Electronic Supplementary Information

## Mixed-valence copper(I,II) complexes with 4-(1*H*-pyrazol-1-yl)-6-Rpyrimidines: from ionic structures to coordination polymers

Katerina A. Vinogradova<sup>a,b</sup>, Viktor P. Krivopalov<sup>c</sup>, Elena B. Nikolaenkova<sup>c</sup>, Natalia V. Pervukhina<sup>a</sup>, Dmitrii Yu. Naumov<sup>a,b</sup>, Evgenii G. Boguslavsky<sup>a</sup> and Mark B. Bushuev<sup>a,b,\*</sup>

 <sup>a</sup> Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia
<sup>b</sup> Novosibirsk State University (National Research University), Department of Natural Sciences, 2, Pirogova str., Novosibirsk, 630090, Russia
<sup>c</sup> N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia

*E-mail addresses:* <u>bushuev@niic.nsc.ru</u>, <u>mark.bushuev@gmail.com</u> (M. B. Bushuev)

## Table of contents

| Table S1                                                             | S3  |
|----------------------------------------------------------------------|-----|
| Table S2                                                             | S4  |
| Figure S1. Molecular structure of L <sup>1</sup>                     | S5  |
| Figure S2. Packing diagram for $L^2$ (view along the <i>a</i> -axis) | S5  |
| Figure S3. Packing diagram for $L^2$ (view along the <i>b</i> -axis) | S6  |
| Figure S4. Packing diagram for $L^2$ (view along the <i>c</i> -axis) | S6  |
| Figure S5. Molecular structure of L <sup>3</sup>                     | S7  |
| Figure S6. Packing diagram for $L^3$ (view along the <i>a</i> -axis) | S7  |
| Figure S7. Packing diagram for $L^3$ (view along the <i>b</i> -axis) | S8  |
| Figure S8. Packing diagram for $L^3$ (view along the <i>c</i> -axis) | S8  |
| Figure S9. Packing of 1D double chains in the structure of <b>1</b>  | S9  |
| Figure S10. Packing of 1D double chains in the structure of <b>1</b> | S9  |
| Figure S11. Packing of 1D double chains in the structure of <b>1</b> | S10 |
| Figure S12. Supramolecular structure of <b>1</b>                     | S10 |
| Figure S13. 2D layer in the structure of <b>2</b>                    | S11 |
| Figure S14. 2D layer in the structure of <b>2</b>                    | S11 |
| Figure S15. 2D layer in the structure of <b>2</b>                    | S12 |
| Figure S16. Packing of 2D layers in the structure of <b>2</b>        | S12 |
| Figure S17. Packing of 2D layers in the structure of <b>3</b>        | S13 |
| Figure S18. X-ray powder patterns for the complex 1                  | S14 |
| Figure S19. X-ray powder patterns for the complex 2                  | S14 |
| Figure S20. X-ray powder patterns for the complex <b>3</b>           | S15 |
| Figure S21. TGA and DSC curves for the complex <b>3-a</b>            | S15 |
| Figure S22. EPR spectrum for the complex <b>2</b>                    | S16 |
| Figure S23. EPR spectrum for the complex <b>3</b>                    | S16 |

Table S1. Crystal data and structure refinement for the compounds **1** – **3** and the ligands.

