Dielectric response and anhydrous proton conductivity in a chiral framework containing a non-polar molecular rotor

Shan-Shan Yu,^a Shao-Xian Liu,^a Hai-Bao Duan,*^{a,b}

^a. School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171,,

P.R.China

^{b.}Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

E-mail:

duanhaibao4660@163.com

1. Experimental

1.1. Chemicals and reagents

Thee reagents and solvents were purchased from commercial sources and used without further purification.

1.2. Physical measurements

Elemental analyses (C, H and N) were performed with an Elementar Vario EL III analytical instrument. IR spectra were recorded on a Bruker Vector 22 Fourier Transform Infrared Spectrometer (170SX) (KBr disc). Thermogravimetric (TG) experiment was performed with a TA2000/2960 thermogravimetric analyzer from 30 to 600°C at a warming rate of 10 K/min under a nitrogen atmosphere, and the polycrystalline samples were placed in an aluminum crucible. Powder X-ray diffraction (PXRD) data for the as-prepared was collected using Bruker D8 Advance powder diffractometer operating at 40 kV and 40 mA with Cu K radiation $\lambda = 1.5418$ Å at ambient temperature. Temperature and frequency dependent dielectric constant, ϵ ', and dielectric loss, tan(δ), measurements were carried out employing Concept 80 system (Novocontrol, Germany); the powdered pellet, with a thickness of ca. 0.40 mm and 78.5 mm² in the area, was coated by gold films on the opposite surfaces and sandwiched by the copper electrodes and the ac frequencies span from 1 Hz to 10⁶ Hz.

X-ray crystallography. Selected crystals of **1** at room temperature were centered on an Oxford Diffraction Xcalibur diffractometer equipped with a Sapphire 3 CCD detector and a graphite monochromated Mo K α ($\lambda = 0.71073$ Å). The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlis.¹ Structures were solved by the direct method and refined by the full-matrix least-squares procedure on F² using SHELXL-97 program.² The non-Hydrogen atoms were anisotropically refined using the full-matrix least-squares method on F². The crystallographic details about data collection, structural refinement and selected bond length and angle are summarized in Table 1 and 2.

1.3. Preparations for 1

The synthesis procedure of compound **1** is in following described: First, the $CoCl_2 \cdot 6H_2O$ (0.0237 g) and 1,4-diazabicyclo[2.2.2]octane (0.05 g) were dissolved in 6 ml DMF. The mixture were stirred for 3h, then 0.05 g phosphite was added and stirred another 1h. The mixture were sealed in Teflon-lined autoclave and heated to 60

 $^{\circ}$ C for 72h. Blue needle-shape crystals were obtained in solution. The crystal was washed with DMF and acetone and dried in air. The yield is ca. 65%.

References:

- 1. CrysAlis V1.171, Oxford Diffraction Ltd., Poland, 2004.
- G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal structure, University of Göttingen, Germany, 1997.

Complex	1
Molecular formula	$C_6H_{16}N_2CoP_2O_6$
Molecular mass	333.08
Space group	P2 ₁ 2 ₁ 2 ₁
Crystal system	orthorhombic
Temp/K	296(2)
Wavelength (Å)	1.5406
a/Å	10.090(2)
b/Å	10.782(5)
c/Å	10.981(7)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
V/Å ³ . Z	1194.63(4)
μ/mm^{-1}	1.722
$\lambda/\text{\AA}$	0.71073
$\rho/g \text{ cm}^{-3}$	1.85182
F000	684
R_1	0.0521
wR ₂	0.1240

Table 1 Crystal and structural refinement data for compound 1

1			
Co(1)-O(4)	1.934(4)	Co(1)-O(5)	1.936(4)
Co(1)-O(3)	1.957(4)	Co(1)-O(2A)	1.961(4)
O(1)-P(1)	1.524(4)	O(2)-P(1)	1.505(4)
O(2)-Co(1B)	1.961(4)	O(3)-P(1)	1.512(4)
O(4)-Co(1)-O(5)	109.63(18)	O(4)-Co(1)-O(3)	110.44(16)
O(5)-Co(1)-O(3)	102.13(18)	O(4)-Co(1)-O(2A)	112.10(17)
O(5)-Co(1)-O(2A)	111.94(18)	O(3)-Co(1)-O(2A)	110.17(16)
P(2C)-O(4)-Co(1)	130.2(2)	P(2)-O(5)-Co(1)	148.1(3)
O(2)-P(1)-O(3)	111.8(2)	O(2)-P(1)-O(1)	113.5(2)
O(3)-P(1)-O(1)	110.0(2)	O(2)-P(1)-H(3)	106(3)

Table 2 Selected Bond Lengths $[{\rm \AA}]$ and Angles [deg] for compound 1

Figure S1 Powder X-ray diffraction patterns for as-prepared sample of **1**, confirming the phase purity of the as-prepared sample (Black lines: experimental patterns; red lines: simulated profiles).

Figure S2 TG plot of 1 at selected temperature range

Figure S3 IR spectrum of **1** at room temperature

Figure S4 Crystal structure of **1** illustrating the 3D framework along the *c* axis

Figure S5 Frequency dependencies of the ε ' of **1** in the 40-120 °C temperature range

Figure S6 Frequency dependencies of *tan* (δ) of **1** in the 40-120 °C temperature range

Figure S7 The ε ' value of **1** in the room temperature range

Figure S8 Complex impedance of 1 at 25 °C.