Electronic Supporting Information

Design and synthesis of BODIPY-Clickates based Hg²⁺ sensors:

Effect of triazole binding mode with Hg²⁺ on signal transduction

Mani Vedamalai,^a Dhaval Kedaria,^b Rajesh Vasita,^b Shigeki Mori^c and Iti Gupta^{a,*}

^{a,*}Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad-382424, India. Corresponding author E.mail: iti@iitgn.ac.in.

^b School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India. ^c Integrated Centre for Sciences, Ehime University, Matsuyama, 790-8577, Japan.

List of contents	page no
1. Crystal data refinement parameters of Compound 3	82
2. Crystal data refinement parameters of Compound 4	S3
3. Photo physical properties of F1, F2, 4, and 3	S3
4. Solvatochromism pictures of 3 , 4 , F1 and F2	S4
5. Fluorescence titration of F2 with metal ions	S5
6. UV- visible titration of F2 with metal ions	S5
7. UV- visible titration of F1 with $Hg^{2+}(a)$ and F2 with $Hg^{2+}(b)$	S6
8. Calculation of apparent dissociation constant	S6
9. Competitive test of F2	S7
10. Job's plot for F2:Hg²⁺ complexes	S7
11. ESI mass spectra of $F1-Hg^{2+}$ complexes (a) and $F2-Hg^{2+}$ complexes	exes (b) S8
12. Effect of pH	S9
13. NMR titration of F2 against Hg ²⁺ in DMSO-d6	S9
14. ¹ H spectrum of Compound 2 in $CDCl_3$	S10
15. ¹³ C spectrum of Compound 2 in $CDCl_3$	S10

16. ¹ H spectrum of Compound 3 in CDCl ₃	S11
17. ¹³ C spectrum of Compound 3 in $CDCl_3$	S11
18. ¹ H spectrum of Compound 4 in CDCl ₃	S12
19. ¹³ C spectrum of Compound 4 in CDCl ₃	S12
20. ¹ H spectrum of Compound F1 in $CDCl_3$	S13
21. ¹³ C spectrum of Compound F1 in CDCl ₃	S13
22. ¹ H COSY spectrum of Compound F1 in CDCl ₃	S14
23. ¹ H spectrum of Compound F2 in DMSO-d6	S14
24. ¹³ C spectrum of Compound F2 in DMSO-d6	S15
25. ¹ H COSY spectrum of Compound F2 in DMSO-d6	S15

Empirical Formula	$C_{19}H_{18}BCl_2F_2N_3$
Formula Weight	408.08
Crystal Color, Habit	orange, platelet
Crystal Dimensions	0.250 X 0.160 X 0.020 mm
Crystal System	orthorhombic
Lattice Type	Primitive
Lattice Parameters	
Space Group	Pca2 ₁ (#29)

Table S1. Crystal data refinement parameters of Compound 3

Empirical Formula	C ₁₉ H ₁₈ BF ₂ N ₉
Formula Weight	421.22
Crystal Color, Habit	orange, needle
Crystal Dimensions	0.200 X 0.100 X 0.020 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 12.295(6) Å b = 20.765(10) Å c = 7.858(4) Å b = 100.122(9) ° $V = 1975.1(17) \text{ Å}^3$
Space Group	P2 ₁ /c (#14)

Table S2. Crystal data refinement parameters of Compound 4

	F1		F2		4			3				
Solvents	λ_{abs}	λ_{em}	Φ.	λ_{abs}	λ_{em}	Φ.	λ_{abs}	λ _{em}	ው	λ_{abs}	λ_{em}	Φ.
	nm	nm	Ψ_{f}	nm	nm	Ψ_{f}	nm	nm	Ψ_{f}	nm	nm	Ψ_{f}
Ethanol	495	509	0.004	495	513	0.004	494	500	0.002	495	513	0.003
Acetonitrile	491	513	0.001	492	495	0.001	492	515	0.001	493	500	0.001
Methanol	494	515	0.002	494	514	0.002	493	513	0.001	493	504	0.001
DCM	498	605	0.072	498	605	0.114	497	615	0.020	497	616	0.050
Hexanes	497	511	0.107	509	512	0.136	497	511	0.190	497	511	0.162
THF	496	623	0.028	496	618	0.036	496	511, 627	0.013	496	629	0.019
DMF	494	504	0.001	494	508	0.001	493	506	0.001	495	505	0.001

Table S3. Photophysical properties of F1, F2, 4, and 3 in various solvents.

