Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

> Supplementary Information Synthesis and Reactivity of Fluorenyl-Tethered N-heterocyclic Stannylenes

Marta Roselló-Merino^a and Stephen M. Mansell*^a

^[a] Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK E-mail: S.Mansell@hw.ac.uk

Table of Contents

Additional experimental details2
Synthesis of t-BuN(H)C ₂ H ₄ NH ₂ 2
(9H-C ₁₃ H ₉)C ₂ H ₄ N(H)C ₂ H ₄ N(H) ^t Bu (1b)3
(2H-C ₉ H ₇)C₂H₄N(H)C₂H₄N(H)Dipp (1c)3
(2H-C₃H႗)C₂H₄N(H)C₂H₄N(H)'Bu (1d)4
Additional spectroscopic details and NMR spectra4
(9H-C ₁₃ H ₉)C ₂ H ₄ N(H)C ₂ H ₄ N(H)Dipp (1a)4
1b6
1c7
1d8
29
Li{κ⁵-(C ₁₃ H ₉)C ₂ H₄N(H)C ₂ H₄N(H)Dipp}(THF) _n , [2(thf) _n]10
$\label{eq:list} Li\{\kappa^5-(C_{13}H_9)C_2H_4N(H)C_2H_4N(H)Dipp\}(THF)_n, \ [2(thf)_n]10$ Variable temperature NMR study of compound 212
Li{κ ⁵ -(C ₁₃ H ₉)C ₂ H ₄ N(H)C ₂ H ₄ N(H)Dipp}(THF) _n , [2(thf) _n]10 Variable temperature NMR study of compound 212 313
$\label{eq:rescaled} \begin{split} Li\{\kappa^5-(C_{13}H_9)C_2H_4N(H)C_2H_4N(H)Dipp\}(THF)_n, \ [2(thf)_n]10\\ Variable temperature NMR study of compound 212\\ 313\\ 415 \end{split}$
$\label{eq:listensol} \begin{array}{lllllllllllllllllllllllllllllllllll$
$\label{eq:listensol} \begin{array}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Li{K ⁵ -(C ₁₃ H ₉)C ₂ H ₄ N(H)C ₂ H ₄ N(H)Dipp}{THF) _n , [2(thf) _n]
Li{κ ⁵ -(C ₁₃ H ₉)C ₂ H ₄ N(H)C ₂ H ₄ N(H)Dipp}{THF) _n , [2(thf) _n]. 10 Variable temperature NMR study of compound 2 12 3 13 4 15 5 16 6 18 Variable temperature NMR spectra for 6 22 7 26 8 27
Li{κ ⁵ -{C ₁₃ H ₉ }C ₂ H ₄ N(H)C ₂ H ₄ N(H)Dipp}{THF) _n , [2(thf) _n]

Supplementary Information Additional experimental details

Synthesis of t-BuN(H)C₂H₄NH₂

Adapted from a literature procedure:¹ BrCH₂CH₂NH₂.HBr (21.1 g, 103 mmol), dissolved in H₂O (60 cm³), and *t*-butyl amine (52 cm³, 36 g, 492 mmol) were heated under reflux for 24 h. The volatiles were removed under vacuum leaving a white solid which was dissolved in MeOH (60 cm³) and solid KOH (17.5 g) was slowly added (3-4 g at a time) with water bath cooling (slightly exothermic). After stirring for 50 mins, the MeOH was removed under vacuum (rotary vane oil pump) until the mixture was no longer cool to the touch, then the diamine was distilled directly from the flask (48°C and 48 mbar) yielding *t*-BuN(H)C₂H₄NH₂ as a colourless liquid (5.14 g, 44.2 mmol, 43%).

¹H-NMR (300 MHz, CDCl₃): δ 2.71 (m, 2H, CH2), 2.54 (m, 2H, CH2), 1.04 (br. s, 4 H, NH), 1.03 (s, 9H, t-Bu). ¹³C-NMR (75.5 MHz, CDCl₃): δ 50.0 (*C*Me₃), 45.2 (*C*H₂), 42.8 (*C*H₂), 29.1 (*t*-Bu *C*H₃).

