Direct NMR detection of the unstable "red product" from reaction between nitroprusside and mercaptosuccinic acid

Yin Gao, Brendan Mossing, and Gang Wu*

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6

1. Synthetic details

Materials. Chemicals were purchased from Sigma-Aldrich unless stated otherwise. There materials were used as received without further purification. 2-mercaptosuccinic acid (MSA, HOOCCH(SH)CH₂COOH), sodium nitroprusside (SNP, Na₂[Fe^{II}(CN)₅NO]·2H₂O), sodium hydroxide (NaOH), sodium nitrite (NaNO₂), ¹⁵N-labeled sodium nitrite (Na¹⁵NO₂, 98% ¹⁵N), ¹⁷O-labeled water (H₂¹⁷O, 41.1% ¹⁷O, purchased from CortecNet), ethylenediaminetetraacetic acid (EDTA, C₁₀H₁₆N₂O₈), sodium carbonate (Na₂CO₃), sodium hydrogen carbonate (NaHCO₃), sodium chloride (NaCl), potassium cyanide (KCN), and ion-exchange resin (Amberlite IR-120, strongly acidic form).

Synthesis of ¹⁵N-labeled SNP. Na₂[Fe(CN)₅(¹⁵NO)]·2H₂O was prepared in aqueous solution by mixing commercial SNP (260 mg) with 1.1 molar equivalents of NaOH and 1.9 molar equivalents of Na¹⁵NO₂. The reaction mixture was kept at room temperature for 10 min, following by addition of 285 μ L of 4 M acetic acid. The reaction mixture was concentrated to a paste on rotary evaporator. The residual material was dissolved in 2 mL of 4 M acetic acid and the solvent was evaporated on rotary evaporator. This process was repeated once. The residue was treated with 1,4-dioxane (4 mL); solid material was collected by filtration, washed with ethanol (2 × 3 mL), dried under vacuum, to give the title compound as red powder (153 mg, 59%). The ¹⁵N enrichment in the product was 60%. ¹⁵N NMR (50.6 MHz, D₂O): 371 ppm (ref. to liquid NH₃); ¹³C NMR (125.6 MHz, D₂O), 134.8 ppm (eq) and 132.8 ppm (ax).

Synthesis of ¹⁷O-labeled SNP. Na₂[Fe^{II}(CN)₅(N¹⁷O)]·2H₂O was prepared by mixing 265 mg of commercial SNP and 35.6 mg of NaOH in 300 μ L of H₂¹⁷O (41.1% ¹⁷O). A few grains of Amberlite IR-120 (strongly acidic form) were gradually added to the reaction mixture and the progress of this reaction was monitored via ¹⁷O NMR spectroscopy. Upon reaching the equilibrium, the mixture was then treated with 1,4-dioxane (4 mL) and the precipitates were collected via filtration and dried under vacuum. The ¹⁷O-enrichment of the product was 20%. ¹⁷O NMR (67.7 MHz, D₂O): 419 ppm (ref.

to water), ¹³C NMR (125.6 MHz, D₂O): 134.8 ppm (eq) and 132.8 ppm (ax).

Synthesis of ¹⁷O-labeled NaN¹⁷O₂. NaNO₂ (0.8 g) and a few grains of Amberlite IR-120 (strongly acidic form) were placed in a round-bottom flask, to which H₂¹⁷O (41.1%, 1 mL) was subsequently added. A cap was immediately placed on the flask, which was then sealed with parafilm. The mixture was stirred slowly for 20 min until a clear solution was obtained and this solution was kept at room temperature overnight. This solution was then heated at 75 °C for 2 h. The solution was subsequently lyophilized. The ¹⁷O-enrichment of the product was 18%. ¹⁷O NMR (67.7 MHz, D₂O): 661 ppm (ref. to water).

Synthesis of $[Fe^{II}(CN)_5N(O)SR]^{3-}$. A 200 mM MSA in D₂O buffer solution (0.05 M sodium carbonate, 0.1 M NaCl, 0.5 mM EDTA and 12 mM KCN; pH 11) was added to SNP (1 molar equivalents). In solution the complex exhibits a characteristic absorption band at $\lambda_{max} = 526$ nm in its UV/Vis spectrum. The corresponding ¹⁵N- and ¹⁷O-labeled complexes were prepared in the same fashion, except that ¹⁵N- and ¹⁷O-labeled SNPs were used. All solutions were freshly prepared.

2. NMR data analysis

The 2D ¹H-¹H EXSY (NOESY) spectra of the MSA-SNP reaction mixture were analyzed with ExsyCalc (Mestrelab Research). At each temperature, two 2D spectra were recorded mixing times of 4 and 10 ms. The integrations of the cross and diagonal peaks were then used to determine the exchange rates (k_d and k_f) between the RP and MSA free ligand.

Tab	le S1.	Experimen	tal equilibrium con	nstants (<i>l</i>	$(K_{eq})^a$ and ligar	nd exchange r	rates (k _d and
$k_{\rm f}$) o	f the re	eaction betw	ween NP and MSA	at differ	ent temperatu	res from 1D	¹ H NMR and
2D I	EXSY	NMR spect	tra. The initial con	centratio	n was 50 mM	for NP and M	MSA.
т	4	$(\mathbf{I}Z)$		V	1 (-1)	1 (-1>

Temperature (K)	[KP]/[MSA]	Keq	$\kappa_{\rm d}$ (S)	$K_{\rm f}$ (S)
278	1:0.21	548.8	49.1	7.3
283	1:0.21	548.8	67.1	11.8
288	1:0.34	231.8	86.6	20.2
293	1:0.46	138.0		
298	1:0.54	105.6	113.2	62.0
303	1:0.94	43.9		
308	1:1.19	30.9		
313	1:4.20	5.9		

 ${}^{a}K_{eq} = [RP]/([NP][MSA]).$

Figure S1. (a) Arrhenius plot of the experimental thermodynamic data and (b) Eyring plot of the experimental kinetic data. All data are given in Table S1.

Carbon	NP	RP	RSNO	$RSSR^{a}$
C1 (COOH)		179.4	176.7	179.4
C2 (CH)		55.1	46.4	53.8, 53.5
C3 (CH ₂)		37.8	37.2	40.6, 40.5
C4 (COOH)		176.7	175.8	178.7
CN _{eq}	134.8	167.6		—
CN _{ax}	132.8	162.8		

Table S2. Summary of ¹³C chemical shifts (in ppm) observed for NP, RP, RSNO, and RSSR.

^{*a*}Spectra were recorded in reaction buffer (0.05 M sodium carbonate, 0.1 M NaCl, 0.5 mM EDTA and 12 mM KCN; pH 11).

Figure S2. Decomposition of RP to RSSR monitored by ¹³C NMR. Note that the slow regeneration of NP was due to the oxidation of paramagnetic $[Fe(CN)_5NO]^{3-}$ (so invisible in the NMR spectra) by O₂. The signal marked by * is due to $[Fe(CN)_6]^{4-}$.