| Compound                                        | 1                               | 2                                     | 3                                           | L <sup>2</sup>                | L <sup>3</sup>                   |
|-------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|
| Empirical formula                               | $C_{92}H_{84}Br_6Cu_4N_{20}O_4$ | $C_{46}H_{42}CI_{3}Cu_{2}N_{10}O_{2}$ | $C_{25}H_{18}Br_3Cu_2N_4O$                  | $C_{23}H_{21}N_5O$            | $C_{25}H_{18}N_4O$               |
| Formula weight                                  | 2267.41                         | 1000.33                               | 757.24                                      | 383.45                        | 390.43                           |
| Crystal system                                  | monoclinic                      | triclinic                             | monoclinic                                  | monoclinic                    | orthorhombic                     |
| Space group                                     | C2/c                            | Р $ar{1}$                             | <i>P</i> 2 <sub>1</sub> /n                  | P2 <sub>1</sub> /c            | Pbca                             |
| <i>a</i> (Å)                                    | 20.0008(5)                      | 9.1159(2)                             | 8.2845(2)                                   | 11.637(1)                     | 7.9801(7)                        |
| <i>b</i> (Å)                                    | 18.3973(4)                      | 13.6244(3)                            | 12.2544(3)                                  | 7.5691(6)                     | 18.569(2)                        |
| <i>c</i> (Å)                                    | 24.6565(7)                      | 18.4950(4)                            | 24.6190(7)                                  | 21.511(2)                     | 26.854(3)                        |
| α(°)                                            |                                 | 74.008(1)                             |                                             |                               |                                  |
| β(°)                                            | 95.092(1)                       | 85.516(1)                             | 92.923                                      | 94.403(3)                     |                                  |
| γ(°)                                            |                                 | 89.225(1)                             |                                             |                               |                                  |
| V(Å <sup>3</sup> )                              | 9036.8(4)                       | 2201.32(8)                            | 2496.11(11)                                 | 1889.2(3)                     | 3979.1(7)                        |
| Z                                               | 4                               | 2                                     | 4                                           | 4                             | 8                                |
| Т(К)                                            | 150(2)                          | 150(2)                                | 150(2)                                      | 150(2)                        | 150(2)                           |
| D <sub>Calc</sub> (g/cm <sup>3</sup> )          | 1.667                           | 1.509                                 | 2.015                                       | 1.348                         | 1.303                            |
| μ (mm <sup>-1</sup> )                           | 3.645                           | 1.200                                 | 6.533                                       | 0.086 mm                      | 0.082                            |
| Crystal size (mm <sup>3</sup> )                 | 0.45 x 0.11 x 0.10              | 0.42 x 0.35 x 0.21                    | 0.25 x 0.22 x 0.18                          | 0.25 x 0.21 x 0.15            | 0.45 x 0.05 x 0.05               |
| Theta range for data collection (°)             | 1.66 - 26.37                    | 1.66 - 26.37                          | 1.66 - 26.37                                | 1.76 – 26.37                  | 2.19 – 26.02                     |
| Index ranges                                    | -21≤ h ≤ 24                     | $-11 \leq h \leq 11$                  | $-6 \le h \le 10$                           | $-14 \le h \le 14$            | $-9 \le h \le 6$                 |
|                                                 | $-22 \le k \le 14$              | $-10 \le k \le 17$                    | $-13 \le k \le 15$                          | $-9 \le k \le 5$              | $-22 \le k \le 22$               |
|                                                 | -30 ≤ l ≤ 29                    | -22 ≤ I ≤ 23                          | $-30 \le I \le 30$                          | -26 ≤ l ≤ 26                  | -33 ≤ I ≤ 28                     |
| Reflections collected                           | 27137                           | 16421                                 | 16025                                       | 13728                         | 22263                            |
| Independent reflections (R <sub>int</sub> )     | 9228 (0.0308)                   | 8926 (0.0179)                         | 5118 (0.0178)                               | 3869 (0.0274)                 | 3912 (0.0666)                    |
| Completeness to theta                           | 100.0 % (25.50°)                | 99.1 % (25.50°)                       | 100.0 % (25.50°)                            | 99.9 (25.50°)                 | 99.9 (25.50°)                    |
| Absorption correction                           | SADABS                          | SADABS                                | SADABS                                      | SADABS                        | SADABS                           |
| Max. and min. Transmission                      | 0.7119 and 0.2908               | 0.7867 and 0.6326                     | 0.3859 and 0.2920                           | 0.9872 and 0.9787             | 0.9959 and 0.9639                |
| Refinement method                               | Full-matrix least-squares       | Full-matrix least-squares on          | Full-matrix least-squares on F <sup>2</sup> | Full-matrix least-squares     | Full-matrix least-squares on     |
|                                                 | on F <sup>2</sup>               | F <sup>2</sup>                        |                                             | on <i>F</i> <sup>2</sup>      | F <sup>2</sup>                   |
| Data / restraints / parameters                  | 9228 / 0 / 570                  | 8926 / 18 / 578                       | 5118/0/316                                  | 3869 / 0 / 262                | 3912 / 0 / 272                   |
| Goodness-of-fit on F <sup>2</sup>               | 1.050                           | 1.055                                 | 1.039                                       | 1.043                         | 1.008                            |
| Final R indices [I>2sigma(I)]                   | $R_1 = 0.0314, wR_2 = 0.0693$   | $R_1 = 0.0385, wR_2 = 0.0998$         | $R_1 = 0.0195, wR_2 = 0.0432$               | $R_1 = 0.0360, wR_2 = 0.0872$ | $R_1 = 0.0403$ , $wR_2 = 0.0862$ |
| R indices (all data)                            | $R_1 = 0.0524, wR_2 = 0.0743$   | $R_1 = 0.0383, wR_2 = 0.1037$         | $R_1 = 0.0258, wR_2 = 0.0443$               | $R_1 = 0.0510, wR_2 = 0.0919$ | $R_1 = 0.0713$ , $wR_2 = 0.0946$ |
| Largest diff. peak and hole (e/Å <sup>3</sup> ) | 0.643 and -0.588                | 0.902 and -0.798                      | 0.446 and -0.286                            | 0.213 and -0.239              | 0.266 and -0.176                 |

