1

Electronic Supplementary data

Extending motifs in lithiocuprate chemistry: unexpected

structural diversity in thiocyanate complexes

Andrew J. Peel,^a Madani Hedidi,^{b,c} Ghenia Bentabed-Ababsa,^c Thierry Roisnel,^d

Florence Mongin^b and Andrew E. H. Wheatley*a

^aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK); Fax: (+) 44 1223 336362; e-mail: aehw2@cam.ac.uk

^b Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1-CNRS, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes (France)

^cLaboratoire de Synthèse Organique Appliquée, Faculté des Sciences, Université d'Oran 1 Ahmed Ben Bella, BP 1524 El M'Naouer, 31000 Oran (Algeria)

^dCentre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1-CNRS, Bâtiment 10B, Campus de Beaulieu, 35042 Rennes (France)

Infrared spectroscopy

Figure S1b IR spectrum of 8₂ after air exposure.

Figure S2b IR spectrum of 9_2 after air exposure.

Figure S4b IR spectrum of 11₂ after air exposure.

Figure S6a IR spectrum of precipitate obtained after dissolving **10**₂ in benzene, showing a thiocyanate signal.

Figure S6b IR spectrum of precipitate obtained after dissolving 10_2 in benzene after subsequent air exposure.

Figure S7 ¹H NMR spectrum of **8**₂. Inset: NH peak attributable to trace TMPH and vacuum grease (*).

Figure S8 ¹H NMR spectrum of **9**₂. Inset: NH peak attributable to trace TMPH and vacuum grease (*).

Figure S9 ¹H NMR spectrum of **10**₂. Inset: NH peak attributable to trace TMPH and vacuum grease (*).

Figure S10 ¹H NMR spectrum of **11**₂. Inset: NH peak attributable to trace TMPH and vacuum grease (*).

Figure S11 ¹H NMR spectrum of **12**₂, establishing the position of the TMP-Me resonances in a Gilman cuprate.

Figure S12 ¹³C NMR spectra of the SCN region of **10**₂ (left) and **11**₂ (right). In either case the sample concentration is 50 mg/0.7 mL. All other peaks were unchanged relative to the values observed for 20 mg/0.7 mL samples (see manuscript Figure 6 and Experimental Section)

Figure S13 ORTEP diagrams (30% probability) of compounds 15c and 16c.

Figure S14 ¹H and ¹³C NMR spectra of 2-chloro-3-(phenylsulfanyl)pyridine 15c.

Figure S15 ¹H and ¹³C NMR spectra of 2,3-dichloro-4-(phenylsulfanyl)pyridine 16c.