Stabilized Borata-Alkene Formation: Structural Features, Reactions and the Special Role of the Counter Cation

Sonja Kohrt, Steffen Dachwitz, Constantin G. Daniliuc, Gerald Kehr, Gerhard Erker

Supporting Information

1. General

All transformations involving air- and/or moisture-sensitive compounds were carried out using standard Schlenk-type glassware or within a glove box under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on the following instruments: Bruker AV 300 (¹H: 300 MHz), Agilent DD2 500 (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz), Agilent DD2 600 (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ⁷Li: 233 MHz, ¹¹B: 192 MHz). ¹H NMR and ¹³C NMR: chemical shift is given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shift is given relative to CFCl₃ (external reference); ¹¹B NMR: chemical shift is given relative to BF₃·Et₂O (external reference); ⁷Li NMR: chemical shift is given relative to LiCl (external reference). NMR assignments are supported by additional 2D NMR experiments. Elemental analyses were performed on an Elementar Vario El III. IR spectra were recorded on a Varian 3100 FT-IR (Excalibur Series). Melting points were obtained with a DSC Q20 (TA Instruments). X-Ray diffraction: for compounds 9a, 14 [LiHTMP] and 17a data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122) and graphics, XP (BrukerAXS, 2000). For compounds 11a, 12, 14 [PPh₃NPPh₃], 15a, 17b and 19 data sets were collected with a D8 Venture Dual Source 100 CMOS diffractometer. Programs used: data collection: APEX2 V2014.5-0 (Bruker AXS Inc., 2014); cell refinement: SAINT V8.34A (Bruker AXS Inc., 2013); data reduction: SAINT V8.34A (Bruker AXS Inc., 2013); absorption correction, SADABS V2014/2 (Bruker AXS Inc., 2014); structure solution SHELXT-2014 (Sheldrick, 2014); structure refinement SHELXL-2014 (Sheldrick, 2014) and graphics, XP (Bruker AXS Inc., 2014). R-values are given for observed reflections, and wR^2 values are given for all reflections. Exceptions and special features: One half disordered over two positions benzene molecule was found in the asymmetrical unit of 9a. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. Compound 11a was refined as a 2-component inversion twin. The CCDC deposition numbers are 1427492 to 1427500. All compounds described in this paper are racemic.

2. Materials

Bis(pentafluorophenyl)borane was prepared according to modified literature procedures [D. J. Parks, R. E. von H. Spence, W. E. Piers, *Angew. Chem. Int. Ed.* **1995**, *34*, 809-811; D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* **1998**, *17*, 5492-5503]. Benzofulvene **7** was prepared according to a modified literature procedure [J. Paradies, G. Kehr, R. Fröhlich, G. Erker, *PNAS* **2006**, *103*, 15333-15337]. Pyridine was purchased from Acros, distilled and stored over molecular sieves prior to use. 'Butyl nitrile was purchased from Acros and distilled prior to use. 4-(Dimethylamino)-pyridine was

purchased from Sigma-Aldrich, dried *in vacuo* and stored under argon prior to use. Lithium 2,2,6,6-tetramethylpiperidide was purchased from Sigma-Aldrich and used without further purification. Triphenylphosphanylidene ammonium chloride was purchased from Sigma-Aldrich and used without further purification. 2,2,6,6-Tetramethylpiperidine (HTMP) was purchased from Sigma-Aldrich, distilled from KOH and stored over molecular sieves prior to use. (*E*)-Chalcone (**16a**) was purchased by TCI and used without further purification. (*E*)-Chalcone derivative **16b** was synthesized according to a literature procedure [A. Stroba, F. Schaeffer, V. Hindie, L. Lopez-Garcia, I. Adrian, W. Frohner, R. W. Hartmann, R. M. Biondi, M. Engel, *Med. Chem.* **2009**, *52*, 4683-4693]. Phenyl methyl ketene was synthesized according to modified literature procedures [B. L. Hodous, G. C. Fu, *J. Am. Chem. Soc.* **2002**, *124*, 1578-1579; N. Çelebi-Ölçüm, Y.-h. Lam, E. Richmond, K. B. Ling, A. D. Smith, K. N. Houk, *Angew. Chem. Int. Ed.* **2011**, *51*, 11478-11482].

3. Preparation and characterization

Compounds 8a,b

Benzofulvene 7 (10.4 mg, 0.07 mmol, 1.0 equiv) was dissolved in CD_2Cl_2 (0.2 mL), cooled to -78 °C and added to a precooled suspension of $HB(C_6F_5)_2$ (23.0 mg, 0.07 mmol, 1.0 equiv) in CD_2Cl_2 (0.8 mL) within a NMR tube. The NMR tube was sealed and shaken until a clear yellow

solution was obtained. The NMR tube was kept at -78 °C and the reaction mixture was characterized by NMR experiments at 195K. A mixture of a major and minor isomer (ratio ca. $1.3 : 1 (^{1}\text{H})$) and compound 7 (ca. 8 mol%) was obtained.

Major isomer assigned as compound 8a

¹**H** NMR (500 MHz, 195 K, CD₂Cl₂): δ [ppm] = 7.44 (d, ³J_{HH} = 7.8 Hz, 1H, C7-H), 7.17 (t, ³J_{HH} = 7.4 Hz, 1H, C6-H), 7.00 (m, 1H, C5-H), 6.92 (d, ³J_{HH} = 7.5 Hz, 1H, C4-H), 4.22 (dd, ³J_{HH,trans} = 9.6 Hz, ³J_{HH,cis} = 3.6, 1H, C3-H), 3.01 (br dd, ²J_{HH} = 15.7 Hz, ³J_{HH,trans} = 9.6, 1H, C2-H), 2.81 (br d, ²J_{HH} = 15.7 Hz, 1H, C2-H), 1.82 (s, 3H, C10-H), 1.65 (s, 3H, C9-H).

¹H, ¹H GCOSY (500 MHz / 500 MHz, 195 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.44 / 7.17 (C7-H / C6-H), 7.17 / 7.00 (C6-H / C5-H), 7.00 / 6.92 (C5-H / C4-H), 4.22 / 3.01, 2.81 (C3-H / C2-H, C2-H), 3.01 / 2.81, 1.82, 1.65 (C2-H / C2-H, C10-H, C9-H), 2.81 / 1.82, 1.65 (C2-H / C10-H, C9-H), 1.82 / 1.65 (C10-H / C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 195 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 4.22 / 6.92, 3.01, 2.81 (C3-H / C4-H, C2-H, C2-H), 1.82 / 7.44, 1.65 (C10-H / C7-H, C9-H), 1.65 / 3.01, 2.81, 1.82 (C9-H / C2-H, C2-H, C10-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 195 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.44 / 124.6 (C7), 7.17 / 126.7 (C6), 7.00 / 125.7 (C5), 6.92 / 126.5 (C4), 4.22 / 42.9 (C3), 3.01 / 33.1 (C2), 2.81 / 33.1

(C2), 1.82 / 20.5 (C10), 1.65 / 23.27 (C9).

¹**H**, ¹³**C GHMBC** (500 MHz / 126 MHz, 195 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.44 / 141.4, 133.0, 125.7 (C7-H / C3a, C1, C5), 7.17 / 143.2, 126.5 (C6-H / C7a, C4), 7.00 / 141.4, 124.6 (C5-H / C3a, C7), 6.92 / 143.2, 126.7, 42.9 (C4-H / C7a, C6, C3), 4.22 / 143.2, 141.4, 133.0, 126.7, 111.8, 33.1 (C3/ C7a, C3a, C1, C8, ^{ipso}C₆F₅, C2), 3.01 / 133.0, 126.7 (C2-H / C1, C8), 2.81 / 143.2, 141.1, 133.0, 126.7 (C2-H / C7a, C3a, C1, C8), 1.82 / 143.2, 133.0, 126.7, 23.27 (C10-H / C7a, C8, C1, C9), 1.64 / 143.2, 133.0, 126.5, 20.5 (C9-H / C7a, C8, C1, C10).

¹³C{¹H} NMR (126 MHz, 195 K, CD₂Cl₂): δ^{13} C [ppm] = 143.2 (C7a), 141.4 (C3a), 133.0 (C1), 126.7 (C8), 126.7 (C6), 126.5 (C4), 125.7 (C5), 124.6 (C7), 42.9 (C3), 33.1 (C2), 23.27 (C9)^t, 20.5 (C10)^t, [C₆F₅ not listed; ^t tentative assignment].

¹¹B{¹H} NMR (160 MHz, 195 K, CD₂Cl₂): δ [ppm] = 60 (v_{1/2} \approx 8500 Hz).

¹⁹**F NMR** (470 MHz, 195 K, CD₂Cl₂): δ [ppm] = -128.9 (m, 2F, *o*-C₆F₅), -148.1 (br, 1F, *p*-C₆F₅), -161.6 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 13.5].

Minor isomer assigned as compound 8b

¹**H NMR** (500 MHz, 195 K, CD₂Cl₂): δ [ppm] = 7.61 (d, ³*J*_{HH} = 7.8 Hz, 1H, C7-H), 7.08 (m, 1H, C6-H), 6.99 (m, 1H, C5-H), 6.97 (m, 1H, C4-H), 4.02 (d, ³*J*_{HH} = 8.0 Hz, 1H, C2-H), 3.33 (dd, ²*J*_{HH} = 16.7 Hz, ³*J*_{HH} = 8.0 Hz, 1H, C3-H), 3.02 (d, ²*J*_{HH} = 16.7 Hz, 1H, C3-H), 2.19 (s, 3H, C10-H), 1.51 (s, 3H, C9-H).

¹**H**, ¹**H** GCOSY (500 MHz / 500 MHz, 195 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.61 / 7.08 (C7-H / C6-H), 7.08 / 6.99 (C6-H / C5-H), 4.02 / 3.33, 2.19, 1.51 (C2-H / C3-H, C9-H, C10-H), 3.33 / 3.02 (C3-H / C3-H), 2.19 / 1.51 (C9-H / C10-H).

¹**H NOESY** (600 MHz / 600 MHz, 195 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 3.33 / 6.97, 4.02, 3.02 (C3-H / C4-H, C2-H, C3-H), 2.19 / 7.61, 7.08, 1.51 (C10-H / C7-H, C6-H, C9-H), 1.51 / 4.02, 2.19 (C9-H / C2-H, C10-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 195 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.61 / 125.3 (C7), 7.08 / 125.4 (C6), 6.99 / 127.1 (C5), 6.97 / 124.1 (C4), 4.02 / 43.7 (C2), 3.33 / 31.1 (C3), 3.02 / 31.1 (C3), 2.19 / 23.25 (C10), 1.51 / 26.8 (C9).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 195 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.61 / 146.5, 127.1, 121.8 (C7-H / C3a, C5, C1), 7.08 / 139.4, 124.1 (C6-H / C7a, C4), 6.99 / 146.5, 125.3 (C5-H / C3a, C7), 6.97 / 139.4, 125.4, 31.1 (C4-H / C7a, C6, C3), 4.02 / 146.5, 145.6, 139.4, 121.8, 112.0 (C2-H/C3a, C8, C7a, C1, ^{ipso}C₆F₅), 3.33 / 146.5, 139.4, 43.7 (C3-H / C3a, C7a, C2), 3.02 / 146.5, 139.4, 121.8, 43.7 (C3-H / C3a, C7a, C1, C2), 2.19 / 145.6, 139.4, 121.8, 26.8 (C10-H / C8, C7a, C1, C9), 1.51 / 145.6, 139.4, 121.8, 23.25 (C9-H / C8, C7a, C1, C10).

¹³C{¹H} NMR (126 MHz, 195 K, CD₂Cl₂): δ^{13} C [ppm] = 146.5 (C3a), 145.6 (C8), 139.4 (C7a), 127.1 (C5), 125.3 (C7), 125.4 (C6), 124.1 (C4), 121.8 (C1), 43.7 (C2), 31.1 (C3), 26.8 (C9), 23.25 (C10), [C₆F₅ not listed].

¹¹B{¹H} NMR (160 MHz, 195 K, CD₂Cl₂): δ [ppm] = 60 (v_{1/2} \approx 8500 Hz).

¹⁹**F NMR** (470 MHz, 195 K, CD₂Cl₂): δ [ppm] = -130.8 (br, 2F, *o*-C₆F₅), -151.7 (br, 1F, *p*-C₆F₅), -162.2 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 9.4].

Figure S1 ¹H NMR (500 MHz, 193 K, CD₂Cl₂) of compounds 8a,b.

Figure S2 $^{13}C\{^{1}H\}$ NMR (126 MHz, 195 K, CD₂Cl₂) of compounds 8a,b.

Figure S3 ${}^{11}B{}^{1}H{}$ NMR (160 MHz, 195 K, CD₂Cl₂) and ${}^{19}F$ NMR (470 MHz, 195 K, CD₂Cl₂) of compounds 8a,b.

Compounds 9a,b

Benzofulvene 7 (52.0 mg, 0.33 mmol, 1.0 equiv) was dissolved in toluene (1.5 mL), and added to a suspension of HB(C_6F_5)₂ (115.0 mg, 0.33 mmol, 1.0 equiv) in toluene (2.0 mL). After stirring for 15 minutes at ambient temperature pyridine (30.2 mg, 0.35 mmol, 1.15 equiv) was added affording a change in color from intense yellow to colorless. The reaction mixture was stirred for 15 minutes

and concentrated *in vacuo* subsequently. The residue was triturated by stirring (15 min) in pentane (2.0 mL) giving a white precipitate. The suspension was filtrated. The residue was washed with pentane (2×1 mL) and dried *in vacuo* giving a colorless solid (92 mg, 0.16 mmol, 48%).