Figure S1. ¹H-NMR spectrum of *t*-BuN(H)C₂H₄NH₂ in CDCl₃ at 25 °C

Figure S2. ¹³C-NMR spectrum of *t*-BuN(H)C₂H₄NH₂ in CDCl₃ at 25 °C.

(9H-C₁₃H₉)C₂H₄N(H)C₂H₄N(H)^tBu (1b)

HCl (1.65 cm³, 1M soln. in Et₂O, 1.5 eq.) was added to ${}^{t}BuN(H)C_{2}H_{4}NH_{2}$ (382 mg, 3.29 mmol, 3 eq.) and stirred for 5 mins at 25°C. The volatiles were then removed under reduced pressure, FlC_2H_4Br (300 mg, 1.10 mmol, 1 eq.) added and the mixture heated at 100 °C for 3 hours. The crude product was then dissolved in DCM (3 cm³) and treated with KOH (155 mg, 2.75 mmol, 2.5 eq.) dissolved in water (2 cm³). The organic fraction was separated and then purified by column chromatography first with DCM elution to separate the spirocyclopropane impurity. NEt₃ (0.5 cm³) was then introduced followed by elution with acetone containing 5% NEt₃ to remove the disubstituted diamine impurity then elution with methanol containing 5% NEt₃ extracted the desired product which, after solvent removal under reduced pressure, yielded **1b** as a white solid (113 mg, 0.37 mmol, 33%). Spectroscopic yield before chromatography was found to be 68 -55%. ¹**H-NMR (300 MHz, 25°C, CDCl₃)**: δ = 7.75 (d, ³J_{HH} = 7.3 Hz, 2H, Ar_{FI} H), 7.52 (d, ³J_{HH} = 7.3 Hz, 2H, Ar_{FI} H), 7.36 (tdd, ${}^{3}J_{HH} = 7.3 \text{ Hz}$, ${}^{4}J_{HH} = 1.5 \text{ Hz}$, ${}^{4}J_{HH} = 0.7 \text{ Hz}$, 2H, Ar_{FI} H), 7.30 (td, ${}^{3}J_{HH} = 7.3 \text{ Hz}$, ${}^{4}J_{HH} = 1.5 \text{ Hz}$, 2H, Ar_{FI} H), 4.06 (t, ³J_{HH} = 5.9 Hz, 1H, 9H-fluorene), 2.56 (m, 4H, CH₂), 2.48 (m, 2H, CH₂), 2.23 (m, 2H, CH₂), 1.37 (br, 2H, NH), 1.05 (s, 9H, ^tBu); ¹³C-NMR (100 MHz, 25°C, CDCl₃): δ 147.1 (FI-C_α), 141.1 (FI-C_α), 127.1, 127.0, 124.4, 120.0 (collection of FI-CH), 50.4 (CH₂), 50.2 (CH₂), 46.3 (CH₂), 45.9 (FI-9C), 42.1 (CH₂), 33.2 (^tBu-C_a), 29.1 (^tBu-CH₃); elemental analysis calcd (%) for C₂₁H₂₈N₂: C 81.77, H 9.15, N 9.08; found: C 81.70, H 9.21, N 8.97; HRMS (ESI): Calculated for M+1: 309.2325, Found: 309.2397.

(2H-C₉H₇)C₂H₄N(H)C₂H₄N(H)Dipp (1c)

