Chirality at metal and helical ligand folding in optical isomers of chiral *bis*(napthaldiminato)nickel(II) complexes

Mohammed Enamullah ^{a,*}, Mohammed Abdul Quddus ^a, Mohammad Rezabul Hasan ^a, Gennaro Pescitelli ^{b,*}, Roberto Berardozzi ^b, Gamall Makhloufi ^c, Vera Vasylyeva ^c, and Christoph Janiak ^{c,*}

^a Department of Chemistry, Jahangirnagar University, Dhaka-1342, Bangladesh, E-mail: enamullah@juniv.edu

^b Department of Chemistry, University of Pisa, via Moruzzi 3, 56124 Pisa Italy, E-mail: gennaro.pescitelli@unipi.it

^c Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Email: janiak@uni-duesseldorf.de

Table S1. ESI (+)-MS (m/z (%)) spectral data of the compounds ^a.

Compounds	1 <i>R</i>	1 <i>S</i>	2 <i>R</i>	2.5		3 <i>S</i> ^b
$[M + H]^+$	607 (30)	607 (20)	667 (15)	667 (5)	$[M]^+$	764 (10)
[<i>M</i> -HL] ⁺	331 (58)	331 (45)			[<i>M</i> -HL] ⁺	411 (100)
[HL+H] ⁺			306 (10)	306 (10)	[HL] ⁺	353 (30)
[C ₁₀ H ₆ (CHNH)(O)Ni]	228 (100)	228 (100)			[C ₁₀ H ₆ (CHNH)(O)Ni+H]	229 (22)
$[CH(CH_3)(C_6H_4OCH_3)]^+$			135 (100)	135 (100)	$[C_6H_4(Br)(CHCH_3)]^+$	183 (30)
$[C_6H_4(Br)(CHCH_3)]^+$					$[C_{10}H_6(O)(CHNH)]^+$	170 (60)
[CH(C ₆ H ₅)(CH ₃)] ⁺	105 (33)	105 (25)	105 (15)	105 (20)	[CH(C ₆ H ₅)(CH ₃)-H] ⁺	104 (60)

^a Isotopic distribution patterns for ^{58/60}Ni (in **1***R*/**1***S* and **2***R*/**2***S*) and combined ^{58/60}Ni + ^{79/81}Br (**3***R*/**3***S*) containing ions are clearly visible in the mass spectra; ^b EI-MS spectra.

Table S2. ¹H NMR (400 MHz) spectral data of the compounds in CDCl₃ at 20 °C.

Entity	CH ₃	OCH ₃	Ar-H	C <i>H</i> N	
1 <i>R</i>	1.97 (d, <i>J</i> =	-	6.64 (d, <i>J</i> = 9.2Hz, 2H), 6.78 (t, <i>J</i> = 7.4Hz, 2H),	11.05	(br,
	6.5Hz, 6H)		7.05 (d, $J = 8.4$ Hz, 2H), 7.34 (d, $J = 8.4$ Hz,	2H)	
			4H), 7.42 (t, <i>J</i> = 7.4Hz, 4H), 7.60 (m, 6H), 7.74		
			(d, J = 8.8 Hz, 2H)		
1 <i>S</i>	1.97 (d, <i>J</i> =	-	6.62 (d, <i>J</i> = 9.2Hz, 2H), 6.76 (t, <i>J</i> = 7.4Hz, 2H),	11.02	(br,
	6.5Hz, 6H)		7.05 (d, $J = 8.4$ Hz, 2H), 7.32 (d, $J = 8.4$ Hz,	2H)	
			4H), 7.41 (t, <i>J</i> = 7.4Hz, 4H), 7.59 (m, 6H), 7.72		
			(d, J = 8.8 Hz, 2H)		
2 <i>R</i>	2.01 (d, <i>J</i> =	3.83	6.56 (d, J = 7.2Hz, 2H), 6.96 (m, 6H), 7.09 (d, J	12.81	(br,
	6.5Hz, 6H)	(s, 6H)	= 8.4Hz, 2H), 7.36 (d, <i>J</i> = 8.4Hz, 2H), 7.56 (d,	2H)	
			J = 7.4Hz, 4H), 7.61 (d, $J = 8.4$ Hz, 2H), 7.88		
			(d, J = 8.8 Hz, 2H)		
3 <i>R</i>	1.94 (d, <i>J</i> =	-	6.63 (d, J = 8.8Hz, 2H), 6.88 (d, J = 7.2Hz,	11.27	(br,
	6.0Hz, 6H)		2H), 7.12 (t, <i>J</i> = 6.8Hz, 2H), 7.37 (d, <i>J</i> = 7.4Hz,	2H)	
			4H), 7.55 (d, $J = 8.4$ Hz, 6H), 7.67 (d, $J =$		
			7.0Hz, 2H), 7.82 (d, <i>J</i> = 8.4Hz, 2H)		

Figure S1. ¹H NMR (400 MHz) spectra of **1***S* (top), **1***R* (middle) and **2***R* (bottom) in CDCl₃ at 20 °C. Peaks marked as "L" are due to free ligands, while asterisked peaks to methanol or water.