Elemental analysis: calc. for C₂₉H₁₈BF₁₀N (580.26 g mol⁻¹): C, 59.92; H, 3.12; N, 2.41; Found: C, 60.16; H, 3.06 N (corr), 2.37.

The solution of the obtained solid in CD_2Cl_2 showed a mixture of isomers (ratio $\approx 1.9:1$ (¹H)).

Major isomer assigned as compound 9a

¹**H NMR** (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.96 (br t, ³*J*_{HH} = 7.7 Hz, 1H, C14-H), 7.88, 7.31 (each br, each 2H, C12,13-H), 7.22 (d, ³*J*_{HH} = 7.8 Hz, 1H, C7-H), 7.04 (t, ³*J*_{HH} = 7.5 Hz, 1H, C6-H), 6.95 (t, ³*J*_{HH} = 7.4 Hz, 1H, C5-H), 6.79 (br d, ³*J*_{HH} = 7.0 Hz, 1H, C4-H), 4.04 (d, ³*J*_{HH} = 9.5 Hz, 1H, C3-H), 2.93 (br dd, ²*J*_{HH} = 15.0 Hz, ³*J*_{HH,trans} = 9.5 Hz, 1H, C2-H), 2.26 (br d, ²*J*_{HH} = 15.0 Hz, 1H, C2-H), 1.58 (s, 3H, C10-H), 1.46 (s, 3H, C9-H).

¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.22 / 7.04 (C7-H / C6-H), 7.04 / 6.95 (C6-H / C5-H), 6.95 / 6.79 (C5-H / C4-H), 4.04 / 2.93 (C3-H / C2-H), 2.93 / 2.26, 1.58, 1.46 (C2-H / C2-H, C10-H, C9-H), 1.58 / 1.46 (C10-H / C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD_2Cl_2) [selected traces]: δ [ppm] / δ [ppm] = 7.22 / 1.58 (C7-H / C6-H, C8-H, C10-H), 2.93 / 4.04, 2.26 (C2-H / C3-H, C2-H), 1.46 / 2.26 (C9-H / C2-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.96 / 141.9 (C14), 7.22 / 124.4 (C7), 7.04 / 125.5 (C6), 6.95 / 126.6 (C5), 6.79 / 125.1 (C4), 4.04 / 36.1 (C3), 2.93 / 37.4 (C2), 2.26 / 37.4 (C2), 1.58 / 21.2 (C10), 1.46 / 23.5 (C9).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 228 K, CD₂Cl₂): [selective resonances] δ^{1} H [ppm] / δ^{13} C [ppm] = 8.21 / 143.3 (Cl₂), 7.92 / 141.6 (Cl₄), 7.10 / 146.7 (Cl₃).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.22 / 152.4, 126.6 (C7-H / C3a, C5), 7.04 / 143.2, 125.1 (C6-H / C7a, C4), 6.95 / 152.4, 124.4 (C5-H / C3a, C7), 4.04 / 152.4, 143.2, 135.4 (C3-H / C3a, C7a, C1), 1.58 / 135.4, 123.3, 23.5 (C10-H / C1, C8, C9), 1.46 / 135.4, 123.3, 21.2 (C9-H / C1, C8, C10).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 152.4 (C3a), 145.9 (br), 141.9, 124.2 (br)(C12,13,14)^t, 143.2 (C7a), 135.4 (C1), 126.6 (C5), 125.5 (C6), 125.1 (C4), 124.4 (C7), 123.3 (C8), 37.4 (C2), 36.1 (br, C3), 23.5 (C9), 21.2 (C10) [C₆F₅ not listed; ^t tentative assignment].

¹¹**B NMR** (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = 0.7 ($v_{1/2} \approx 130$ Hz).

¹⁹**F** NMR (564 MHz, 299 K, CD₂Cl₂): δ [ppm] = -129.5 (br, 4F, *o*-C₆F₅), -157.7, -159.2 (each br, each 1F, *p*-C₆F₅), -163.7, -164.2 (each br, each 2F, *m*-C₆F₅).

Minor isomer assigned as compound 9b

¹**H NMR** (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 8.46 (m, 2H, C12-H), 7.75 (tt, ³*J*_{HH} = 7.7 Hz, ⁴*J*_{HH} = 1.5 Hz, 2H, C14-H), 7.22 (m, 2H, C13-H), 7.07 (d, ³*J*_{HH} = 7.8 Hz, 1H, C7-H), 6.83 (tm, ³*J*_{HH} = 7.7 Hz, 1H, C6-H), 6.75 (td, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 1.0 Hz, 1H, C5-H), 6.71 (dm, ³*J*_{HH} = 7.4 Hz, 1H, C4-H), 3.96 (d, ³*J*_{HH} = 8.9 Hz, 1H, C2-H), 3.40 (dd, ²*J*_{HH} = 16.6 Hz, ³*J*_{HH,trans} = 8.9 Hz, 1H, C3-H), 2.61 (d, ²*J*_{HH} = 16.6 Hz, 1H, C3-H), 1.95 (s, 3H, C10-H), 1.70 (s, 3H, C9-H).

¹**H**, ¹**H** GCOSY (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 8.46 / 7.75, 7.22 (C12-H / C14-H, C13-H), 7.75 / 7.22 (C14-H / C13-H), 7.07 / 6.83 (C7-H / C6-H), 6.83 / 6.75 (C6-H / C5-H), 6.75 / 6.71 (C5-H / C4-H), 3.96 / 3.40, 2.61, 1.95, 1.70 (C2-H / C3-H, C3-H, C10, C9), 3.40 / 2.61, 1.95, 1.70 (C3-H / C3-H, C10, C9), 1.95 / 1.70 (C10-H / C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 7.22 / 8.46, 7.75 (C13-H / C12-H, C14-H), 3.40 / 3.96, 2.61 (C3-H / C2-H, C3-H), 1.95 / 7.07 (C10-H / C7-H),

1.70 / 3.96 (C9-H / C2-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 8.46 / 146.6 (C12), 7.75 / 141.5 (C14), 7.07 / 125.0 (C7), 6.83 / 125.1 (C6), 6.75 / 125.6 (C5), 6.71 / 124.1 (C4), 3.96 / 37.7 (C2), 3.40 / 37.1 (C3), 2.61 / 37.1 (C3), 1.95 / 22.8 (C10), 1.70 / 24.4 (C9).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 8.46 / 146.6, 141.5, 124.3 (C12-H/ C12, C14, C13), 7.75 / 146.6 (C14-H / C12), 7.22 / 146.6, 124.3 (C13-H / C12, C13), 7.07 / 146.7, 125.6 (C7-H / C3a, C5), 6.83 / 144.1, 124.1 (C6-H / C7a, C4), 6.75 / 146.7, 125.0 (C5-H / C3a, C7), 6.71 / 144.1, 125.1 (C4-H / C7a, C6), 3.96 / 146.7, 144.1, 140.9 (C2-H / C3a, C7a, C1), 3.40 / 146.7 (C3-H / C3a), 2.61 / 146.7, 144.1, 140.8 (C3-H / C3a, C7a, C1), 1.95 / 140.9, 125.8, 24.4 (C10-H / C1, C8, C9), 1.70 / 140.9, 125.8, 22.8 (C9-H / C1, C8, C10).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): $δ^{13}$ C [ppm] = 146.7 (C3a), 146.6 (C12), 141.5 (C14), 144.1 (C7a), 140.9 (C1), 125.8 (C8), 125.6 (C5), 125.1 (C6), 125.0 (C7), 124.3 (C13), 124.1 (C4), 37.7 (br, C2), 37.1 (C3), 24.4 (C9), 22.8 (C10) [C₆F₅ not listed].

¹¹**B**{¹**H**} **NMR** (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = 0.7 ($v_{1/2} \approx 130$ Hz).

¹⁹**F NMR** (564 MHz, 299 K, CD₂Cl₂): δ [ppm] = -128.3, -129.0 (each br, each 2F, *o*-C₆F₅), -158.8, -159.8 (each t, ${}^{3}J_{FF}$ = 20.3 Hz, each 1F, *p*-C₆F₅), -164.2, -164.8 (each m, each 2F, *m*-C₆F₅).

Figure S4 ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compounds 9a,b.

Figure S5 ¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) of compounds 9a,b.

Figure S6 ¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂) and ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂) of compounds **9a,b**.

Crystals of **9a** suitable for the X-ray crystal structure analysis were obtained from a saturated solution of the obtained solid in benzene.

X-ray crystal structure analysis of compound 9a: formula $C_{29}H_{18}BF_{10}N \cdot 0.5 \times C_6H_6$, M = 620.31, colourless crystal, 0.18 x 0.15 x 0.12 mm, a = 19.9204(3), b = 14.3820(2), c = 18.9519(2) Å, V = 5429.6(1) Å³, $\rho_{calc} = 1.518$ gcm⁻³, $\mu = 0.136$ mm⁻¹, empirical absorption correction (0.976 $\leq T \leq 0.983$), Z = 8, orthorhombic, space group *P*bcn (No. 60), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 36449 reflections collected ($\pm h$, $\pm k$, $\pm l$), 5520 independent ($R_{int} = 0.043$) and 4202 observed reflections [$I > 2\sigma(I)$], 428 refined parameters, R = 0.046, $wR^2 = 0.108$, max. (min.) residual electron density 0.17 (-0.17) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Compounds 10a,b

Benzofulvene 7 (10.4 mg, 0.07 mmol, 1.0 equiv) was dissolved in CD_2Cl_2 (0.2 mL), cooled to -78 °C and added to a precooled suspension of $HB(C_6F_5)_2$ (23.0 mg, 0.07 mmol, 1.0 equiv) in CD_2Cl_2 (0.8 mL) using a NMR tube. The NMR tube was sealed and shaken carefully until a clear yellow solution was obtained.

After the reaction mixture was warmed to ambient temperature and kept for 3 hours at room temperature it was characterized by NMR experiments.

A mixture of isomers was observed (ratio ca. $4 : 1(^{1}H)$).

Major isomer assigned as compound 10a

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.51 (dm, ${}^{3}J_{HH}$ = 7.6 Hz, 1H, C7-H), 7.47 (d, ${}^{3}J_{HH}$ = 1.7 Hz, 1H, C2-H), 7.27 (t, ${}^{3}J_{HH}$ = 7.6 Hz, 1H, C6-H), 7.19 (tm, ${}^{3}J_{HH}$ = 7.6 Hz, 1H, C5-H), 7.05 (dm,

 ${}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, 1\text{H}, \text{C4-H}), 3.74 \text{ (dm, } {}^{3}J_{\text{HH}} = 4.4 \text{ Hz}, 1\text{H}, \text{C1-H}), 2.51 \text{ (septd, } {}^{3}J_{\text{HH}} = 6.9, 4.4 \text{ Hz}, 1\text{H}, \text{C8-H}), 1.15 \text{ (d, } {}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 3\text{H}, \text{C10-H})^{\text{t}}, 0.68 \text{ (d, } {}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 3\text{H}, \text{C9-H})^{\text{t}} [^{\text{t}} \text{ tentative assignment}].$

¹**H**, ¹**H** GCOSY (500 MHz / 500 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.51 / 7.27 (C7-H / C6-H), 7.27 / 7.19 (C6-H / C5-H), 7.19 / 7.05 (C5-H / C4-H), 3.74 / 2.51 (C1-H / C8-H), 2.51 / 1.15, 0.68, (C8-H / C10-H, C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 7.22 / 8.46, 7.75 (C13-H / C12-H, C14-H), 3.40 / 3.96, 2.61 (C3-H / C2-H, C3-H), 1.95 / 7.07 (C10-H / C7-H), 1.70 / 3.96 (C9-H / C2-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.51 / 124.1 (C7), 7.47 / 166.7 (C2), 7.27 / 126.3 (C6), 7.19 / 127.2 (C5), 7.05 / 121.8 (C4), 3.74 / 59.9 (C1), 2.51 / 31.4 (C8), 1.15 / 21.5 (C10), 0.68 / 18.2 (C9).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.51 / 145.3, 127.2, 59.9 (C7-H / C3a, C5, C1), 7.47 / 151.0, 147.3, 145.3, 59.9, 31.4 (C2-H / C3, C7a, C3a, C1, C8), 7.27 / 147.3, 121.8 (C6-H / C7a, C4), 7.19 / 145.3, 124.1 (C5-H / C3a, C7), 7.05 / 147.3, 126.3 (C4-H/ C7a, C6), 3.74 / 166.7, 151.0, 147.3, 31.4, 21.5, 18.2 (C1-H / C2, C3, C7a, C8, C10, C9), 2.51 / 166.7, 59.9, 21.5, 18.2 (C8-H / C2, C1, C10, C9), 1.15 / 59.9, 31.4, 18.2 (C10-H / C1, C8, C9), 0.68 / 59.9, 31.4, 21.5 (C9-H / C1, C8, C10).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 166.7 (C2), 151.0 (br, C3), 147.3 (C7a), 145.3 (C3a), 127.2 (C5), 126.3 (C6), 124.1 (C7), 121.8 (C4), 59.9 (C1), 31.4 (C8), 21.5 (C10)^t, 18.2 (C9)^t [C₆F₅ not listed; ^t tentative assignment].

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): δ [ppm] = 58.6 (v_{1/2} \approx 900 Hz).

¹⁹**F NMR** (470 MHz, 299 K, CD₂Cl₂): δ [ppm] = -129.0 (m, 2F, *o*-C₆F₅), -149.0 (tm, ${}^{3}J_{FF}$ = 19.9 Hz, 1F, *p*-C₆F₅), -161.8 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 12.8].