Synthesised as for **1a** using IndC₂H₄Br ² (0.5 g, 2.21 mmol) and DippN(H)C₂H₄NH₂ (1.5.g, 6.63 mmol, 3 eq.), heating at 100 °C for 3 hours and purifying using column chromatography (CH₂Cl₂ followed by ethyl acetate) yielding a pale yellow oil (563 mg, 1.55 mmol, 64% yield). ¹H-NMR (**400 MHz, 25°C CDCl₃**): δ = 7.49 (m, 1H, Ar_{Ind} H), 7.43 (dt, ³J_{HH} = 7.6 Hz, ⁴J_{HH} = 0.9 Hz, 1H, Ar_{Ind} H), 7.33 (m, 1H, Ar_{Ind} H), 7.24 (dt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 0.9 Hz, 1H, Ar_{Ind} H), 7.12–7.04 (m, 3H, Dipp Ar H), 6.32 (q, ³J_{HH} = 1.2 Hz, 1H, Ar_{Ind} H), 3.37 (m, 2H, Ar_{Ind} CH₂) 3.34 (sept, ³J_{HH} = 6.8 Hz, 2H, Dipp CH), 3.04 (m, 2H, CH₂), 2.99 (m, 2H, CH₂), 2.92 (m, 2H, CH₂), 2.85 (m, 2H, CH₂), 1.25 (d, ³J_{HH} = 6.7 Hz, 12H, Dipp CH₃); ¹³C-NMR (100 MHz, 25°C CDCl₃): δ = 145.3 (Ar_{Ind}), 144.6 (Ar_{Ind}), 144.6 (Dipp *ipso*), 142.5 (Dipp *ortho*), 142.3 (Ar_{Ind}), 129.2 (Ar_{Ind} CH), 126.2 (Ar_{Ind} CH), 124.8 (Ar_{Ind} CH), 123.9 (Ar_{Ind} CH), 123.6 (Dipp CH), 123.5 (Dipp CH), 119.0(Ar_{Ind} CH), 51.4 (CH₂), 49.9 (CH₂), 48.1 (CH₂), 37.9 (Ind-CH₂), 28.6 (CH₂), 27.7 (CH ⁱPr), 24.4 (CH₃ ⁱPr); **elemental analysis** calcd (%) for C₂₅H₃₄N₂: C 82.82, H 9.45, N 7.73; found: C 82.59, H 9.63, N 7.78.

$(2H-C_9H_7)C_2H_4N(H)C_2H_4N(H)^tBu$ (1d)

This was prepared and purified in an analogous manner to **1b** using $IndC_2H_4Br^2$ (300 mg, 1.34 mmol, 1.0 eq.), ${}^tBuN(H)C_2H_4NH_2$ (192 mg, 1.65 mmol, 1.3 eq.) and HCl (1.3 cm³, 1 M Et₂O soln., 1 eq.) after 2 hours at 100 °C. Spectroscopic yield was around 70% and after chromatography **1d** was obtained as a pale yellow oil (95 mg, 0.37 mmol, 42%). ¹**H-NMR (400 MHz, 25°C, CDCl₃**): δ 7.46 (d, ${}^3J_{HH}$ = 7.3 Hz, 1H, Ar_{Ind} H), 7.39 (d, ${}^3J_{HH}$ = 7.6 Hz, 1H, Ar_{Ind} H), 7.30 (t, ${}^3J_{HH}$ = 7.5 Hz, 1H, Ar_{Ind} H), 7.21 (t, ${}^3J_{HH}$ = 7.3 Hz, 1H, Ar_{Ind} H), 6.27 (m, 1H, Ar_{Ind} H), 3.34 (m, 2H, Ar_{Ind}, CH₂), 2.96 (m, CH₂, 2H), 2.77 (m, overlapping CH₂, 4H), 2.67 (m, CH₂, 2H), 1.25 (br, NH, 2H), 1.08 (s, tBu , 9H); 13 C-NMR (100 MHz, 25°C, CDCl₃): δ 145.4 (Ind-C_q), 144.6 (Ind-C_q), 142.5 (Ind-C_q), 129.1, 126.2, 124.8, 124.0, 119.1 (collection of Ind-CH), 50.3 (CH₂), 50.3 (CH₂), 48.1 (CH₂), 42.1 (CH₂), 37.9 (Ind-CH₂), 29.1 (tBu -CH₃), 28.5 (tBu -C_q); HRMS (ESI): Calculated for M+1: 259.2169, Found: 259.2193.