Figure S2. Cyclic voltammograms of **3***R* (1.0 mmol/L); TBAP (0.1 mol/L) at varying scan rates in acetonitrile at 25 °C.

Figure S3. Lowest-energy DFT conformations calculated at B3LYP/6-31G(d) level for compound Δ -**Ni-1***R*. Left: absolute minimum; right, second minimum, +0.16 kcal/mol.

Analysis of supramolecular interactions in the crystals:

The supramolecular packing analyses are tabulated below.

The listed "Analysis of Short Ring-Interactions" in the PLATON geometry calculation for possible π -stacking interactions yielded rather rather long centroid-centroid distances (>4.0 Å) together with non-parallel ring planes (alpha >> 0°) and large slip angles (β , $\gamma > 30°$).

In comparison, significant π -stackings show rather short centroid-centroid contacts (<3.8 Å), near parallel ring planes (alpha < 10° to ~0° or even exactly 0° by symmetry), small slip angles (β , γ < 25°) and vertical displacements (slippage < 1.5 Å) which translate into a sizable overlap of the arylplane areas.¹

Significant intermolecular C-H··· π contacts start below 2.7 Å for the (C-)H···ring centroid distances with H-perp also below 2.6-2.7 Å and C-H··Cg > 145°.^{1,2,3}

Scheme S1 Graphical presentation of the parameters used for the description of (a) π - π stacking and (b) CH- π interactions.

Packing Analysis for Ni-*R*-L1 (1*R*) for possible CH- π interactions:

Analysis of X-HCg(Pi-Ring) Interactions (HCg < 3.0 Ang Gamma < 30.0 Deg)								
 - Cg(J) = Center of gravity of ring J (Plane - H-Perp = Perpendicular distance of H to - Gamma = Angle between Cg-H vector and - X-HCg = X-H-Cg angle (degrees) - XCg = Distance of X to Cg (Angstrom) - X-H, Pi = Angle of the X-H bond with the l 	number above ring plane J nd ring J norm Pi-plane (i.e.' I	e) al Perpendicular	= 90 degree	es, Parallel =	• 0 degrees)			
XH(I) Res(I) Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg	X-H,Pi		
C(15) -H(15) [1] -> Cg(6) [2545.01] C(18) -H(18) [1] -> Cg(6) [2645.01]	2.83 2.93	-2.81 2.92	7.35 4.48	136 128	3.581(4) 3.593(4)	41 40		

C(19)	-H(19) [1]->Cg(7) [2645.01]	2.71	2.66	11.22	130	3.397(4)	50
C(37)	-H(37) [1] -> Cg(16) [2656.02]	2.83	2.80	8.04	133	3.543(4)	49
C(38)	-H(38) [1]->Cg(17) [2656.02]	2.60	2.59	5.30	148	3.443(4)	58
C(53)	-H(53) [2]->Cg(4) [2656.01]	2.63	2.60	8.18	140	3.413(4)	57
C(54)	-H(54) [2]->Cg(3) [2656.01]	2.97	2.95	6.11	133	3.683(4)	45
C(70)	-H(70C) [2] -> Cg(13) [2646.02]	2.89	2.81	13.26	155	3.797(4)	57
C(74)	-H(74) [2] -> Cg(13) [1655.02]	2.67	-2.60	12.79	163	3.587(5)	78
	Min or Max	2.600	-2.809	4.48	163.00	3.397	78.00

[2545] = -X,-1/2+Y,-Z [2645] = 1-X,-1/2+Y,-Z [2656] = 1-X,1/2+Y,1-Z [2656] = 1-X,1/2+Y,1-Z [2646] = 1-X,-1/2+Y,1-Z [1655] = 1+X,Y,Z

The Cg(I) refer to the Ring Centre-of-Gravity numbers given in Cg(3) = Ring C1-C2-C3-C4-C9-C10 Cg(4) = Ring C4-C5-C6-C7-C8-C9 Cg(6) = Ring C20-C21-C22-C23-C28-C29 Cg(7) = Ring C23-C24-C25-C26-C27-C28 Cg(13) = Ring C39-C40-C41-C42-C47-C48 Cg(16) = Ring C58-C59-C60-C61-C66-C67 Cg(17) = Ring C61-C62-C63-C64-C65-C66