Minor isomer assigned as compound 10b

¹**H** NMR (500 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.50 (d, ³J_{HH} = 7.5 Hz, 1H, C4-H), 7.40 (dm, ³J_{HH} = 7.5 Hz, 1H, C7-H), 7.29 (tm, ³J_{HH} = 7.5 Hz, 1H, C6-H), 7.23 (tm, ³J_{HH} = 7.5 Hz, 1H, C5-H), 6.13 (s, 1H, C2-H), 5.13 (s, 1H, C3-H), 3.01 (septm, ³J_{HH} = 6.8 Hz, 1H, C8-H), 1.28 (d, ³J_{HH} = 6.9 Hz, 3H, C10-H)^t, 1.17 (d, ³J_{HH} = 6.9 Hz, 3H, C9-H)^t [^t tentative assignment].

¹**H**, ¹**H** GCOSY (500 MHz / 500 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.50 / 7.23 (C4-H / C5-H), 7.40 / 7.29 (C7-H / C6-H), 7.29 / 7.23 (C6-H / C5-H), 6.13 / 5.13 (C2-H / C3-H), 3.01 / 1.28, 1.17 (C8-H / C10-H, C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 7.40 / 3.01 (C7-H / C8-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.50 / 125.6 (C4), 7.40 / 120.8 (C7), 7.29 / 127.0 (C6), 7.23 / 126.1 (C5), 6.13 / 116.1 (C2), 5.13 / 55.9 (C3), 3.01 / 28.5 (C8), 1.28 / 21.9 (C10), 1.17 / 21.8 (C9).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.50 / 55.9 (C4-H / C3), 7.40 / 163.0, 144.6, 126.1 (C7-H / C1, C3a, C5), 7.29 / 145.5, 125.6 (C6-H / C7a, C4), 7.23 / 144.6, 120.8 (C5-H / C3a, C7), 6.13 / 163.0, 145.5, 144.6, 55.9, 28.5 (C2-H / C1, C7a, C3a, C3, C8),

 $5.13 / 163.0, 145.5, 116.1, 112.7 (C3-H / C1, C7a, C2, ipsoC_6F_5), 3.01 / 163.0, 145.5, 116.1, 21.9, 21.8 (C8-H / C1, C7a, C2, C10, C9), 1.28 / 163.0, 28.5, 21.8 (C10-H / C1, C8, C9), 1.17 / 163.0, 28.5, 21.9 (C9-H / C1, C8, C10).$

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 163.0 (C1), 145.5 (C7a), 144.6 (C3a), 127.0 (C6), 126.1 (C5), 125.6 (C4), 120.8 (C7), 116.1 (C2), 55.9 (br, C3), 28.5 (C8), 21.9 (C10)^t, 21.8 (C9)^t [C₆F₅ not listed; ^t tentative assignment].

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, CD₂Cl₂): δ [ppm] = 61.5 (v_{1/2} \approx 600 Hz).

¹⁹**F NMR** (470 MHz, 299 K, CD₂Cl₂): δ [ppm] = -128.4 (m, 2F, *o*-C₆F₅), -150.2 (tm, ${}^{3}J_{FF}$ = 20.1 Hz, 1F, *p*-C₆F₅), -162.9 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 12.7].

Figure S7 ¹H NMR (500 MHz, 299 K, CD₂Cl₂) of compounds **10a**,**b**.

Figure S8 ¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂) of compounds 10a,b.

Figure S9 ¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂) and ¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂) of compounds **10a,b**.

Compound 11a

Benzofulvene **7** (156.1 mg, 1.0 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (7.5 mL), cooled to -78 °C and added to a precooled (-78 °C) suspension of $HB(C_6F_5)_2$ (345.9 mg, 1.0 mmol, 1.0 equiv) in CH_2Cl_2 (7.5 mL). The reaction mixture was stirred for 20 minutes at -78 °C before warmed under rinsing water. The obtained yellow solution was stirred for 72 hours at ambient temperature. 'BuCN (83.1 mg, 1.0 mmol, 1.0 equiv) was added affording a colorless solution. After stirring for additional 2 hours all volatiles were removed *in vacuo*. The residue was extracted with pentane (4 × 2 mL). The

combined liquid phases were slowly evaporated over the course of several days to give compound **11a** as colorless crystals (110 mg, 0.19 mmol, 19%). The obtained crystals were suitable for the X-ray crystal structure analysis.

IR (KBr, selective wavenumbers): \tilde{v} [cm⁻¹] = 2377 (s, C=N).

Melting point (DSC): 154 °C.

Elemental analysis: calc. for C₂₉H₂₂BF₁₀N (585.30 g mol⁻¹): C, 59.51; H, 3.79; N, 2.39; Found: C, 59.76; H, 3.63; N (corr), 2.34.

¹**H** NMR (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.44 (m, 1H, C7-H), 7.14 (m, 2H, C6,5-H), 7.05 (m, 1H, C4-H), 6.05 (d, ³*J*_{HH} = 1.8 Hz, 1H, C2-H), 3.39 (dd, ³*J*_{HH} = 4.1, 1.8 Hz, 1H, C1-H), 2.35 (septd, ³*J*_{HH} = 6.8, 4.1 Hz, 1H, C8-H), 1.42 (s, 9H, C13-H), 1.05 (d, ³*J*_{HH} = 6.8 Hz, 1H, C9-H)^t, 0.61 (d, ³*J*_{HH} = 6.8 Hz, 3H, C10-H)^t [^t tentative assignment].

¹**H**, ¹**H** GCOSY (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.44 / 7.14, 7.05 (C7-H / C6-H, C5-H), 7.14 / 7.05 (C5-H / C4-H), 6.05 / 3.39 (C2-H / C1-H), 3.39 / 2.35 (C1-H / C8-H), 2.35 / 1.05, 0.61 (C8-H / C9-H, C10-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 7.44 / 3.39, 2.35, 1.05, 0.61 (C7-H / C1-H, C8-H, C9-H, C10-H), 6.05 / 3.39, 2.35, 1.05, 0.61 (C2-H / C1-H, C8-H, C9-H, C10-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.44 / 123.5 (C7), 7.14 / 126.1, 124.2 (C5, C6), 7.05 / 120.5 (C4), 6.05 / 141.8 (C2), 3.39 / 57.3 (C1), 2.35 / 30.9 (C8), 1.42 / 26.8 (C13), 1.05 / 21.6 (C9), 0.61 / 17.7 (C10).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.44 / 148.8, 126.1 (C7-H / C3a, C5), 7.14 / 148.9, 148.8, 123.5, 120.5 (C6,5-H / C7a, C3a, C7, C4), 7.05 / 148.9, 124.2 (C4-H / C7a, C6), 6.05 / 148.8, 147.0, 57.3 (C2-H / C3a, C3, C1), 3.39 / 148.9, 147.0, 141.8, 30.9, 21.6, 17.7 (C1-H / C7a, C3, C2, C8, C9, C10), 2.35 / 148.9, 141.8, 57.3, 21.6, 17.7 (C8-H / C7a, C2, C1, C9, C10), 1.42 / 121.3, 29.7, 26.8 (C13-H / C11, C12, C13), 1.05 / 57.3, 30.9, 17.7 (C9-H / C1, C8, C10), 0.61 / 57.3, 30.9, 21.6 (C10-H / C1, C8, C9).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 148.9 (C7a), 148.8 (C3a), 148.3 (dm, ¹*J*_{CF} ~ 240 Hz, C₆F₅), 147.0 (br, C3), 141.8 (C2), 140.3 (dm, ¹*J*_{CF} ~ 250 Hz, C₆F₅), 137.6 (dm, ¹*J*_{CF} ~ 250 Hz, C₆F₅), 126.1 (C5), 124.2 (C6), 123.5 (C7), 121.3 (br, C11), 120.5 (C4), 117.5 (br, ^{ipso}C₆F₅), 57.3 (C1), 30.9 (C8), 29.7 (C12), 26.8 (C13), 21.6 (C9)^t, 17.7 (C10)^t [^t tentative assignment].

¹¹**B**{¹**H**} **NMR** (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = -8.9 (v_{1/2} \approx 350 Hz).

¹⁹**F** NMR (564 MHz, 299 K, CD₂Cl₂): δ [ppm] = -133.9 (br, 2F, *o*-C₆F₅), -158.7 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 1F, *p*-C₆F₅), -164.7 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 6.0].

Figure S10 ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compound 11a.

Figure S11 ¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) of compound 11a.

Figure S12 ¹⁹F NMR (574 MHz, 299 K, CD₂Cl₂) and ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂) of compound **11a**.

X-ray crystal structure analysis of compound 11a: A colorless prism-like specimen of $C_{29}H_{22}BF_{10}N$, approximate dimensions 0.110 mm x 0.137 mm x 0.155 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 838 frames were collected. The total exposure time was 19.27 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 26792 reflections to a maximum θ angle of 68.39° (0.83 Å resolution), of which 9453 were independent (average redundancy 2.834, completeness = 99.7%, R_{int} = 3.88%, R_{sig} = 4.25%) and 8351 (88.34%) were greater than $2\sigma(F^2)$. The final cell constants of a = 10.3766(2) Å, b = 17.8561(4) Å, c = 15.0102(4) Å, $\beta = 106.5960(10)^{\circ}$, volume = 2665.32(11) Å³, are based upon the refinement of the XYZ-centroids of 9988 reflections above 20 σ (I) with 7.892° < 2 θ < 136.7°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.906. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8390 and 0.8820. The final anisotropic full-matrix least-squares refinement on F^2 with 750 variables converged at R1 = 3.19%, for the observed data and wR2 = 7.31% for all data. The goodness-of-fit was 1.035. The largest peak in the final difference electron density synthesis was 0.160 e⁻/Å³ and the largest hole was -0.158 e⁻/Å³ with an RMS deviation of 0.034 e⁻/Å³. On the basis of the final model, the calculated density was 1.459 g/cm³ and F(000), 1192 e⁻.

Compounds 11a,b

Benzofulvene 7 (15.6 mg, 0.1 mmol, 1.0 equiv) was dissolved in CD₂Cl₂ (0.4 mL), cooled to -78 °C and added to a precooled (-78 °C) suspension of HB(C₆F₅)₂ (34.6 mg, 0.1 mmol, 1.0 equiv) in CD₂Cl₂ (0.6 mL). The reaction mixture was warmed under rinsing water and kept at RT for 1.5 days. 'BuCN (8.6 mg, 0.1 mmol, 1.0 equiv) was added to the obtained light yellow solution resulting in decolorification. The reaction

mixture was subsequently characterized by NMR experiments.

A mixture of isomers was observed (ratio ca. $4 : 1(^{1}H)$).

The NMR data of the major isomer are consistent to those listed for compound 11a (see above).

Minor isomer assigned as compound 11b

¹**H** NMR (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.41 (dt, ³J_{HH} = 7.6 Hz, ⁴J_{HH} = 0.9 Hz, 1H, C7-H), 7.22 (td, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.0 Hz, 1H, C6-H), 7.03 (td, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C5-H), 6.81 (d, ³J_{HH} = 7.6 Hz, 1H, C4-H), 6.23 (s, 1H, C2-H), 4.12 (br s, 1H, C3-H), 2.97 (septt, ³J_{HH} = 6.8 Hz, J = 1.1 Hz, 1H, C8-H), 1.40 (s, 9H, C13-H)^t, 1.29 (d, ³J_{HH} = 6.8 Hz, 3H, C9-H)^t, 1.26 (d, ³J_{HH} = 6.8 Hz, 3H, C10-H)^t [^t tentative assignment]. ¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.41 / 7.22 (C7-H / C6-H), 7.22 / 7.03 (C6-H / C5-H), 7.03 / 6.82 (C5-H / C4-H), 6.23 / 4.12 (C2-H / C3-H), 2.97 / 1.29, 1.26 (C8-H / C9-H, C10-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 2.97 / 7.41, 6.23, 1.29, 1.26 (C8-H / C7-H, C2-H, C9-H, C10-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.41 / 119.2 (C7), 7.22 / 125.3 (C6), 7.03 / 124.3 (C5), 6.81 / 123.5 (C4), 6.23 / 133.3 (C2), 4.12 / 45.2 (C3), 2.97 / 27.3 (C8), 1.40 / 27.5 (C13), 1.29 / 22.2 (C9), 1.26 / 22.9 (C10).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.41 / 150.1, 124.3 (C7-H / C3a, C5), 7.22 / 145.7, 123.5 (C6-H / C7a, C4), 7.03 / 150.1, 119.2 (C5-H / C3a, C7), 6.81 / 145.7, 125.3 (C4-H / C7a, C6), 6.23 / 150.1, 148.6, 145.7, 45.2, 27.3 (C2-H / C3a, C1, C7a, C3, C8), 4.12 / 150.1, 148.6, 133.3 (C3-H / C3a, C1, C2), 2.97 / 148.6, 145.7, 133.3, 22.9, 22.2 (C8-H / C1, C7a, C2, C10, C9), 1.40 / 29.2, 27.5 (C13-H / C12, C13), 1.29 / 148.6, 27.3, 22.9 (C9-H / C1, C8, C10), 1.26 / 148.6, 27.3, 22.2 (C10-H / C1, C8, C9).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 150.1 (C3a), 148.6 (C1), 145.7 (C7a), 133.3 (C2), 125.3 (C6), 124.3 (C5), 123.5 (C4), 119.2 (C7), 45.2 (br, C3), 29.2 (C12)^t, 27.5 (br, C13)^t, 27.3 (C8), 22.9 (C10)^t, 22.2 (C9)^t [C11, C₆F₅ not listed; ^t tentative assignment].

¹¹**B**{¹**H**} **NMR** (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = -7.9 (v_{1/2} \approx 150 Hz).