Additional spectroscopic details and NMR spectra

 $(9H-C_{13}H_9)C_2H_4N(H)C_2H_4N(H)Dipp (1a)$

¹**H-NMR (400 MHz, d₈-THF)**: δ 7.76 (d, ${}^{3}J_{HH}$ = 7.1 Hz, 2H, Ar_{FI} H), 7.56 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 2H, Ar_{FI} H), 7.33 – 7.25 (m, 4H, Ar_{FI} H), 7.00 – 6.88 (m, 3H, Diip Ar H), 4.12 (t, ${}^{3}J_{HH}$ = 6.0 Hz, 1H, 9*H*-fluorene), 3.68 (t, ${}^{3}J_{HH}$ = 6.6 Hz, 1H, NH), 3.38 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 2H, Diip CH), 2.85 (m, 2H, CH₂), 2.76 (m, 2H, CH₂), 2.62 (m, 2H, CH₂), 2.19 (m, 2H, CH₂), 1.37 (m, 1H, NH), 1.16 (d, ${}^{3}J_{HH}$ = 7.1 Hz, 12H, Diip CH₃). ¹³**C-NMR (100 MHz, d₈-THF)**: δ 148.6, 145.1, 143.5, 142.1, 127.8, 125.3, 124.1, 121.0, 120.7, 52.6, 50.8, 47.7, 47.2, 46.7, 35.0, 28.4.

¹**H-NMR (400 MHz, C₆D₆)**: δ 7.63 (d, ${}^{3}J_{HH}$ = 6.6 Hz, 2H, Ar_{FI} H), 7.38 (m, 2H, Ar_{FI} H), 7.26 – 7.18 (m, 4H, Ar_{FI} H), 7.15 – 7.08 (m, 3H, Diip Ar H), 3.90 (t, ${}^{3}J_{HH}$ = 5.9 Hz, 1H, 9*H*-fluorene), 3.66 (br, 1H, NH), 3.45 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 2H, Diip CH), 2.78 (m, 2H, CH₂), 2.42 (m, 2H, CH₂), 2.37 (m, 2H, CH₂), 1.99 (m, 2H, CH₂), 1.24 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 12H, Diip CH₃), 0.39 (br, 1H, NH). ¹³**C-NMR (100 MHz, C₆D₆)**: δ 148.1, 143.0, 141.9, 127.7, 127.6, 125.0, 124.4, 124.2, 120.6, 52.1, 50.2, 47.0, 46.4, 34.3, 28.2, 24.9.

Figure S4. ¹³C-NMR of 1a in CDCl₃ at 25 °C

Supplementary Information 1b * \$\$5 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ * \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ * \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

Figure S6. $^{\rm 13}\text{C-NMR}$ of 1b in CDCl_3 at 25 $^{\circ}\text{C}$

Figure S8. ¹³C-NMR of 1c in CDCl₃ at 25 °C

Figure S10. $^{13}\text{C-NMR}$ of 1d in CDCl3 at 25 °C

Figure S12. $^{13}\text{C-NMR}$ of 2 in C_6D_6 at 25 °C

$Li{\kappa^{5}-(C_{13}H_{9})C_{2}H_{4}N(H)C_{2}H_{4}N(H)Dipp}(THF)_{n}, [2(thf)_{n}]$

A drop of dry THF was added to a sample of **2** in C₆D₆. A species with sharp signals at room temperature was observed by NMR spectroscopy. ¹H-NMR (400 MHz, C₆D₆): δ 8.40 (d, ³J_{HH} = 7.6 Hz, 2H, Ar_{FI} H), 7.69 (d, ³J_{HH} = 8.2 Hz, 2H, Ar_{FI} H), 7.44 (m, 2H, Ar_{FI} H), 7.03 (m, 2H, Ar_{FI} H), 6.98 (s, 3H, Diip Ar H), 3.45 (m, 2H, CH₂), 3.06 (sept, ³J_{HH} = 6.8 Hz, 2H, Diip CH), 2.86 (m, 2H, CH₂), 2.60 (m, 1H, NH), 2.49 (m, 2H, CH₂), 2.13 (m, 2H, CH₂), 1.15 (d, ³J_{HH} = 6.7 Hz, 12H, Diip CH₃), 0.71 (m, 1H, NH). ¹³C-NMR (100 MHz, C₆D₆): δ 142.6, 141.7, 133.2, 127.6, 126.0, 124.4, 122.1, 121.2, 115.2, 112.1, 86.5, 52.4, 49.1, 46.8, 28.0, 24.8, 24.4. ⁷Li-NMR (155.4 MHz, C₆D₆): δ -2.65.

