Supporting Information for the manuscript:

A Single Molecule Magnet to Single Molecule Magnet Transformation via a Solvothermal Process: $Fe_4Dy_2 \rightarrow Fe_6Dy_3$

Sihuai Chen,^a Valeriu Mereacre,^{a*} Christopher E. Anson^a and Annie K. Powell^{a,b*}

^a Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany.

^b Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Compound	Ground state of Ln ^{III}	χT expected for non-interacting ions per complex (cm ³ K mol ⁻¹)	χT measured at 300 K per complex (cm ³ K mol ⁻¹)	χT measured at 1.8 K per complex (cm ³ K mol ⁻¹)
Fe ₄ Y ₂ , 1		17.5	14.5	0.02
Fe ₄ Dy ₂ , 2	⁶ H _{15/2}	45.8	42.3	32.6
Fe ₆ Y ₃ , 3		26.3	12.0	0.75
Fe ₆ Dy ₃ , 4	⁶ H _{15/2}	68.8	54.7	31.1

 Table S1 Magnetic data of compounds 1-4 summarised from the dc measurements.

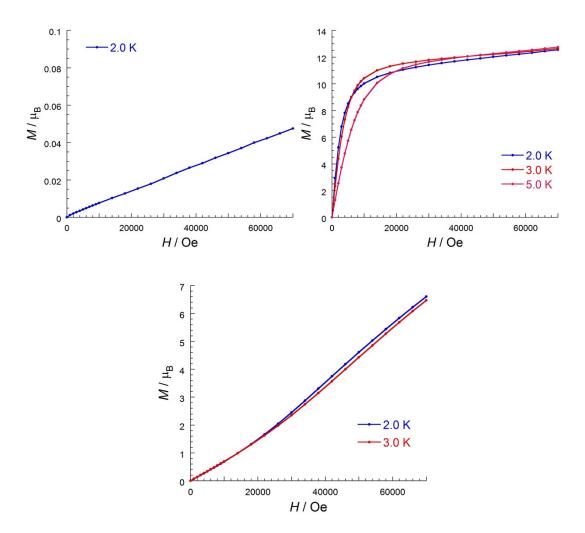
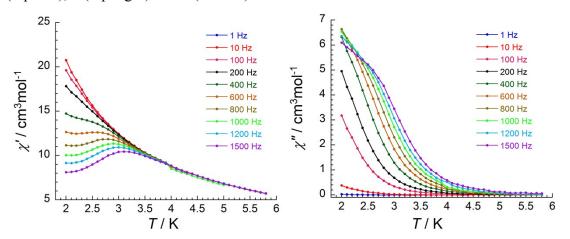



Figure S1 Field dependence of magnetisation at low temperature for compound 1 (top-left), 2 (top-right) and 3 (bottom).

Figure S2 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at the indicated frequencies in zero dc field for **2**.

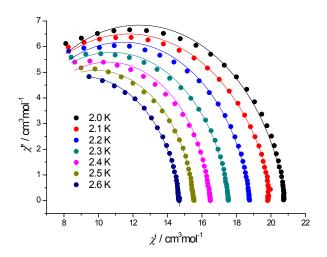


Figure S3 Cole-Cole plots under zero dc field for compound 2.

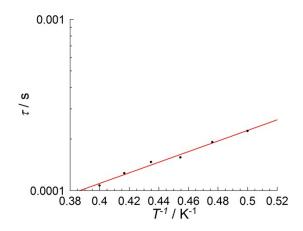
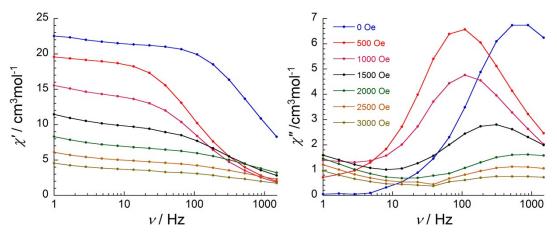
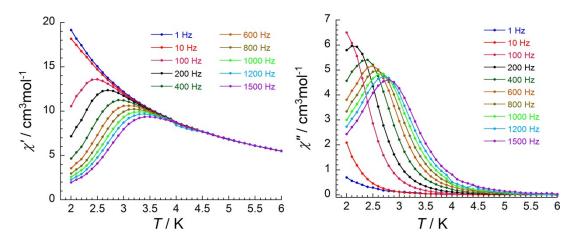




Figure S4 Arrhenius plot using ac data under zero dc field for compound 2.

Figure S5 Frequency dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components under the indicated dc fields at 1.8 K for **2**.

Figure S6 Temperature dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components at the indicated frequencies under 500 Oe dc field for **2**.

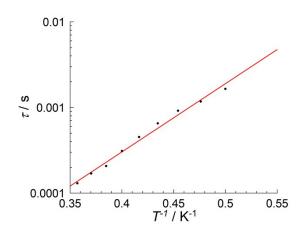


Figure S7 Arrhenius plot using ac data under 500 Oe dc field for compound 2.

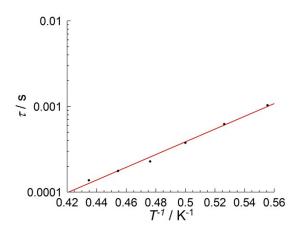


Figure S8 Arrhenius plot using ac data under 1000 Oe dc field for compound 4.