¹⁹**F** NMR (574 MHz, 299 K, CD₂Cl₂): δ [ppm] = -135.0 (m, 2F, *o*-C₆F₅), -157.3 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F, *p*-C₆F₅), -164.4 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 7.1].

Figure S13 ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compounds 11a,b.

Figure S14 ¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) of compounds 11a,b.

Figure S15 ¹⁹F NMR (574 MHz, 299 K, CD₂Cl₂) and ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂) of compounds **11a,b**.

Compounds 12a,b

Benzofulvene **7** (52.1 mg, 0.33 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (1.0 mL), cooled to -78 °C and added to a precooled (-78 °C) suspension of $HB(C_6F_5)_2$ (115.3 mg, 0.33 mmol, 1.0 equiv) in CH_2Cl_2 (4.0 mL). The reaction mixture was stirred for 20 minutes at -78 °C before warmed under rinsing water. The obtained yellow solution was stirred for 14 hours at ambient temperature. 4-Dimethylaminopyridine (40.7 mg, 0.33 mmol,

1.0 equiv) was added giving a colorless solution. After stirring for 1.5 hours at RT the reaction mixture was concentrated *in vacuo*. The obtained residue was dissolved in a small amount of toluene (0.3 mL) and triturated by stirring with pentane (5 mL) to give a white solid in 58% yield after drying *in vacuo* (120 mg, 0.19 mmol) in a ratio of approx. 4 : 1 for **12a** : **12b**.

Elemental analysis (solid): calc. for $C_{31}H_{23}BF_{10}N_2$ (624.33 g mol⁻¹): C, 59.64; H, 3.71; N, 4.49; Found: C, 58.57; H, 3.52; N, 4.55.

Major isomer assigned as compound 12a

¹**H NMR** (600 MHz, 299 K, C₆D₆): δ [ppm] = 7.95 (d, ³J_{HH} = 7.7 Hz, 2H, C11-H), 7.38 (dm, ³J_{HH} = 7.5 Hz, 1H, C7-H), 7.34 (d, ³J_{HH} = 7.2 Hz, 1H, C4-H), 7.18 (td, ³J_{HH} = 7.2 Hz, ⁴J_{HH} = 1.4 Hz, 1H, C5-H), 7.09 (td, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.0 Hz, 1H, C6-H), 6.68 (br s, 1H, C2-H), 5.38 (d, ³J_{HH} = 7.7 Hz, 2H, C12-H), 3.55 (dd, ³J_{HH} = 4.1, *J* = 1.9 Hz, 1H, C1-H), 2.35 (septd, ³J_{HH} = 6.8, 4.1 Hz, 1H, C8-H), 1.81 (s, 6H, C14-H), 1.14 (d, ³J_{HH} = 6.8 Hz, 1H, C9-H)^t, 0.81 (d, ³J_{HH} = 6.8 Hz, 3H, C10-H)^t [^t tentative assignment].

¹**H**, ¹**H** GCOSY (600 MHz / 600 MHz, 299 K, C₆D₆): δ [ppm] / δ [ppm] = 7.95 / 5.38 (C11-H / C12-H), 7.38 / 7.09, 3.55 (C7-H / C6-H, C1-H), 7.34 / 7.18 (C4-H / C5-H), 7.18 / 7.09 (C5-H / C6-H), 6.68 / 3.55 (C2-H / C1-H), 5.38 / 1.81 (C12-H / C14-H), 3.55 / 2.35 (C1-H / C8-H), 2.35 / 1.14, 0.81 (C8-H / C9-H, C10-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, C₆D₆): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.95 / 146.0 (C11), 7.38 / 123.4 (C7), 7.34 / 121.7 (C4), 7.18 / 126.5 (C5), 7.09 / 124.1 (C6), 6.68 / 141.2 (C2), 5.38 / 105.8 (C12), 3.55 / 57.5 (C1), 2.35 / 31.1 (C8), 1.81 / 38.1 (C14), 1.14 / 21.8 (C9), 0.81 / 17.8 (C10).

¹**H**,¹³**C GHMBC** (500 MHz / 151 MHz, 299 K, C₆D₆): δ¹H [ppm] / δ¹³C [ppm] = 7.95 / 155.0, 146.0 105.8 (C11-H / C13, C11, C12), 7.38 / 149.7, 126.5, 57.5 (C7-H / C3a, C5, C1), 7.34 / 148.9, 124.1 (C4-H / C7a, C6), 7.18 / 149.7, 123.4 (C5-H / C3a, C7), 7.09 / 148.9, 121.7 (C6-H / C7a, C4), 6.68 / 149.4, 57.5 (C2-H / C3, C1), 5.38 / 146.0, 105.8 (C12-H / C11, C12), 3.55 / 148.9, 31.1, 21.8, 17.8 (C1-H / C7a, C8, C10, C9), 2.35 / 148.9, 57.5, 21.8, 17.8 (C8-H / C7a, C1, C9, C10), 1.81 / 155.0, 38.1 (C14-H / C13, C14), 1.14 / 57.5, 31.1, 17.8 (C9-H / C1, C8, C10), 0.81 / 57.5, 31.1, 21.8 (C10-H / C1, C8, C9). ¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ¹³C [ppm] = 155.0 (C13), 149.7 (C3a), 149.4 (br, C3)^t, 148.9 (C7a), 146.0 (C11), 141.2 (C2), 126.5 (C5), 124.1 (C6), 123.4 (C7), 121.7 (C4), 105.8 (C12), 57.5 (C1), 38.1 (C13), 31.1 (C8), 21.8 (C9)^t, 17.8 (C10)^t [C₆F₅ not listed; ^t tentative assignment]. ¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆): δ [ppm] = -3.7 (v_{1/2} \approx 270 Hz). ¹⁹F NMR (574 MHz, 299 K, C₆D₆): δ [ppm] = -130.4 (br, 4F, *o*-C₆F₅), -158.3 (t, ³J_{FF} = 20.8 Hz, 1F, *p*-

 $[\Delta \delta^{19} F_{m,p} = 5.8^{a}, 5.7^{b}].$

Minor isomer assigned as compound 12b

The quality of the obtained NMR data from the crystalline material was not sufficient for a complete assignment of the signals of the minor isomer. Therefore it was characterized by selected key resonances (see below).

Figure S16 ¹H NMR (600 MHz, 299 K, C₆D₆) of compounds 12a,b (white solid).

Figure S17 $^{13}C\{^{1}H\}$ NMR (151 MHz, 299 K, $C_6D_6)$ of compounds 12a,b (white solid).

Figure S18 ¹¹B{¹H} NMR (192 MHz, 299 K, C_6D_6) and ¹⁹F NMR (574 MHz, 299 K, C_6D_6) of compounds **12a,b** (white solid).

Crystals suitable for the X-ray crystal structure analysis of compound **12b** were obtained from a solution of the white solid in benzene.

Minor isomer assigned as compound 12b

Melting point (crystals): 270 °C.

¹**H** NMR (600 MHz, 299 K, CD₂Cl₂) [selected resonances]: δ [ppm] = 6.23 (s, 1H, C2-H), 4.49 (s, 1H, C3-H), 3.02 (s, 6H, C14-H), 2.66 (sept, ³*J*_{HH} = 6.9 Hz, 1H, C8-H), 1.12 (d, ³*J*_{HH} = 6.9 Hz, 1H, C9-H)^t, 0.92 (d, ³*J*_{HH} = 6.9 Hz, 3H, C10-H)^t [aromatic signals excluded; ^t tentative assignment].

¹**H**,¹**H** GCOSY (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 6.23 / 4.49 (C2-H / C3-H), 2.66 / 1.12, 0.92 (C8-H / C9-H, C10-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂) [selected traces]: δ^{1} H [ppm] / δ^{13} C [ppm] = 3.02 / 39.7 (C14), 1.12 / 21.8 (C10), 0.92 / 22.0 (C9).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂) [selected traces]: δ^{1} H [ppm] / δ^{13} C [ppm] = 3.02 / 155.6, 39.7 (C14-H / C13, C14), 1.12 / 147.5, 27.0, 22.0 (C10-H / C1, C8, C9), 0.92 / 147.5, 27.0, 21.8 (C9-H / C1, C8, C10).

¹³C NMR (151 MHz, 299 K, CD₂Cl₂) [selected resonances]: δ [ppm] = 155.6 (C13), 147.5 (C1), 39.7 (C14), 27.0 (C8), 22.0 (C9), 21.8 (C10).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = -1.9 ($v_{1/2} \approx 84$ Hz).

¹⁹**F NMR** (574 MHz, 299 K, CD₂Cl₂): δ [ppm] = -130.0 (br, 2F, *o*-C₆F₅), -160.0 (br, 1F, *p*-C₆F₅), -164.5 (br, 2F, *m*-C₆F₅) [Δδ¹⁹F_{p,m} = 4.5].

Figure S19 ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compounds 12a,b (crystalline material).

Figure S20 ¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) of compounds 12a,b (crystalline material).

Figure S21 ¹¹B{¹H} NMR (192 MHz, 299 K, CD_2Cl_2) and ¹⁹F NMR (574 MHz, 299 K, CD_2Cl_2) of compounds 12a,b (crystalline material).

X-ray crystal structure analysis of compound 12b: A colorless prism-like specimen of $C_{31}H_{23}BF_{10}N_2 \cdot C_6H_6$, approximate dimensions 0.133 mm x 0.172 mm x 0.250 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1390 frames were collected. The total exposure time was 19.77 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic

unit cell yielded a total of 48107 reflections to a maximum θ angle of 68.31° (0.83 Å resolution), of which 5954 were independent (average redundancy 8.080, completeness = 99.8%, R_{int} = 3.62%, R_{sig} = 2.01%) and 5280 (88.68%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 14.5937(4) Å, <u>b</u> = 15.5767(5) Å, <u>c</u> = 15.1672(4) Å, β = 109.2890(10)°, volume = 3254.29(16) Å³, are based upon the refinement of the XYZ-centroids of 9780 reflections above 20 $\sigma(I)$ with 8.388° < 2 θ < 136.4°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.916. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7760 and 0.8710. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1$ /c, with Z = 4 for the formula unit, C₃₇H₂₉BF₁₀N₂. The final anisotropic full-matrix least-squares refinement on F² with 454 variables converged at R1 = 4.15%, for the observed data and wR2 = 11.11% for all data. The goodness-of-fit was 1.023. The largest peak in the final difference electron density synthesis was 0.626 e⁻/Å³ and the largest hole was -0.321 e⁻/Å³ with an RMS deviation of 0.043 e⁻/Å³. On the basis of the final model, the calculated density was 1.434 g/cm³ and F(000), 1440 e⁻.

Compound 14 [LiHTMP]

Benzofulvene **7** (312 mg, 2.0 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (10.0 mL) and cooled to -78 °C. $HB(C_6F_5)_2$ (692 mg, 2.0 mmol, 1.0 equiv) was suspended in CH_2Cl_2 (20.0 mL) and cooled to -78 °C. Then the benzofulvene solution was added to the $HB(C_6F_5)_2$ suspension by using a canula. The reaction mixture was

stirred for 20 minutes at -78 °C before warmed under rinsing water. The obtained yellow solution was stirred for 14 hours at ambient temperature. Toluene (70 mL) was added. Subsequently, the reaction volume was reduced to a total volume of 20 ml. Solid LiTMP **13** (294 mg, 2.0 mmol, 1.0 equiv) was

added. After two hours stirring at RT the lithium amide slowly dissolved. All volatiles were removed *in vacuo*. The obtained residue was suspended in pentane (10 mL). The suspension was filtrated. The filtrate was concentrated *in vacuo* and dissolved in a small amount of pentane (2.0 mL). Standing for an hour at ambient temperature resulted in precipitation. The yellow precipitate was filtrated, washed with pentane (2×1 mL) and dried *in vacuo* to give compound **14** [LiHTMP] in 67% yield (872 mg, 1.34 mmol).

IR (KBr, selective wavenumbers): \tilde{v} [cm⁻¹] = 3266 (w, NH).

Melting point (DSC): 160 °C.

Elemental analysis: calc. for C₃₃H₃₁BF₁₀LiN (649.35 g mol⁻¹): C, 61.04; H, 4.81; N, 2.16; Found: C, 60.52; H, 4.61; N, 2.61 N (corr.), 2.21.

¹**H** NMR (600 MHz, 299 K, C₆D₆): δ [ppm] = 7.61 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 1H, C4-H), 7.47 (dt, ${}^{3}J_{HH}$ = 8.0 Hz, ${}^{4}J_{HH}$ = 1.0 Hz, 1H, C7-H), 7.12 (ddd, ${}^{3}J_{HH}$ = 8.0, 7.0, ${}^{4}J_{HH}$ = 1.1 Hz, 1H, C6-H), 7.07 (ddd, ${}^{3}J_{HH}$ = 8.0, 7.0, ${}^{4}J_{HH}$ = 1.0 Hz, 1H, C5-H), 6.92 (s, 1H, C2-H), 3.02 (septd, ${}^{3}J_{HH}$ = 6.8 Hz, *J* = 0.5 Hz, 1H, C8-H), 1.27 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, C9-H), 1.01 (br, 2H, C33-H), 0.65 (br, 4H, C32-H), 0.44 (br, 12H, C36-H), 0.05 (br, 1H, N-H).