Figure S16. Variable temperature NMR study of $Li\{\kappa^{5-}(C_{13}H_9)C_2H_4N(H)C_2H_4N(H)Dipp\}$ (2) in d⁸-toluene.

Figure S18. 13 C-NMR of 3 in C₆D₆ at 25 °C

Figure S20. {¹H, ¹H} - NOESY of **3** in C_6D_6 at 25 °C. As indicated, the NH signal does not present crosspeaks with any of the isopropyl resonances from the Dipp fragment.

Figure S22. ¹³C-NMR of 4 in d_8 -THF at 25 °C

4

Figure S26. $^{\rm 119} Sn\text{-}NMR$ of 5 in d_8-THF at 25 °C

Figure S28. ¹H-NMR of 6 in d_8 -THF at 25 °C (0.003 mmol ml⁻¹)

Figure S29. ¹H-NMR of **6** at 700MHz in d_5 -pyridine at 25 °C. The large solvent resonances are from thf molecules displaced from the [Li(thf)₄] cations and residual protio impurities in the d^5 -pyridine solvent.

Figure S30. $^{\rm 13}\text{C}\text{-NMR}$ of 6 in d_8-THF at 25 °C

Figure S31. ¹¹⁹Sn-NMR of **6** in d₈-THF at 25 °C (0.034 mmol ml⁻¹). The very weak resonance at 115 ppm is from the thermal decomposition product of **6**.

Figure S32. ¹¹⁹Sn-NMR of **6** in d₈-THF at 25 °C (0.003 mmol ml⁻¹). The very weak resonance at 115 ppm is from the thermal thermal decomposition of **6**.

Figure S33. ¹¹⁹Sn-NMR of 6 at 261 MHz (700MHz spectrometer) in d₅-pyridine at 25 °C (0.02 mmol cm⁻³)

Supplementary Information Variable temperature NMR spectra for 6

Figure S36. Variable temperature ¹H-NMR of $6 d_8$ -thf: high frequency section

Figure S37. Variable temperature ¹H-NMR of 6 d₈-thf: medium frequency section

Figure S38. Variable temperature ¹H-NMR of **6** d₈-thf: low frequency section. The resonances under * are from trace hydrolysis of the complex. The resonances under # arise from a thermal decomposition process at higher temperatures.

Figure S40. Variable temperature ¹H-NMR of **6** d₈-toluene. The resonances under # arise from a thermal decomposition process at higher temperatures.

Figure S41. Variable temperature ¹H-NMR of $\mathbf{6}$ d₈-toluene: high frequency region.

Figure S42. Variable temperature ¹H-NMR of $6 d_8$ -toluene: low frequency region.

Figure S44. ¹³C-NMR of 7 in C_6D_6 at 25 °C

10 ppm

Figure S46. ¹H-NMR of 8 at 700 MHz in d₅-pyridine at 25 °C

Figure S49. ¹¹⁹Sn-NMR of 8 at 261 MHz (700MHz spectrometer) in C_6D_6 at 25 °C. No signal was observed in d_5 -pyridine at 261 MHz after similar experiment time.

Additional crystallographic details

Crystals of **1b** were pseudo-merohedrally twinned and a twin law was successfully applied. Refinement as a mixture of 7 parts **1b** to 1 part **1b·HCl** gave the best model, with hydrogen bonding to H_2O molecules modelled with the correct occupancies, to give a final moiety formula of $7(C_{21}H_{28}N_2)$, $1(C_{21}H_{29}N_2)Cl$, $4(H_2O)$, $6(H_2O)$.