Figure S1. Solvatochromism of compound **3**, **4**, **F1** and **F2** in various solvents (A) methanol, (B) hexanes (C) ethanol, (D) acetonitrile, (E) dimethyl formamide, (F) dichloromethane, and (G) tetrahydrofuran. Visible (top) and long wavelength (below) pictures of compound **3** (a), **4** (b), **F1** (c) and **F2** (d) in various solvents.

Figure S2. Fluorescence spectra of F2 (10 μ M) upon addition of 3 equivalent of various metal ions (Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Fe³⁺, Fe²⁺, K⁺, Mg²⁺, Mn²⁺, Ni²⁺, Pb²⁺, Zn²⁺ and Hg²⁺ in methanol (λ_{ex} = 494 nm).

Figure S3. UV-visible spectra of **F2** (10 μ M) upon addition of 3 equivalent of various metal ions (Ag⁺, Ca²⁺, Cd²⁺, Co²⁺, Cu²⁺, Fe³⁺, Fe³⁺, Fe²⁺, K⁺, Mg²⁺, Mn²⁺, Ni²⁺, Pb²⁺, Zn²⁺ and Hg²⁺ in methanol.

Figure S4. (a) UV-visible response of **F1** (10 μ M) in the presence of different amounts of Hg²⁺ in methanol. (b) UV-visible response of **F2** (10 μ M) in the presence of different amounts of Hg²⁺ in methanol.

Figure S5. (a) Fluorescence responses of **F1** (10 μ M) to Hg²⁺ solutions for K_d value calculation. Excitation was 494 nm. Spectra were acquired against increasing amount of Hg²⁺ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, and 50 μ M. The apparent *K*d value was found to be 24.4 ± 5.1 μ M. (b) Fluorescence responses of **F2** (10 μ M) to Hg²⁺ solutions for K_d value calculation. Excitation was 494 nm. Spectra were acquired against increasing amount of Hg²⁺ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, and 50 μ M. The apparent *K*d value was found to be 22.0 ± 3.9 μ M.

Figure S6. Relative fluorescence intensities of F2 (10 μ M) in the presence of Hg²⁺ (3 equiv.) and various metal ions (15 equiv.) in methanol, ($\lambda_{ex} = 494$ nm). Green bars represent F2 and 150 μ M of other competing metal ions, red bars represent subsequent addition of 30 μ M of Hg²⁺ to F2 and F2 with competing metal ions (150 μ M).

Figure S7. Job plot of F2-Hg²⁺ complexes in methanol ($\lambda_{ex} = 494$ nm). The total concentration of F2 and Hg²⁺ was 10 μ M

Figure S8. (a) ESI MS spectra of F1-Hg²⁺ Complexes. (b) ESI MS spectra of F2-Hg²⁺ Complexes.

Figure S9. Fluorescence intensity of **F2** (10 μ M; **•**) and after addition of Hg²⁺ (30 μ M, **•**) in methanolwater (9:1, v/v, 2 mM HEPES) medium as a function of different pH values. Excitation wavelength was 494 nm.

Figure S10. (a) Binding model; (b) Partial ¹H NMR spectra of F2 (5mM) in the absence or presence of increasing Hg^{2+} in DMSO-d6.

Figure S11. ¹H spectrum of Compound 2 in CDCl₃

Figure S12. ¹³C spectrum of Compound 2 in CDCl₃

Figure S14. ¹³C spectrum of Compound 3 in CDCl₃

Figure S16. ¹³C spectrum of Compound 4 in CDCl₃

Figure S17. ¹H spectrum of F1 in CDCl₃

Figure S18. ¹³C spectrum of F1 in CDCl₃

Figure S19. ¹H COSY spectrum of F1 in CDCl₃

Figure S20. ¹H spectrum of F2 in DMSO-d6

Figure S21. ¹³C spectrum of F2 in DMSO-d6