¹**H**, ¹**H** GCOSY (600 MHz / 600 MHz, 299 K, C₆D₆): δ [ppm] / δ [ppm] = 7.61 / 7.07 (C4-H / C5-H), 7.47 / 7.12 (C7-H / C6-H), 7.12 / 7.07 (C6-H / C5-H), 3.02 / 1.27 (C8-H / C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, C₆D₆) [selected traces]: δ [ppm] / δ [ppm] = 1.27 / 7.47, 6.92, 3.02 (C9-H / C7-H, C2-H, C8-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, C₆D₆): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.61 / 123.0 (C4), 7.47 / 120.3 (C7), 7.12 / 123.2 (C6), 7.07 / 123.9 (C5), 6.92 / 124.6 (C2), 3.02 / 27.1 (C8), 1.27 / 22.9 (C9), 1.01 / 17.2 (C33), 0.65 / 37.1 (C32).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, C₆D₆): δ¹H [ppm] / δ¹³C [ppm] = 7.61 / 136.1, 123.2 (C4-H / C7a, C6), 7.47 / 137.2, 123.9 (C7-H / C3a, C5), 7.12 / 136.1, 123.0 (C6-H / C7a, C4), 7.07 / 137.2, 120.3 (C5-H / C3a, C7), 6.92 / 137.2, 136.1, 115.6 (C2-H / C3a, C7a, C3), 3.02 / 136.2, 124.6, 22.9 (C8-H / C1, C2, C9), 1.27 / 136.2, 27.1, 22.9 (C9-H / C1, C8, C9).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ^{13} C [ppm] = 137.2 (C3a), 136.2 (C1), 136.1 (C7a), 124.6 (C2), 123.9 (C5), 123.2 (C6), 123.0 (C4), 120.3 (C7), 115.6 (br, C3), 50.4 (C31)^t, 37.1 (C32), 32.3 (br, C36)^t, 27.1 (C8), 22.9 (C9), 17.2 (C33) [C₆F₅ not listed; ^t tentative assignment].

⁷Li NMR (233 MHz, 299 K, C₆D₆): δ [ppm] = -4.8 ($v_{1/2} \approx 80$ Hz).

¹¹**B**{¹**H**} **NMR** (192 MHz, 299 K, C₆D₆): δ [ppm] = 38.1 ($v_{1/2} \approx 1000$ Hz).

¹⁹**F** NMR (564 MHz, 299 K, C₆D₆): δ [ppm] = -132.3 (br, 4F, *o*-C₆F₅), -154.73, -154.74 (each t, ${}^{3}J_{FF}$ = 20.5 Hz, each 1F, *p*-C₆F₅), -162.4 (br, 4F, *m*-C₆F₅) [Δδ¹⁹F_{m,p} = 7.7].

Figure S22 ¹H NMR (600 MHz, 299 K, C₆D₆) of compound 14 [LiHTMP].

Figure S23 ¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆) of compound 14 [LiHTMP].

Figure S24 ⁷Li NMR (233 MHz, 299 K, C₆D₆), ¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆) and ¹⁹F NMR (574 MHz, 299 K, C₆D₆) of compound **14** [LiHTMP].

Figure S25 Stacked ¹H NMR (600 MHz, 299 K) of compound **14** [LiHTMP]: C₆D₆ (above), toluene-d₈ (below).

Figure S26 Variable temperature ¹⁹F NMR (574 MHz, C₇D₈) of 14 [LiHTMP].

 $\Delta G^{\neq} = RT_c(22.96 + \ln(T_c/\Delta v) \text{ [J mol}^{-1}\text{]}; R = 8.314 \text{ J} \text{ (mol K)}^{-1}; 1 \text{ cal} = 4.187 \text{ J}.$

¹⁹**F NMR** (574 MHz, C₆D₆): $δ^{19}$ F(*o*-C₆F₅, 333K): -132.3 (br, 2F); $δ^{19}$ F(*o*-C₆F₅, 273K): -130.1, -133.9 (each br, each 1F): $ΔG^{≠}$ (ortho, T_c = 273 K; Δv(273K) = 2100 Hz) = 11.0 kcal/mol.

¹⁹**F NMR** (574 MHz, C₆D₆): δ¹⁹F(*m*-C₆F₅, 333K): -162.8 (br, 2F); δ¹⁹F(*m*-C₆F₅, 253K): -161.2, -163.3 (each br, each 1F): ΔG[≠](meta, T_c = 263 K; Δν(253K) = 1270 Hz) = 11.2 kcal/mol.

Figure S27 Variable temperature ¹⁹F NMR (574 MHz, C₇D₈) [selected area: *para*-F] of compound **14** [LiHTMP].

Crystals suitable for the X-ray crystal structure analysis could be grown from a saturated solution of 14[LiHTMP] in pentane at -32 °C.

X-ray crystal structure analysis of compound 14 [LiHTMP]: formula $C_{33}H_{31}BF_{10}LiN$, M = 649.34, colourless crystal, 0.20 x 0.18 x 0.05 mm, a = 10.6418(3), b = 17.7550(4), c = 16.8933(4) Å, $\beta = 93.934(1)^{\circ}$, V = 3184.4(1) Å³, $\rho_{calc} = 1.354$ gcm⁻³, $\mu = 0.118$ mm⁻¹, empirical absorption correction (0.976 $\leq T \leq 0.994$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 17877 reflections collected ($\pm h$, $\pm k$, $\pm l$), 5530 independent ($R_{int} = 0.065$) and 3260 observed reflections [$I > 2\sigma(I)$], 425 refined parameters, R = 0.087, $wR^2 = 0.173$, max. (min.) residual electron density 0.23 (-0.19) e.Å⁻³, the hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

Compound 14 [Ph₃PNPPh₃]

Borata-alkene **14** [LiHTMP] (129.9 mg, 0.2 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (2.0 mL) and added to a solution of triphenylphosphanylidene ammonium chloride (114.8 mg, 0.2 mmol, 1.0 equiv) in CH_2Cl_2 (1.0 mL). The yellow reaction mixture was

stirred for 3.5 hours before concentrated *in vacuo*. The residue was coevaporated from pentane (5.0 mL) and extracted with toluene (10 x 3.0 mL). The combined liquid layers were concentrated *in vacuo* to a total volume of ca. 2 mL resulting in a liquid-liquid layer separation after storage at -32 °C overnight. The upper layer was dried *in vacuo* and the sticky residue was suspended in pentane (2.0 mL) resulting in precipitation of a yellow solid. The solution of the suspension was decanted, the residue was washed with pentane (2 x 1.0 mL) and dried *in vacuo* to give compound **14** [Ph₃PNPPh₃] as a yellow solid (48%, 100 mg, 0.10 mmol).

Melting point: 134 °C.

¹**H** NMR (500 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.63 (t, ³*J*_{HH} = 7.0 Hz, 6H, C34-H), 7.49 (m, 12H, C32-H), 7.45 (m, 12H, C33-H), 7.28 (d, ³*J*_{HH} = 7.5 Hz, 1H, C7-H), 7.05 (d, ³*J*_{HH} = 7.6 Hz, 1H, C4-H), 6.81 (dd, ³*J*_{HH} = 7.5, 7.2 Hz, 1H, C6-H), 6.67 (dd, ³*J*_{HH} = 7.6, 7.2 Hz, 1H, C5-H), 6.55 (s, 1H, C2-H), 3.07 (sept, ³*J*_{HH} = 6.8 Hz, 1H, C8-H), 1.28 (d, ³*J*_{HH} = 6.8 Hz, 3H, C9-H)^t, 1.27 (d, ³*J*_{HH} = 6.8 Hz, 3H, C10-H)^t [^t tentative assignment].

¹**H**, ¹**H GCOSY** (500 MHz / 500 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.63 / 7.45 (C34-H / C33-H), 7.49 / 7.45 (C32-H / C33-H), 7.28 / 6.81 (C7-H / C6-H), 7.05 / 6.67 (C4-H / C5-H), 6.81 / 6.67 (C6-H / C5-H), 3.07 / 1.28, 1.27 (C8-H / C9-H, C10-H).

¹**H NOESY** (500 MHz / 500 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 7.28 / 6.81, 3.07, 1.27 (C7-H / C6-H, C8-H, C10-H), 7.05 / 6.67 (C4-H / C5-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.63 / 134.1 (C34), 7.49 / 132.5 (C32), 7.45 / 129.8 (C33), 7.28 / 117.3 (C7), 7.05 / 120.4 (C4), 6.81 / 118.9 (C6), 6.67 / 119.3 (C5), 6.55 / 128.6 (C2), 3.07 / 27.3 (C8), 1.28, 1.27 / 23.5 (C9,10).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.63 / 132.5 (C34-H / C32), 7.49 / 134.1, 132.5 (C32-H / C34, C32), 7.45 / 129.8, 127.4 (C33-H / C33, C31), 7.28 / 143.0, 119.3 (C7-H / C3a, C5), 7.05 / 139.8, 118.9 (C4-H / C7a, C6), 6.81 / 139.8, 120.4 (C6-H / C7a, C4), 6.67 / 143.0, 117.3 (C5-H / C3a, C7), 6.55 / 143.0, 139.8, 133.8, 124.3 (C2-H / C3a, C7a, C1, C3), 3.07 / 133.8, 128.6, 23.5 (C8-H / C1, C2, C9,10), 1.28, 1.27 / 133.8, 27.3, 23.5 (C9-H, C10-H / C1, C8, C9/10).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ [ppm] = 143.0 (C3a), 139.8 (C7a), 134.1 (AA'X, C34), 133.8 (C1), 132.5 (AA'X, C32), 129.8 (AA'X, C33), 128.6 (C2), 127.4 (dd, ¹*J*_{PC} = 108 Hz, *J* = 1.9 Hz, C31), 124.3 (br, C3), 120.4 (C4), 119.3 (C5), 118.9 (C6), 117.3 (C7), 27.3 (C8), 23.5 (C9,10) [C₆F₅ not listed; ^t tentative assignment].

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): δ [ppm] = 30.3 (v_{1/2} \approx 580 Hz).

³¹**P**{¹**H**} **NMR** (202 MHz, 299 K, CD₂Cl₂): δ [ppm] = 21.0 (v_{1/2} \approx 2 Hz).

¹⁹**F NMR** (470 MHz, 299 K, CD₂Cl₂): δ [ppm] = -131.5 (m, 2F, *o*-C₆F₅^b), -140.0 (m, 2F, *o*-C₆F₅^a), -161.1 (t, ${}^{3}J_{FF} = 20.1$ Hz, 1F, *p*-C₆F₅^a), -161.2 (t, ${}^{3}J_{FF} = 20.1$ Hz, 1F, *p*-C₆F₅^b), -165.5 (m, 2F, *m*-C₆F₅^a), -165.9 (m, 2F, *m*-C₆F₅^b) [Δδ¹⁹F_{m,p} = 4.4^a, 4.7^b].

¹⁹**F**, ¹⁹**F GCOSY** (470 MHz / 470 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = -131.5 / -165.9 (*o*-C₆F₅^b / *m*-C₆F₅^b), -140.0 / -165.5 (*o*-C₆F₅^a / *m*-C₆F₅^a), -161.1 / -165.5 (*p*-C₆F₅^a / *m*-C₆F₅^a), -161.2 / -165.9 (*p*-C₆F₅^b / *m*-C₆F₅^b).

Figure S28 ¹H NMR (500 MHz, 299 K, CD₂Cl₂) of compound 14 [Ph₃PNPPh₃].

Figure S29 ¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂) of compound 14 [Ph₃PNPPh₃].

Figure S30 ¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂), ³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂) and ¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂) of compound **14** [Ph₃PNPPh₃].

Crystals suitable for the X-ray crystal structure analysis were obtained by diffusion of pentane into of a saturated solution of compound **14** [Ph₃PNPPh₃] in toluene at RT.

X-ray crystal structure analysis of compound 14 [Ph₃PNPPh₃]: A yellow plate-like specimen of C₆₀H₄₂BF₁₀NP₂, approximate dimensions 0.057 mm x 0.110 mm x 0.173 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1732 frames were collected. The total exposure time was 21.65 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 109452 reflections to a maximum θ angle of 26.37° (0.80 Å resolution), of which 10126 were independent (average redundancy 10.809, completeness = 99.9%, R_{int} = 6.63%, R_{sig} = 2.99%) and 8374 (82.70%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.8291(3) Å, <u>b</u> = 27.4015(7) Å, <u>c</u> = 18.7176(6) Å, β = 100.5170(10)°, volume = 4956.6(3) Å³, are based upon the refinement of the XYZ-centroids of 9921 reflections above 20 σ (I) with 5.106° < 2 θ < 55.07°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.950. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9720 and 0.9910. The final anisotropic fullmatrix least-squares refinement on F^2 with 669 variables converged at R1 = 4.10%, for the observed data and wR2 = 9.01% for all data. The goodness-of-fit was 1.077. The largest peak in the final difference electron density synthesis was 0.368 e⁻/Å³ and the largest hole was -0.366 e⁻/Å³ with an RMS deviation of 0.053 e⁻/Å³. On the basis of the final model, the calculated density was 1.393 g/cm³ and F(000), 2136 e⁻.

Compound 15a [LiC₇D₈]

Compound 14 [LiHTMP] (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in toluene-d₈ (0.8 mL) and added to a suspension of HB(C₆F₅)₂ (17.3 mg, 0.05 mmol, 1.0 equiv) in toluene-d₈ (0.2 mL) at RT. Within 5 minutes a clear yellow solution was obtained. *In situ* NMR studies revealed the formation of two species in a ratio of approximately 2 : 3. Upon standing for 1 day at RT colorless crystals were obtained to

give compound **15a** [LiC₇D₈] in 34% yield (16.1 mg, 0.02 mmol). The crystals were suitable for the X-ray crystal structure analysis and used in the following characterization of compound **15a** [LiC₇D₈].

Melting point: 94 °C.