Identification code	1a	1b	1b·2HCl
Empirical formula	$C_{29}H_{36}N_2$	C ₁₆₈ H ₂₄₅ ClN ₁₆ O ₁₀	$C_{29}H_{36}N_2$
Formula weight	412.60	2684.24	412.60
Temperature/K	100.0(2)	100(2)	100.0
Crystal system	triclinic	monoclinic	monoclinic
Space group	PError!	C2/c	$P2_1/n$
a/Å	8.8412(7)	34.733(3)	11.0999(6)
b/Å	10.2994(7)	5.8657(5)	7.4994(4)
c/Å	14.6904(11)	19.4635(17)	28.9734(15)
α/°	90.460(3)	90	90
β/°	102.300(3)	106.437(4)	100.948(2)
γ/°	111.703(3)	90	90
Volume/Å ³	1208.77(16)	3803.3(6)	2367.9(2)
Z	2	1	4
$\rho_{calc}g/cm^3$	1.134	1.172	1.157
µ/mm ⁻¹	0.065	0.089	0.067
F(000)	448.0	1462.0	896.0
Crystal size/mm ³	$0.48 \times 0.38 \times 0.26$	0.2 imes 0.2 imes 0.06	0.45 imes 0.20 imes 0.10
2⊖ range for data collection/°	2.85 to 64.746	2.182 to 49.492	5.132 to 54.928
Index ranges	$-13 \le h \le 13, -15 \le k \le 15, -22 \le l \le 20$	$-40 \le h \le 39, -6 \le k \le 6, -22 \le l \le 22$	$-14 \le h \le 14, -9 \le k \le 9, -36 \le l \le 37$
Reflections collected	32628	11915	38959
Independent reflections	8568 [$R_{int} = 0.0295, R_{sigma} = 0.0323$]	$3205 [R_{int} = 0.0371, R_{sigma} = 0.0451]$	5392 [$R_{int} = 0.0499, R_{sigma} = 0.0400$]
Data/restraints/parame ters	8568/0/290	3205/10/260	5392/0/290
GooF on F ²	1.025	1.049	1.060
Final R indexes [I>=2σ (I)]	$R_1 = 0.0444, wR_2 = 0.1143$	$R_1 = 0.0493, wR_2 = 0.1077$	$R_1 = 0.0544, wR_2 = 0.1131$
Final R indexes [all data]	$R_1 = 0.0600, wR_2 = 0.1237$	$R_1 = 0.0733, wR_2 = 0.1171$	$R_1 = 0.0826$, $wR_2 = 0.1244$
Largest diff. peak/hole $/e^{\text{Å}^{-3}}$	0.43/-0.23	0.19/-0.22	0.26/-0.28

Figure S50. Diagrams showing intermolecular interactions between N2 and H4 in of **1a** (*P***Error!**, left) and in the $P2_1/n$ polymorph of **1a** (top) leading to pairs of molecules and ribbons respectively.

Figure S51. Thermal ellipsoid plot of the molecular structure of 1b (left) and 1b·2HCl (right) with thermal ellipsoids at 50% probability. The positions of only the relevant hydrogen atoms are shown with the rest omitted for clarity along with H₂O molecules and partially occupied Cl (1/8 occupancy) for 1b. Selected bond distances (Å) and angles (°) for 1b: C1-C2 1.524(3), C1-C13 1.519(3), C1-C14 1.544(3), C2-C7 1.410(3), C7-C8 1.468(3), C8-C13 1.403(3); Σ (angles at C1) 327.9. H-bonding in the asymmetric unit of 1b·2HCl is highlighted in blue, with additional hydrogen bonding in red.

Additional references

- 1. I. K. Kormendy, Acta Chim. Acad. Sci. Hung., 1958, 17, 255.
- 2. M. Deppner, R. Burger and H. G. Alt, J. Organomet. Chem., 2004, 689, 1194.