# **Electronic Supporting Information for:**

# Rare Earth Anthracenedicarboxylate Metal-Organic Frameworks: Slow Relaxation of Magnetization of Nd<sup>3+</sup>, Gd<sup>3+</sup>, Dy<sup>3+</sup>, Er<sup>3+</sup> and Yb<sup>3+</sup> based Materials.

Antonio J. Calahorro, Itziar Oyarzabal, Belén Fernández, José M. Seco, Tian Tian, David Fairen-Jimenez, Enrique Colacio and Antonio Rodríguez-Diéguez

Index:

- 1. Luminescence Studies
- 2. Bond Distances
- 3. Magnetic Properties
- 4. LeBail Refinement for MOF 6
  - 1. Luminescence Studies



Figure S1. Typical emission bands of Nd<sup>3+</sup> and Tb<sup>3+</sup> ions.

| compound 1        | 2                | 3                 | 4                | 5                  | L                |                    |
|-------------------|------------------|-------------------|------------------|--------------------|------------------|--------------------|
| Pr1 O1B 2.413(3)  | Nd1 01B 2.327(5) | Gd1 O1B 2.335(3)  | Tb1 O1B 2.326(4) | Dy1 O1B 2.3046(17) | Yb1 04C 2.209(4) | Yb2 O1J 2.311(5)   |
| Pr1 01E 2.458(3)  | Nd1 O1E 2.366(7) | Gd1 01D 2.374(4)  | Tb1 01E 2.367(6) | Dy1 01D 2.3678(19) | Yb1 01Z 2.215(6) | Yb2 02C 2.376(6)   |
| Pr1 01D 2.475(3)  | Nd1 O1D 2.398(6) | Gd1 O1E 2.412(3)  | Tb1 01D 2.401(5) | Dy1 O1E 2.4005(19) | Yb1 02A 2.235(4) | Yb2 O1C 2.391(6)   |
| Pr1 01C 2.501(3)  | Nd1 O1C 2.421(6) | Gd1 O1C 2.430(3)  | Tb1 01C 2.420(5) | Dy1 O1C 2.4080(18) | Yb1 01D 2.254(5) | Yb2 O4N 2.403(5)   |
| Pr1 01A 2.509(3)  | Nd1 O1A 2.430(5) | Gd1 O2B 2.445(3)  | Tb1 01A 2.425(5) | Dy1 01A 2.4241(19) | Yb1 01B 2.325(5) | Yb2 O5N 2.408(5)   |
| Pr1 O2B 2.516(3)  | Nd1 O2B 2.436(5) | Gd1 O1A 2.448(3)  | Tb1 02B 2.438(5) | Dy1 02B 2.4309(18) | Yb1 02N 2.410(6) | Yb2 N2N 2.850(7)   |
| Pr1 02A 2.537(3)  | Nd1 O2A 2.481(5) | Gd1 O2A 2.473(3)  | Tb1 02A 2.482(5) | Dy1 02A 2.4556(19) | Yb1 01N 2.418(6) | Yb3 04A 2.223(5)   |
| Pr1 O2C 2.598(3)  | Nd1 O2C 2.482(6) | Gd1 O2C 2.507(4)  | Tb1 02C 2.486(5) | Dy1 02C 2.4963(19) | Yb1 02B 2.439(5) | Yb3 03A 2.231(5)   |
| Pr1 01C 2.625(3)  | Nd1 O1C 2.595(5) | Gd1 O1C 2.546(3)  | Tb1 01C 2.600(5) | Dy1 01C 2.5439(18) | Yb1 N1N 2.818(7) | Yb3 01G 2.272(7)   |
| Pr1 C1A 2.871(5)  | Nd1 C1A 2.806(8) | Gd1 C1A 2.817(5)  | Tb1 C1A 2.808(7) | Dyl C1A 2.798(3)   | Yb2 O1A 2.225(4) | Yb3 03B 2.316(5)   |
| Pr1 C1C 2.965(4)  | Nd1 C1C 2.905(8) | Gd1 C1C 2.893(5)  | Tb1 C1C 2.905(7) | Dy1 C1C 2.882(3)   | Yb2 O1F 2.267(6) | Yb3 O4B 2.388(6)   |
| Pr1 Pr1 4.1125(6) | Nd1 Nd1 4.029(2) | Gd1 Gd1 4.0130(7) | Tb1 Tb1 4.028(6) | Dy1 Dy1 3.9962(3)  | Yb2 03C 2.267(5) | Yb3 07NA 2.407(11) |
|                   |                  | -                 |                  |                    |                  |                    |

Table S1. Bond distances (Å) for 1-5 and 7  $\,$ 

## 2. Bond Distances

#### 3. Magnetic Properties



**Figure S2**. Temperature dependence of the in-phase χ'<sub>M</sub> components of the *ac* susceptibility for **2** (a), **3** (b), **5** (c), **6** (d) and **7** (e) under an external field of 1000 Oe



Figure S3. Cole-Cole plots under 1000 Oe external field for 2 (top) and 3 (bottom). Curve solid lines represent the best fits to the generalized Debye model. Two relaxation processes are observed for 2 and 3 in the 2-3 K and 2-2.6 temperature ranges, respectively.



Figure S4. Variable-temperature frequency dependence of the  $\chi$ <sup>"</sup><sub>M</sub> signal under 1000 Oe external field for 2 (top) and 3 ( bottom). Two relaxation processes are observed for 2 (in the low frequency region) and 3 (in the high frequency region). Solid lines represent the best fits to the generalized Debye model.



**Figure S5.-** Fitting of the  $1/\tau$  data vs T for **3** to the equation  $\tau^{-1} = AT^{2}$ 



Figure S6. Cole-Cole plots under 1000 Oe external field for 5 (top), 6 (medium) and 7 (bottom). Solid lines represent the best fits to the generalized Debye model.





Figure S7. Variable-temperature frequency dependence of the  $\chi$ <sup>"</sup><sub>M</sub> signal under 1000 Oe external field for 5 (top), 6 (medium) and 7 (bottom). Solid lines represent the best fits to the generalized Debye model.

### 4. LeBail Refinement for MOF 6

Compound **6** is isostructural to **5**. We realized a LeBail refinement (Figure S0) with TOPAS software to stablish the purity and the unit cell of the powders pertaining to this material.



**Figure S8**. Lebail Refinement for **6**: *a* = 10.52, *b* =11.30, *c* = 13.07, *α* = 72.59, *β* =89.75, *γ* =87.97, *V* =1481.73, sample displacement = -0.205mm