Elemental analysis: calc. for C₄₃H₂₁B₂F₂₀Li (954.22g mol⁻¹): C, 54.59; H, 2.24; Found: C, 54.48; H, 2.58.

¹**H NMR** (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.75 (dt, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 0.9 Hz, 1H, C7-H), 7.38 (ddd, ³*J*_{HH} = 8.0, 7.1 Hz, ⁴*J*_{HH} = 0.9 Hz, 1H, C6-H), 6.95 (ddd, ³*J*_{HH} = 8.1, 7.1 Hz, ⁴*J*_{HH} = 1.0 Hz, 1H, C5-H), 6.52 (s, 1H, C2-H), 6.04 (dt, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HH} = 0.9 Hz, 1H, C4-H), 3.92 (br, 1H, B1-H-B2), 3.22 (sept, ³*J*_{HH} = 6.8 Hz, 1H, C8-H), 1.36 (d, ³*J*_{HH} = 6.8 Hz, 6H, C9-H).

¹**H**, ¹**H** GCOSY (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.75 / 7.38 (C7-H / C6-H), 7.38 / 6.95 (C6-H / C5-H), 6.95 / 6.04 (C5-H / C4-H), 3.22 / 1.36 (C8-H / C9-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 1.36 / 7.75, 6.52, 3.22 (C9-H / C7-H, C2-H, C8-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.75 / 121.9 (C7), 7.38 / 125.8 (C6), 6.95 / 125.2 (C5), 6.52 / 140.4 (C2), 6.04 / 123.8 (C4), 3.22 / 27.2 (C8), 1.36 / 22.5 (C9).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.75 / 148.1, 125.2 (C7-H / C3a, C5), 7.38 / 138.4, 123.8 (C6-H / C7a, C4), 6.95 / 148.1, 121.9 (C5-H / C3a, C7), 6.52 / 148.1, 141.6, 138.4, 40.8 (C2-H / C3a, C1, C7a, C3), 6.04 / 138.4, 125.8 (C4-H / C7a, C6), 3.22 / 141.6, 140.4, 22.5 (C8-H / C1, C2, C9), 1.36 / 141.6, 27.2, 22.5 (C9-H / C1, C8, C9).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 148.1 (C3a), 141.6 (C1), 140.4 (C2), 138.4 (C7a), 125.8 (C6), 125.2 (C5), 123.8 (C4), 121.9 (C7), 40.8 (br, C3), 27.2 (C8), 22.5 (br, C9) [C₆F₅ not listed].

⁷Li NMR (233 MHz, 299 K, CD₂Cl₂): δ [ppm] = -4.0 (v_{1/2} \approx 30 Hz).

⁷Li NMR (233 MHz, 195 K, CD₂Cl₂): δ [ppm] = -4.2 (dd, ¹*J*_{LiF} = 41.4, 35.7 Hz).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): δ [ppm] = -15.8, -17.1 (v_{1/2} \approx 300 Hz).

¹⁹**F** NMR (564 MHz, 195 K, CD₂Cl₂): δ [ppm] = -126.0 (1F), -127.3 (2F), -128.1 (1F), -130.2 (2F), -146.6 (2F)(each br m, *o*-C₆F₅), -153.6 (t, ³J_{FF} = 20.4 Hz), -154.1 (t, ³J_{FF} = 18.3 Hz), -156.5 (t, ³J_{FF} = 21.4 Hz), -156.7 (t, ³J_{FF} = 21.2 Hz)(each 1F, *p*-C₆F₅), -158.6 (1F), -158.9 (1F), -161.4 (2F), -163.4 (1F), -163.9 (2F), -164.1 (1F)(each br m, *m*-C₆F₅).

Figure S31 ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of crystalline compound 15a [LiC₇D₈].

Figure S32 ¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) of crystalline compound 15a [LiC₇D₈].

Figure S33 ⁷Li NMR (233 MHz, CD₂Cl₂): 299 K (above), 195 K (below) and ⁷Li{sel¹⁹F: δ [ppm] = -146.6} NMR (233 MHz, 195 K, CD₂Cl₂) (middle) of crystalline compound **15a** [LiC₇D₈].

Figure S34 ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂) and ¹⁹F NMR (574 MHz, 195 K, CD₂Cl₂) of crystalline compound 15a [LiC₇D₈].

X-ray crystal structure analysis of compound 15a: A colorless prism-like specimen of $C_{43}H_{21}B_2F_{20}L_i$, approximate dimensions 0.100 mm x 0.160 mm x 0.180 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 2128 frames were collected. The total exposure time was 14.27 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 29810 reflections to a maximum θ angle of 62.58° (0.87 Å resolution), of which 6061 were independent (average redundancy 4.918, completeness = 97.3%, R_{int} = 7.72%, R_{sig} = 5.47%) and 4420 (72.93%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.4396(4) Å, <u>b</u> = 10.5005(4) Å, $\underline{c} = 19.6063(7)$ Å, $\alpha = 91.665(2)^{\circ}$, $\beta = 101.678(2)^{\circ}$, $\gamma = 111.232(2)^{\circ}$, volume = 1949.53(13) Å³, are based upon the refinement of the XYZ-centroids of 4534 reflections above 20 $\sigma(I)$ with $9.092^{\circ} < 2\theta < 124.7^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.831. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7830 and 0.8700. The final anisotropic full-matrix least-squares refinement on F^2 with 602 variables converged at R1 = 4.71%, for the observed data and wR2 = 12.74% for all data. The goodness-of-fit was 1.044. The largest peak in the final difference electron density synthesis was 0.557 e⁻/Å³ and the largest hole was -0.307 e⁻/Å³ with an RMS deviation of 0.060 e⁻/Å³. On the basis of the final model, the calculated density was 1.612 g/cm³ and F(000), 944 e⁻. The hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

1st Step: Compound 15a [LiC₇H₈]

Compound 14 [LiHTMP] (64.9 mg, 0.10 mmol, 1.0 equiv) was dissolved in toluene (1.8 mL) and added to a suspension of $HB(C_6F_5)_2$ (34.6 mg, 0.10 mmol, 1.0 equiv) in toluene (0.2 mL) at RT. Within 5 minutes a clear yellow solution was obtained. A white powder precipitated from the reaction mixture upon standing for 1 day at RT. The white solid was washed with pentane (2 x 0.5 mL) and dried *in*

vacuo to give compound 15a in 44% yield (41.2 mg, 0.04 mmol).

The obtained filtrate was used for further workup (see 2nd Step below).

The NMR data of the obtained white powder in CD_2Cl_2 are consistent to those listed for compound **15a** [LiC₇D₈] (see above). Comment: ratio **15a** : toluene ca. 3 : 2.

¹**H** NMR (600 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.24 (t, ³J_{HH} = 7.2 Hz, 2H, *m*-tol), 7.18 (d, ³J_{HH} = 7.2 Hz, 2H, *o*-tol), 7.14 (t, 7.3 Hz, 1H, *p*-tol), 2.34 (s, 3H, Me-tol).

¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.24 / 7.14 (*m*-tol-H / *p*-tol-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 7.24 / 128.5 (*m*-tol), 7.18 / 129.4 (*o*-tol), 7.14 / 125.6 (*p*-tol), 2.34 / 21.5 (Me-tol).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ^{1} H [ppm] / δ^{13} C [ppm] = 2.34 / 138.4, 129.4, (tol-Me-H / ^{ipso}C-tol, *o*-tol).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 138.4 (C7a, ^{ipso}C-tol), 129.4 (*o*-tol), 128.5 (*m*-tol), 125.6 (*p*-tol), 21.5 (Me-tol).

15a [LiC7D8]

Figure S35 Stacked ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compounds **15a** [LiC₇D₈] (above) and **15a** [LiC₇H₈] (below).

Figure S36 Stacked ¹³C{¹H} NMR (151 MHz, 299 K, CD_2Cl_2) compounds 15a [LiC₇D₈] (above) and 15a [LiC₇H₈] (below).

2nd Step: Compounds 15a [LiC₇H₈], 15b [LiHTMP]

All volatiles of the filtrate were removed in vacuo to give a yellow solid which was washed with pentane (2 x 0.5 mL) and dried in vacuo (11.7 mg, 0.02 mmol, 33%). The solution of the yellow solid in CD_2Cl_2 showed a ca. 1:1 mixture of **15a** [LiC₇H₈] and **15b** [LiHTMP].

The NMR data of compound **15a** [LiC₇H₈] of the mixture in CD_2Cl_2 are consistent to those given in the 1st Step (see above).

The NMR data of compound **15b** [LiHTMP] of the mixture in CD_2Cl_2 are consistent to those listed after reaction of compound **14** [LiHTMP] with $HB(C_6F_5)_2$ in the presence of an additional equivalent of HTMP (see below).

Figure S37 Stacked ¹H NMR (600 MHz, 299 K, CD₂Cl₂) of compounds **15**: compound **15a** [LiC₇H₈] (above, 1st Step), compounds **15a** [LiC₇H₈], **15b** [LiHTMP] (middle, 2nd Step) and compound **15b** [LiHTMP] (below, additional equivalent of HTMP added).

Compound 15b [LiHTMP]

Compound **14** [LiHTMP] (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in CD_2Cl_2 (0.7 mL) and added to a suspension of $HB(C_6F_5)_2$ (17.3 mg, 0.05 mmol, 1.0 equiv) in CD_2Cl_2 (0.3 mL) at RT. The yellow solution was added to HTMP (14.1 mg, 0.05 mmol, 1.0 equiv) after standing for additional 30 minutes. The yellow solution was characterized by NMR experiments showing compound **15b** [LiHTMP].

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ [ppm] = 7.59 (dt, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HH} = 1.0 Hz, 1H, C7-H), 7.29 (dt, ³*J*_{HH} = 8.1 Hz, ⁴*J*_{HH} = 1.0 Hz, 1H, C4-H), 7.15 (ddd, ³*J*_{HH} = 8.0, 7.0 Hz, ⁴*J*_{HH} = 1.1 Hz, 1H, C6-H), 7.04 (ddd, ³*J*_{HH} = 8.1, 7.0 Hz, ⁴*J*_{HH} = 1.1 Hz, 1H, C5-H), 6.69 (d, ⁴*J*_{HH} = 1.2 Hz, 1H, C2-H), 4.55 (br, 1H, B-H)^t, 3.75 (br m, 1H, N^B-H)^t, 3.19 (septd, ³*J*_{HH} = 6.8 Hz, ⁴*J*_{HH} = 1.1 Hz, 1H, C8-H), 1.91, 1.61 (each m, each 1H, C33-H), 1.75, 1.58 (each m, each 2H, C32-H), 1.51 (br t, ³*J*_{HH} = 5.9 Hz, 2H, C43-H), 1.45, 1.24 (each s, each 6H, C36,37-H), 1.35 (d, ³*J*_{HH} = 6.8 Hz, 6H, C9-H), 1.17 (br s, 4H, C42-H)^t, 0.80 (br s, 12H, C46-H)^t, 0.62 (br s, 1H, N^{Li}-H)^t. [^t tentative assignment]. ¹H, ¹H GCOSY (500 MHz / 500 MHz, 299 K, CD₂Cl₂): δ [ppm] / δ [ppm] = 7.59 / 7.15 (C7-H / C6-H), 7.29 / 7.04 (C4-H / C5-H), 7.15 / 7.04 (C6-H / C5-H), 3.19 / 1.35 (C8-H / C9-H), 1.91 / 1.75, 1.61 (C33-H / C32-H, C33-H), 1.75 / 1.58 (C32-H / C32-H), 1.58 / 1.45 (C32-H / C36-H), 1.51 / 1.17 (C43-H / C42-H), 1.45 / 1.24 (C36-H / C37-H).

¹**H NOESY** (500 MHz / 500 MHz, 299 K, CD₂Cl₂) [selected traces]: δ [ppm] / δ [ppm] = 3.19 / 7.59 (C8-H / C7-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.59 / 120.5 (C7), 7.29 / 122.9 (C4), 7.15 / 123.3 (C6), 7.04 / 123.8 (C4), 6.69 / 124.4 (C2), 3.19 / 27.2 (C8), 1.91 / 16.8 (C33), 1.75 / 42.7 (C32), 1.61 / 16.7 (C33), 1.58 / 42.7 (C32), 1.51 / 17.7 (C43), 1.45 / 21.6 (C36), 1.35 / 23.0 (C9), 1.24 / 33.0 (C37), 1.17 / 37.9 (C42).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ¹H [ppm] / δ¹³C [ppm] = 7.59 / 136.8, 123.8 (C7-H / C3a, C5), 7.29 / 136.1, 123.3 (C4-H / C7a, C6), 7.15 / 136.1, 122.9 (C6-H / C7a, C4), 7.04 / 136.8, 120.5 (C5-H / C3a, C7), 6.69 / 136.8, 136.0, 115.3, 27.2 (C2-H / C1/3a, C7a, C^{ipso}, C8), 3.19 / 136.8, 124.4, 23.0 (C8-H / C1, C2, C9), 1.91 / 42.7 (C33-H / C32), 1.75 / 16.8 (C32-H / C33), 1.58 / 62.8, 21.6 (C32-H / C31, C36), 1.51 / 51.0, 37.9 (C43-H / C41, C42), 1.45 / 62.8, 42.7, 33.0 (C36-H / C31, C32, C37), 1.35 / 136.8, 27.2, 23.0 (C9-H / C1, C8, C9), 1.24 / 62.8, 42.7, 21.6 (C37-H / C31, C32, C36).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ^{13} C [ppm] = 136.8 (C1), 136.8 (C3a), 136.1 (C7a), 124.4 (C2), 123.8 (C5), 123.3 (C6), 122.9 (C4), 120.5 (C7), 115.3 (br, C3), 62.8 (C31), 51.0 (C41), 42.7 (C32), 37.9 (C42), 33.0 (C37), 31.0 (br, C46)^t, 27.2 (C8), 23.0 (C9), 21.6 (C36), 17.7 (C43), 16.8 (C33) [C₆F₅ not listed, ^t tentative assignment].

