/P(^tBu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S7b ¹¹B NMR spectra showing the progress of H₂ cleavage by the $2/P(^{t}Bu)_{3}$ FLP post H₂ addition spectra at *ca*. 90 min intervals

Figure S8a ¹H NMR spectra showing the progress of H_2 cleavage by the $3/P(^tBu)_3$ FLP post H_2 addition, 12 spectra at *ca*. 90 min intervals, subsequently at *ca*. 12 hour intervals

Figure S8b ¹¹B NMR spectra showing the progress of H₂ cleavage by the $3/P(^{t}Bu)_{3}$ FLP post H₂ addition, 12 spectra at *ca*. 90 min intervals, subsequently at *ca*. 12 hour intervals

Figure S9a ¹H NMR spectra showing the progress of H_2 cleavage by the $4/P(^{t}Bu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S9b ¹¹B NMR spectra showing the progress of H_2 cleavage by the $4/P(^tBu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S10a ¹H NMR spectra showing the progress of H_2 cleavage by the 5/P('Bu)₃ FLP post H_2 addition spectra at *ca*. 8 hour intervals

Figure S10b ¹¹B NMR spectra showing the progress of H_2 cleavage by the 5/P('Bu)₃ FLP post H_2 addition spectra at *ca*. 8 hour intervals

Figure S11a ¹H NMR spectra showing the progress of H_2 cleavage by the **6**/P('Bu)₃ FLP post H_2 addition spectra at *ca*. 8 hour intervals

Figure S11b ¹¹B NMR spectra showing the progress of H_2 cleavage by the **6**/P('Bu)₃ FLP post H_2 addition spectra at *ca*. 8 hour intervals

Figure S12a ¹H NMR spectra showing the progress of H_2 cleavage by the 7/P(^tBu)₃ FLP post H_2 addition spectra at *ca*. 12 hour intervals

Figure S12b ¹¹B NMR spectra showing the progress of H_2 cleavage by the 7/P(^tBu)₃ FLP post H_2 addition spectra at *ca*. 12 hour intervals

Figure S13a ¹H NMR spectra showing the progress of H_2 cleavage by the **8**/P(^tBu)₃ FLP post H_2 addition spectra at *ca*. 12 hour intervals

Figure S13b ¹¹B NMR spectra showing the progress of H₂ cleavage by the $8/P(^{t}Bu)_{3}$ FLP post H₂ addition spectra at *ca*. 12 hour intervals

Figure S14a ¹H NMR spectra showing the progress of H_2 cleavage by the **9**/P('Bu)₃ FLP post H_2 addition spectra at *ca*. 90 min intervals

Figure S14b ¹¹B NMR spectra showing the progress of H_2 cleavage by the $9/P(^tBu)_3$ FLP post H_2 addition spectra at *ca*. 90 min intervals