| Table S2.                                                            |  |
|----------------------------------------------------------------------|--|
| Selected bond lengths (Å) and angles [°] for the compounds $1 - 3$ . |  |

| Compound 1    |            |                       |            |
|---------------|------------|-----------------------|------------|
| Bond          | d          | Angle                 | ω          |
| Cu(1)-N(13)   | 1.962(2)   | N(11)-Cu(1)-N(13)     | 79.32(8)   |
| Cu(1)-N(23)   | 1.965(2)   | N(11)-Cu(1)-N(23)     | 99.26(8)   |
| Cu(1)-N(11)   | 2.084(2)   | N(11)-Cu(1)-N(21)     | 102.71(8)  |
| Cu(1)-N(21)   | 2.238(2)   | N(13)-Cu(1)-N(23)     | 177.80(9)  |
| Cu(1)-Br(1)   | 2.4386(4)  | N(13)-Cu(1)-N(21)     | 105.34(8)  |
| Cu(2)-Br(2)   | 2.3143(7)  | N(11)-Cu(1)-Br(1)     | 156.53(6)  |
| Cu(2)-Br(4)#1 | 2.4258(4)  | N(13)-Cu(1)-Br(1)     | 92.40(6)   |
| Cu(3)-Br(4)#1 | 2.4298(4)  | N(21)-Cu(1)-N(23)     | 76.57(8)   |
| Br(3)-Cu(3)   | 2.3192(6)  | N(23)-Cu(1)-Br(1)     | 88.28(6)   |
| Br(4)-Cu(2)   | 2.4258(4)  | N(21)-Cu(1)-Br(1)     | 100.65(6)  |
| Br(4)-Cu(3)   | 2.4298(4)  | Br(2)-Cu(2)-Br(4)#1   | 125.08(1)  |
|               |            | Br(2)-Cu(2)-Br(4)     | 125.08(1)  |
| Cu(2)-Cu(3)   | 2.7952(7)  | Br(4)#1-Cu(2)-Br(4)   | 109.84(2)  |
|               |            | Br(3)-Cu(3)-Br(4)#1   | 125.21(1)  |
|               |            | Br(3)-Cu(3)-Br(4)     | 125.21(1)  |
|               |            | Br(4)#1-Cu(3)-Br(4)   | 109.57(2)  |
|               |            | Cu(2)-Br(4)-Cu(3)     | 70.29(2)   |
| Compound 2    |            |                       |            |
| Bond          | d          | Angle                 | ω          |
| Cu(1)-N(11)   | 2.236(3)   | N(11)-Cu(1)-N(13)     | 76.29(10)  |
| Cu(1)-N(13)   | 1.963(3)   | N(11)-Cu(1)-N(21)     | 92.10(10)  |
| Cu(1)-N(21)   | 2.153(3)   | N(11)-Cu(1)-N(23)     | 96.71(10)  |
| Cu(1)-N(23)   | 1.975(3)   | N(11)-Cu(1)-Cl(11)    | 113.35(7)  |
| Cu(1)-Cl(11)  | 2.2389(9)  | N(13)-Cu(1)-N(21)     | 90.97(10)  |
| Cu(2)-Cl(21)  | 2.055(10)  | N(13)-Cu(1)-N(23)     | 166.64(11) |
| Cu(2)-Cl(22)  | 2.080(12)  | N(13)-Cu(1)-Cl(11)    | 95.58(8)   |
| Cu(3)-Cl(32)  | 2.088(3)   | N(21)-Cu(1)-N(23)     | 77.78(10)  |
| Cu(3)-Cl(31)  | 2.089(2)   | N(21)-Cu(1)-Cl(11)    | 154.54(8)  |
|               |            | N(23)-Cu(1)-Cl(11)    | 97.66(8)   |
|               |            | Cl(21)-Cu(2)-Cl(22)   | 176.5(4)   |
|               |            | Cl(32)-Cu(3)-Cl(31)   | 178.32(9)  |
| Compound 3    |            |                       |            |
| Bond          | d          | Angle                 | ω          |
| Cu(1)-N(11)   | 1.9869(17) | N(11)-Cu(1)-N(13)     | 78.83(7)   |
| Cu(1)-N(13)   | 1.9898(17) | N(11)-Cu(1)-Br(1)     | 103.28(5)  |
| Cu(1)-Br(1)   | 2.3567(3)  | N(13)-Cu(1)-Br(1)     | 133.65(5)  |
| Cu(1)-Br(2)   | 2.3170(3)  | N(11)-Cu(1)-Br(2)     | 140.42(5)  |
| Cu(2)-N(14)   | 2.0835(16) | N(13)-Cu(1)-Br(2)     | 101.64(5)  |
| Cu(2)-Br(3)   | 2.4584(3)  | Br(2)-Cu(1)-Br(1)     | 104.07(1)  |
| Cu(2)-Br(1)#1 | 2.4516(3)  | N(14)-Cu(2)-Br(1)#1   | 112.17(5)  |
| Cu(2)-Br(3)#2 | 2.5402(3)  | N(14)-Cu(2)-Br(3)     | 106.42(5)  |
|               |            | Br(1)#1-Cu(2)-Br(3)   | 111.81(1)  |
| Cu(2)-Cu(2)#2 | 2.9199(5)  | N(14)-Cu(2)-Br(3)#2   | 100.45(5)  |
|               |            | Br(1)#1-Cu(2)-Br(3)#2 | 116.48(1)  |
|               |            | Br(3)-Cu(2)-Br(3)#2   | 108.54(1)  |