⁷Li NMR (194 MHz, 299 K, CD₂Cl₂): δ [ppm] = -4.5 (v_{1/2} \approx 50 Hz).

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, CD₂Cl₂): δ [ppm] = 37.9 ($v_{1/2} \approx 90$ Hz, B^N), -13.4 ($v_{1/2} \approx 90$ Hz, B^H).

¹¹**B** NMR (160 MHz, 299 K, CD₂Cl₂): δ [ppm] = 37.9 ($v_{1/2} \approx 90$ Hz, 1B, B^N), -13.4 (d, ¹*J*_{BH} ~ 100 Hz, 1B, B^H).

¹⁹**F NMR** (470 MHz, 299 K, CD₂Cl₂): δ [ppm] = -130.1 (br, 2F, *o*-C₆F₅^c), -132.7 (br, 2F, *o*-C₆F₅^d)^t, -132.9 (br, 4F, *o*-C₆F₅^{a,b}), -156.6 (t, ${}^{3}J_{FF} = 20.0$ Hz, 1F, *p*-C₆F₅^a), -156.6 (t, ${}^{3}J_{FF} = 19.9$ Hz, 1F, *p*-C₆F₅^b), -159.4 (t, ${}^{3}J_{FF} = 20.2$ Hz, 2F, *p*-C₆F₅^{c,d}), -163.4 (m, 4F, *m*-C₆F₅^{a,b}), -164.3 (br, 2F, *m*-C₆F₅^c), -165.3 (br, 2F, *m*-C₆F₅^d) [Δδ¹⁹F_{m,p} = 6.8^a, 6.7^b, 4.8^c, 5.9^d].

Figure S38 ¹H NMR (500 MHz, 299 K, CD₂Cl₂) of compound 15b [LiHTMP].

Figure S39 ¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂) of compound 15b [LiHTMP].

Figure S40 ¹¹B NMR (160 MHz, 299 K, CD₂Cl₂), ¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂), ⁷Li NMR (194 MHz, 299 K, CD₂Cl₂) and ¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂) of compound **15b** [LiHTMP].

Compound 17a

Compound 14 [LiHTMP] (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in toluene-d₈ (0.8 mL) and added to a solution of (*E*)-chalcone (16a) (10.4 mg, 0.05 mmol, 1.0 equiv) in toluene-d₈ (0.2 mL). An instantaneous colour change towards dark red was observed. The red colour faded during the course of 30 minutes. All volatiles were removed by slow evaporation at normal pressure to give compound 17a as a white solid (37.3 mg, 0.04 mmol, 87%). Crystals suitable for the X-ray crystal structure analysis were

obtained from a saturated solution of compound 17a in pentane.

IR (KBr, selective wavenumbers): \tilde{v} [cm⁻¹] = 3254 (w, NH).

Decomp.: 173 °C.

Elemental analysis: calc. for C₄₈H₄₃BF₁₀LiNO (857.61 g mol⁻¹): C, 67.22; H, 5.05; N, 1.63; Found: C, 67.22; H, 4.59; N (corr), 1.54.

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ [ppm] = 7.86 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C4-H), 7.44 (m, 2H, C52-H), 7.31 (m, 2H, C42-H), 7.30 (s, 1H, C2-H), 7.08 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C5-H), 7.00 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C6-H), 6.99 (m, 2H, C53-H), 6.96 (m, 2H, C43-H), 6.92 (m, 1H, C54-H), 6.83 (m, 1H, C44-H), 6.79 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C7-H), 5.69 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, C32-H), 5.23 (s, 1H, C31-H), 2.59 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 1H, C8-H), 1.25 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, C10-H)^t, 1.23 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, C9-H)^t, 1.15 (br, 2H, C65-H), 0.86 (br, 4H, C64-H), 0.74 (br, 12H, C62-H), 0.01 (br, 1H, NH) [^t tentative assignment] ¹H, ¹H GCOSY (500 MHz / 500 MHz, 299 K, C₆D₆): δ [ppm] / δ [ppm] = 7.86 / 7.08 (C4-H / C5-H), 7.44 / 6.99 (C52-H / C53-H), 7.30 / 6.96 (C42-H / C43-H), 7.08 / 7.00 (C5-H / C6-H), 7.00 / 6.79 (C6-H / C7-H), 5.69 / 5.23 (C32-H / C31-H), 2.59 / 1.23 (C8-H / C10,9-H).

¹H NOESY (500 MHz / 500 MHz, 299 K, C₆D₆) [selected traces]: δ [ppm] / δ [ppm] = 6.79 / 2.59, 1.25 (C7-H / C8-H, C10-H), 5.69 / 7.44, 7.31 (C32-H / C52-H, C42-H), 5.23 / 7.31 (C31-H / C42-H).
¹H,¹³C GHSQC (500 MHz / 126 MHz, 299 K, C₆D₆): δ¹H [ppm] / δ¹³C [ppm] = 7.86 / 125.0 (C4), 7.44 / 126.7 (C52), 7.31 / 129.1 (C42), 7.30 / 138.1 (C2), 7.08 / 122.0 (C5), 7.00 / 124.8 (C6), 6.99 / 129.8 (C53), 6.96 / 126.6 (C43), 6.92 / 128.7 (C54), 6.83 / 125.9 (C44), 6.79 / 118.5 (C7), 5.69 / 112.3 (C32), 5.23 / 44.2 (C31), 2.59 / 26.8 (C8), 1.25 / 21.9 (C10), 1.23 / 22.3 (C9), 1.15 / 17.7 (C65), 0.86 / 37.8 (C64), 0.74 / 31.0 (C62).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, C₆D₆): δ¹H [ppm] / δ¹³C [ppm] = 7.86 / 145.7, 124.8 (C4-H / C7a, C6), 7.44 / 128.7 (C52-H / C54), 7.31 / 129.1, 125.9 (C42-H / C42, C44), 7.30 / 152.3, 145.7, 54.3, 44.2 (C2-H / C3a, C7a, C3, C31), 7.08 / 152.3, 118.5 (C5-H / C3a, C7), 7.00 / 145.7, 125.0 (C6-H / C7a, C4), 6.99 / 140.7, 129.8 (C53-H / C51, C53), 6.96 / 142.3, 126.6 (C43-H / C41, C43), 6.92 / 126.7 (C54-H / C52), 6.83 / 129.1 (C44-H / C42), 6.79 / 152.3, 122.0 (C7-H / C3a, C5), 5.69 / 151.2 (C32-H / C33), 5.23 / 152.3, 151.2, 142.3, 129.1, 112.3 (C31-H / C3a, C33, C41, C42, C32), 2.59 / 146.4, 138.1, 22.3, 21.9 (C8-H / C1, C2, C9, C10), 1.25 / 146.4, 26.8, 22.3 (C10-H / C1, C8, C9), 1.23 / 146.4, 26.8, 21.9 (C9-H / C1, C8, C10).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ^{13} C [ppm] = 152.3 (C3a), 151.2 (C33), 146.4 (C1), 145.7 (C7a), 142.3 (C41), 140.7 (C51), 138.1 (C2), 129.8 (C53), 129.1 (C42), 128.7 (C54), 126.7 (C52), 126.6 (C43), 125.9 (C44), 125.0 (C4), 124.8 (C6), 122.0 (C5), 118.5 (C7), 112.3 (br, C32), 54.3 (br, C3)^t, 50.9 (br, C61)^t, 44.2 (C31), 37.8 (C64), 31.0 (br, C62), 26.8 (C8), 22.3 (C9), 21.9 (C10), 17.7 (br, C65) [C₆F₅ not listed; ^t tentative assignment].

⁷Li NMR (194 MHz, 299 K, C₆D₆): δ [ppm] = 0.3 (d, ¹J_{LiF} = 30.9 Hz)

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, C₆D₆): δ [ppm] = 1.9 ($v_{1/2} \approx 200$ Hz).

¹⁹**F NMR** (470 MHz, 223 K, CD₂Cl₂): δ [ppm] = -126.1, -126.4 (each m), -134.3, -150.0 (each br)(each 1F, *o*-C₆F₅), -159.8, -159.9 (each t, ${}^{3}J_{FF}$ = 21.0 Hz, each 1F, *p*-C₆F₅), -162.2, -164.1, -164.3, -165.9 (each br m, each 1F, *m*-C₆F₅).

Figure S41 ¹H NMR (500 MHz, 299 K, C₆D₆) of crystalline compound 17a.

Figure S42 ¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆) of crystalline compound 17a.

Figure S43 ⁷Li NMR (194 MHz, 299 K, C₆D₆), ¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆) and ¹⁹F NMR (470 MHz, 223 K, CD₂Cl₂) of crystalline compound **17a**.

X-ray crystal structure analysis of compound 17a: formula $C_{48}H_{43}BF_{10}LiNO$, M = 857.58, colourless crystal, 0.15 x 0.12 x 0.05 mm, a = 12.1842(2), b = 13.8403(2), c = 14.1877(3) Å, $\alpha = 95.871(1)^{\circ}$, $\beta = 108.906(1)^{\circ}$, $\gamma = 105.653(2)^{\circ}$, V = 2131.7(1) Å³, $\rho_{calc} = 1.336$ gcm⁻³, $\mu = 0.108$ mm⁻¹, empirical absorption correction (0.983 $\leq T \leq 0.994$), Z = 2, triclinic, space group *P*-1 (No. 2), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 19288 reflections collected ($\pm h, \pm k, \pm l$), 7318 independent ($R_{int} = 0.048$) and 5403 observed reflections [$I > 2\sigma(I)$], 569 refined parameters, R = 0.072, $wR^2 = 0.158$, max. (min.) residual electron density 0.26 (-0.25) e.Å⁻³, the hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

Compound 17a (in situ reaction)

Compound **14[LiHTMP]** (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in C_6D_6 (1.0 mL) and added to chalcone **16a** (10.4 mg, 0.05 mmol, 1.0 equiv). The reaction mixture turned instantaneously red. The colour faded during the course of 30 minutes. The reaction mixture was characterized by NMR experiments. [Comment: the ¹H resonance at $\delta^1H = 5.68$ was tentatively assigned as the diastereoisomer of **17a**].

Figure S44 ¹H NMR (300 MHz, 295 K, C₆D₆) of compound 17a (in situ reaction mixture).

Compound 17b

Compound 14 [LiHTMP] (130.0 mg, 0.2 mmol, 1.0 equiv) was dissolved in toluene (0.3 mL) and added to a solution of (E)-4-(trifluoromethyl)chalcone (55.3 mg, 0.2 mmol, 1.0 equiv) in toluene (0.3 mL). Gas diffusion of pentane into the toluene solution at -32 °C gave colorless crystals of 17b*toluene (102.8 mg, 0.10 mmol, 50%), which were collected and dried in vacuo. The obtained crystals were suitable for the X-ray crystal structure analysis.

IR (KBr, selective wavenumbers): \tilde{v} [cm⁻¹] = 3249 (w, NH).

Melting point (DSC): 114 °C.

Elemental analysis: calc. for C₄₉H₄₂BF₁₃LiNO*C₇H₈ (1017.75 g mol⁻¹): C, 66.09; H, 4.95; N, 1.38; Found: C, 65.72; H, 4.82; N, 1.56.

¹**H NMR** (600 MHz, 299 K, C₆D₆): δ [ppm] = 7.80 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 1H, C4-H), 7.44 (m, 2H, C52-H), 7.21 (s, 4H, C42,43-H), 7.20 (br, 1H, C2-H), 7.05 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C5-H), 7.00 (m, 2H, C53-H), 6.95 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C6-H), 6.94 (m, 1H, C54-H), 6.73 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, C7-H), 5.51 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, C32-H), 5.13 (s, 1H, C31-H), 2.52 (sept, ${}^{3}J_{HH}$ = 6.9 Hz, 1H, C8-H), 1.21 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 3H, C9-H)^t, 1.17 (br, 2H, C65-H), 1.16 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 3H, C10-H)^t, 0.88 (br, 4H, C64-H), 0.75 (br, 12H, C62-H), 0.02 (br, 1H, N-H) [^t tentative assignment].

¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 299 K, C₆D₆): δ [ppm] / δ [ppm] = 7.80 / 7.05 (C4-H / C5-H), 7.44 / 7.00 (C52-H / C53-H), 7.05 / 6.95 (C5-H / C6-H), 7.00 / 6.94 (C53-H / C54-H), 6.95 / 6.73 (C6-H / C7-H), 5.51 / 5.13 (C32-H / C31-H), 2.52 / 1.21, 1.16 (C8-H / C9-H, C10-H).