Analysis of X-H...Cg(Pi-Ring) Interactions (H..Cg < 3.0 Ang. - Gamma < 30.0 Deg)

- Cg(J) = Center of gravity of ring J (Plane number above)

- H-Perp = Perpendicular distance of H to ring plane J

- Gamma = Angle between Cg-H vector and ring J normal

- X-H..Cg = X-H-Cg angle (degrees)

- X..Cg = Distance of X to Cg (Angstrom)

- X-H, Pi = Angle of the X-H bond with the Pi-plane (i.e.' Perpendicular = 90 degrees, Parallel = 0 degrees)

XH(I) Res(I) Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg	X-H,Pi
C(15) -H(15) [1]-> Cg(17) [1545.02]	2.60	-2.59	5.36	147	3.438(3)	58
C(16) -H(16) [1] -> Cg(16) [1545.02]	2.84	-2.81	8.39	133	3.551(4)	49
C(34) -H(34) [1]->Cg(4) [2655.01]	2.70	2.65	10.86	130	3.394(3)	50
C(35) -H(35) [1]->Cg(3) [2655.01]	2.93	2.92	4.36	128	3.587(3)	40
C(38) -H(38) [1]->Cg(3) [2555.01]	2.84	-2.82	7.71	136	3.593(3)	41
C(56) -H(56) [2] -> Cg(6) [1555.01]	2.96	2.94	6.08	134	3.678(4)	45
C(57) -H(57) [2] -> Cg(7) [1555.01]	2.63	2.60	8.33	139	3.406(3)	57
C(70) -H(70C) [2] -> Cg(13) [2656.02]	2.89	-2.81	13.22	155	3.796(4)	57
C(74) -H(74) [2] -> Cg(13) [1455.02]	2.66	2.60	12.44	164	3.586(4)	78
 Min or Max	2.600	-2.819	4.36	164.00	3.394	78.00

[1545] = X,-1+Y,Z [2655] = 1-X,1/2+Y,-Z [2555] = -X,1/2+Y,-Z [1555] = X,Y,Z [2656] = 1-X,1/2+Y,1-Z [1455] = -1+X,Y,Z

The Cg(I) refer to the Ring Centre-of-Gravity numbers given in Cg(3) = Ring C1-C2-C3-C8-C9-C10 Cg(4) = Ring C3-C4-C5-C6-C7-C8 Cg(6) = Ring C20-C21-C22-C27-C28-C29 Cg(7) = Ring C22-C23-C24-C25-C26-C27 Cg(13) = Ring C39-C40-C41-C46-C47-C48 Cg(16) = Ring C58-C59-C60-C65-C66-C67

- π-Interactions between pyridyl-type ligands for comparison: V. Lozan, P.-G. Lassahn, C. Zhang, B. Wu, C. Janiak, G. Rheinwald and H. Lang, Z. Naturforsch. B, 2003, 58, 1152; C. Zhang and C. Janiak, Z. Anorg. Allg. Chem., 2001, 627, 1972; C. Zhang and C. Janiak, J. Chem. Crystallogr., 2001, 31, 29; H.-P. Wu, C. Janiak, G. Rheinwald and H. Lang, J. Chem. Soc., Dalton Trans., 1999, 183; C. Janiak, L. Uehlin, H.-P. Wu, P. Klüfers, H. Piotrowski and T. G. Scharmann, J. Chem. Soc., Dalton Trans., 1999, 3121; H.-P. Wu, C. Janiak, L. Uehlin, P. Klüfers and P. Mayer, Chem. Commun., 1998, 2637.
- 2 X.-J. Yang, F. Drepper, B. Wu, W.-H. Sun, W. Haehnel and C. Janiak, *Dalton Trans.*, 2005, 256-267 and ESI therein.
- N. N. L. Madhavi, A. K. Katz, H. L. Carrell, A. Nangia and G. R. Desiraju, *Chem. Commun.*, 1997, 1953; H.-C. Weiss, D. Bläser, R. Boese, B. M. Doughan and M. M. Haley, *Chem. Commun.*, 1997, 1703; T. Steiner, M. Tamm, B. Lutz and J. van der Maas, *Chem. Commun.*, 1996, 1127; P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent and D. J. Williams, *J. Am. Chem. Soc.*, 1992, 114, 193.