Symmetry transformations used to generate equivalent atoms: for 1: #1 -x,y,-z+1/2; for 3: #1 -x+1,-y+1,-z #2 - x+2,-y+1,-z



Figure S1. Molecular structure of L<sup>1</sup>.



Figure S2. Packing diagram for  $L^2$  (view along the *a*-axis).



Figure S3. Packing diagram for  $L^2$  (view along the *b*-axis).



Figure S4. Packing diagram for  $L^2$  (view along the *c*-axis).



Figure S5. Molecular structure of L<sup>3</sup>.



Figure S6. Packing diagram for  $L^3$  (view along the *a*-axis).



Figure S7. Packing diagram for  $L^3$  (view along the *b*-axis).



Figure S8. Packing diagram for  $L^3$  (view along the *c*-axis).



Figure S9. Packing of 1D double chains in the structure of **1**. View along the *a*-axis, three double chains are shown (side view).



Figure S10. Packing of 1D double chains in the structure of **1**. View along the *b*-axis, three double chains are shown (view along the chains).



Figure S11. Packing of 1D double chains in the structure of **1**. View along the *c*-axis, three double chains are shown (side view).



Figure S12. Supramolecular structure of **1**. View along the *b*-axis.



Figure S13. 2D layer in the structure of **2**. View along the *a*-axis.



Figure S14. 2D layer in the structure of **2**. View along the *b*-axis.



Figure S15. 2D layer in the structure of **2**. View along the *c*-axis (side view).



Figure S16. Packing of 2D layers in the structure of **2**. View along the *c*-axis (side view, two layers are shown).



Figure S17. Packing of 2D layers in the structure of **3**. View along the *a*-axis (three layers are shown, hydrogen atoms are omitted for clarity).



Figure S18. Experimental and simulated X-ray powder patterns for the complex **1**.



Figure S19. Experimental and simulated X-ray powder patterns for the complex **2**.



Figure S20. Experimental and simulated X-ray powder patterns for the complex **3**.



Figure S21. TGA and DSC curves for the complex **3-a**.



Figure S22. EPR spectrum for the complex **2**.



Figure S23. EPR spectrum for the complex **3**.