¹**H NOESY** (600 MHz / 600 MHz, 299 K, C_6D_6) [selected traces]: δ [ppm] / δ [ppm] = 7.21 / 5.13 (C42-H / C31-H).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, C₆D₆): δ ¹H [ppm] / δ ¹³C [ppm] = 7.80 / 124.9 (C4), 7.44 / 126.7 (C52), 7.21 / 129.3, 123.5 (C42, C43), 7.20 / 137.3 (C2), 7.05 / 122.1 (C5), 7.00 / 129.9 (C53), 6.95 / 125.2 (C6), 6.94 / 129.1 (C54), 6.73 / 118.8 (C7), 5.51 / 111.1 (C32), 5.13 / 44.0 (C31), 2.52 / 26.7 (C8), 1.21 / 21.8 (C9), 1.17 / 17.4 (C65), 1.16 / 22.2 (C10), 0.88 / 37.6 (C64).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, C₆D₆): δ ¹H [ppm] / δ ¹³C [ppm] = 7.44 / 151.7, 129.1 (C52-H / C33, C54), 7.21 / 146.5, 129.3, 128.0, 126.1, 124.2, 123.5, 44.1, (C42,43-H / C41, C44^t, C45, C45, C42, C43, C31), 7.20 / 151.5, 145.5, 53.9 (C2-H / C3a, C7a, C3), 7.05 / 151.5, 118.8 (C5-H / C3a, C7), 7.00 / 140.4, 129.9 (C53-H / C51, C53), 6.95 / 145.5, 124.9 (C6-H / C7a, C4), 6.94 / 126.7 (C54-H / C52), 6.73 / 151.5, 122.1 (C7-H / C3a, C5), 5.51 / 151.7 (C32-H / C33), 5.13 / 151.7, 151.5, 146.4, 129.3, 111.1, 53.9 (C31-H / C33, C3a, C41, C42, C32, C3), 2.52 / 147.1, 145.5, 137.3, 22.2, 21.8 (C8-H / C1, C7a, C2, C10, C9), 1.21 / 147.1, 26.7, 22.2 (C9-H / C1, C8, C10), 1.16 / 147.1, 26.7, 21.8 (C10-H / C1, C8, C9).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ [ppm] = 151.7 (C33), 151.5 (C3a), 147.1 (C1), 146.4 (C41), 145.5 (C7a), 140.4 (C51), 137.3 (C2), 129.9 (C53), 129.3 (C42), 129.2 (q, ${}^{2}J_{FC} \sim 5$ Hz, C44), 129.1

(C54), 126.7 (C52), 125.2 (C6), 125.1 (q, ${}^{1}J_{FC} \sim 272$ Hz, C45), 124.9 (C4), 123.5 (q, ${}^{3}J_{FC} = 4.0$ Hz, C43), 122.1 (C5), 118.8 (C7), 111.1 (C32), 53.9 (br, C3), 51.0 (br, C61)^t, 44.0 (C31), 37.6 (br, C64), 30.9, 30.2 (each br, C62), 26.7 (C8), 22.2 (C10)^t, 21.8 (C9)^t, 17.4 (br, C65) [C₆F₅ not listed; ^t tentative assignment].

⁷Li NMR (233 MHz, 299 K, C₆D₆): δ [ppm]= 0.3 (d, ¹*J*_{FLi} = 25.6 Hz).

¹¹**B** NMR (192 MHz, 299 K, C₆D₆): δ [ppm] = 1.7 ($v_{1/2} \approx 250$ Hz).

¹⁹**F NMR** (470 MHz, 223 K, CD₂Cl₂): δ (ppm) = -62.0 (s, 3F, CF₃), -126.1, -126.5 (each m), -134.4, -150.2 (each br)(each 1F, *o*-C₆F₅), -159.5, -159.6 (each br t, ${}^{3}J_{FF}$ = 21.0 Hz, each 1F, *p*-C₆F₅), -162.0, -165.6 (each m, each 1F), -163.9 (br, 2F)(*m*-C₆F₅).

Figure S45 ¹H NMR (600 MHz, 299 K, C₆D₆) of crystalline compound 17b.

Figure S46 ¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆) of crystalline compound 17b.

Figure S47 ⁷Li NMR (233 MHz, 299 K, C_6D_6), ¹¹B NMR (192 MHz, 299 K, C_6D_6) and ¹⁹F NMR (470 MHz, 223 K, CD_2Cl_2) of crystalline compound **17b**.

X-ray crystal structure analysis of compound 17b: A colorless prism-like specimen of $C_{49}H_{42}BF_{13}NLiO \cdot C_7H_8$, approximate dimensions 0.097 mm x 0.098 mm x 0.180 mm, was used for

the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 511 frames were collected. The total exposure time was 7.81 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 40956 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 8919 were independent (average redundancy 4.592, completeness = 99.8%, $R_{int} = 6.38\%$, $R_{sig} =$ 4.67%) and 6651 (74.57%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 13.8630(6) Å, <u>b</u> = 14.0401(6) Å, <u>c</u> = 15.2449(5) Å, α = 90.6950(10)°, β = 110.3370(10)°, γ = 116.5010(10)°, volume = 2440.00(17) Å³, are based upon the refinement of the XYZ-centroids of 9996 reflections above 20 σ (I) with $4.820^{\circ} < 2\theta < 52.78^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.951. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9800 and 0.9890. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit, $C_{49}H_{42}BF_{13}NLiO \cdot C_7H_8$. The final anisotropic full-matrix leastsquares refinement on F^2 with 669 variables converged at R1 = 4.90%, for the observed data and wR2 = 11.65% for all data. The goodness-of-fit was 1.040. The largest peak in the final difference electron density synthesis was 0.308 e⁻/Å³ and the largest hole was -0.370 e⁻/Å³ with an RMS deviation of 0.055 $e^{-}/Å^{3}$. On the basis of the final model, the calculated density was 1.385 g/cm³ and F(000), 1052 e⁻. The hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

Figure 48 A view of the molecular structure of compound **17b** (thermal ellipsoids are shown with 50% probability, hydrogen atoms are omitted for reasons of clarity).

Compound 17b (in situ reaction)

Compound **14[LiTMP]** (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in C_6D_6 (0.5 mL) and added to chalcone derivative **16b** (13.8 mg, 0.05 mmol, 1.0 equiv) in C_6D_6 (0.5 mL). The reaction mixture turned instantaneously red. The colour faded during the course of 30 minutes. The reaction mixture was subsequently characterized by NMR experiments.

Figure S49 ¹H NMR (300 MHz, 295 K, C₆D₆) of compound 17b (reaction mixture).

Compound 19

Compound **14** [LiHTMP] (32.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in C_6D_6 (0.8 mL) and added to a solution of phenyl methyl ketene (**18**) (13.2 mg, 0.10 mmol, 2.0 equiv) in C_6D_6 (0.2 mL). An instantaneous colour change towards red was observed. The formation of a major product along

with some polymer was observed by NMR experiments. Isolation of a product in satisfactory purity failed despite great effort, therefore the obtained reaction mixture was used to characterize compound **19** by NMR experiments.

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ [ppm] = 8.21 (d, ³J_{HH} = 7.7 Hz, 1H, C4-H), 7.55 (m, 2H, C42-H), 7.45 (dt, ³J_{HH} = 7.8 Hz, ⁴J_{HH} = 0.8 Hz, 1H, C7-H), 7.24 (td, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C5-H), 7.11 (td, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C6-H), 7.01 (m, 2H, C43-H), 6.80 (m, 1H, C44-H), 4.59 (s, 1H, C3-H), 3.32 (sept, ³J_{HH} = 7.1 Hz, 1H, C8-H), 2.17 (s, 3H, C33-H), 1.50 (d, ³J_{HH} = 7.1 Hz, 3H, C9-H), 7.11 (td, ³J_{HH} = 7.1 Hz, 7.1

H)^t, 1.38 (d, ${}^{3}J_{HH} = 7.1$ Hz, 3H, C10-H)^t, 1.32 (br m, 4H^a, C55-H), 1.02 (br m, 8H^a, C54-H), 0.86 (br, 24H^a, C52-H), 0.00 (br, 2H^a, NH) [^a in relation to C8-H; ^t tentative assignment].

¹**H**, ¹**H GCOSY** (500 MHz / 500 MHz, 299 K, C₆D₆): δ [ppm] / δ [ppm] = 8.21 / 7.24 (C4-H / C5-H), 7.55 / 7.01 (C42-H / C43-H), 7.45 / 7.11 (C7-H / C6-H), 7.24 / 7.11 (C5-H / C6-H), 7.01 / 6.80 (C43-H / C44-H), 3.32 / 1.50, 1.38 (C8-H / C9-H, C10-H), 1.32 / 1.02 (C55-H / C54-H).

¹**H** NOESY (500 MHz / 500 MHz, 299 K, C₆D₆) [selected traces]: δ [ppm] / δ [ppm] = 8.21 / 7.24, 4.59 (C4-H / C5-H, C3-H), 7.45 / 7.11, 1.50, 1.38 (C7-H / C6-H, C9-H, C10-H), 2.17 / 7.55, 3.32, 1.50 (C33-H / C42-H, C8-H, C9-H).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, C_6D_6): δ^1H [ppm] / $\delta^{13}C$ [ppm] = 8.21 / 125.7 (C4), 7.55 / 128.0 (C42), 7.45 / 122.0 (C7), 7.24 / 124.7 (C5), 7.11 / 125.0 (C6), 7.01 / 130.1 (C43), 6.80 / 126.5 (C44), 4.59 / 53.9 (C3), 3.32 / 29.4 (C8), 2.17 / 20.0 (C33), 1.50 / 20.8 (C9), 1.38 / 21.6 (C10), 1.32 / 18.0 (C55), 1.02 / 38.2 (C54), 0.86 / 31.2 (C52).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, C₆D₆): δ¹H [ppm] / δ¹³C [ppm] = 8.21 / 145.2, 125.0 (C4-H / C7a, C6), 7.55 / 128.0, 126.5, 103.8 (C42-H / C42, C44, C31), 7.45 / 149.3, 124.7 (C7-H / C3a, C5), 7.24 / 149.3, 122.0 (C5-H / C3a, C7), 7.11 / 145.2, 125.7 (C6-H / C7a, C4), 7.01 / 142.2, 130.1 (C43-H / C41, C43), 6.80 / 128.0 (C44-H / C42), 4.59 / 144.0, 142.1 (C3-H / C2, C1), 3.32 / 145.2, 144.0, 142.1, 20.8 (C8-H / C7a, C2, C1, C9), 2.17 / 148.8, 142.2, 103.8 (C33-H / C31, C41, C32), 1.50 / 142.1, 29.4, 21.6 (C9-H / C1, C8, C10), 1.38 / 142.1, 29.4, 20.8 (C10-H / C1, C8, C9), 1.32 / 50.4, 38.2 (C55-H / C51, C54), 1.02 / 50.4, 38.2, 31.2, 18.0 (C54-H / C51, C54, C52, C55), 0.86 / 50.4, 38.2, 31.2 (C52-H / C51, C54, C52).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ^{13} C [ppm] = 149.3 (C3a), 148.8 (C31), 145.2 (C7a), 144.0 (C2), 142.2 (C41), 142.1 (C1), 130.1 (C43), 128.0 (C42), 126.5 (C44), 125.7 (br, C4), 125.0 (C6), 124.7 (C5), 122.0 (C7), 103.8 (C32), 53.9 (br, C3), 50.4 (C51), 38.2 (C54), 31.2 (C52), 29.4 (C8), 21.6 (C10)^t, 20.8 (C9)^t, 20.0 (C33), 18.0 (C55) [C₆F₅ not listed; ^t tentative assignment].

⁷Li NMR (194 MHz, 299 K, C₆D₆): δ [ppm] = −0.4 ($v_{1/2} \approx 30$ Hz)

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, C₆D₆): δ [ppm] = 1.2 ($v_{1/2} \approx 300$ Hz).

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): δ [ppm] = -136.9, -137.6 (br, each 2F, *o*-C₆F₅), -158.2 (t, ${}^{3}J_{FF}$ = 20.5 Hz, 1F, *p*-C₆F₅^a), -158.4 (t, ${}^{3}J_{FF}$ = 20.7 Hz, 1F, *p*-C₆F₅^b), -162.4 (m, 2F, *m*-C₆F₅^a), -164.1 (m, 2F, *m*-C₆F₅^b) [Δδ¹⁹F_{m,p} = 4.2^a, 5.7^b].

Figure S50 ¹H NMR (500 MHz, 299 K, C₆D₆) of compound 19 (reaction mixture).

Figure S51 ¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆) of compound 19 (reaction mixture).

Figure S52 ⁷Li NMR (194 MHz, 299 K, C₆D₆), ¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆) and ¹⁹F NMR (470 MHz, 299 K, C₆D₆) of compound **19** (reaction mixture).

Single crystals suitable for the X-ray crystal structure analysis were obtained from a solution of compound **19** in pentane at RT. However, the crystalline material decomposed within two days of storage inside a glovebox at RT.

X-ray crystal structure analysis of compound 19: A colorless prism-like specimen of C42H39BF10LiNO, approximate dimensions 0.060 mm x 0.080 mm x 0.120 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 520 frames were collected. The total exposure time was 4.77 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 39852 reflections to a maximum θ angle of 25.02° (0.84 Å resolution), of which 6550 were independent (average redundancy 6.084, completeness = 99.7%, R_{int} = 5.33%, R_{sig} = 3.28%) and 5842 (89.19%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 12.0328(4) Å, <u>b</u> = 14.7766(5) Å, $\underline{c} = 20.8614(8)$ Å, volume = 3709.2(2) Å³, are based upon the refinement of the XYZcentroids of 9867 reflections above 20 $\sigma(I)$ with 4.78° < 20 < 50.63°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.955. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9860 and 0.9930. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with Z = 4 for the formula unit, $C_{42}H_{39}BF_{10}LiNO$. The final anisotropic full-matrix least-squares refinement on F² with 516 variables converged at R1 = 3.51%, for the observed data and wR2 = 8.32% for all data. The goodness-of-fit was 1.077. The largest peak in the final difference electron density synthesis was $0.261 \text{ e}^{-1}/\text{Å}^3$ and the largest

hole was -0.211 e⁻/Å³ with an RMS deviation of 0.047 e⁻/Å³. On the basis of the final model, the calculated density was 1.399 g/cm³ and F(000), 1616 e⁻. The hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

