Regioselectivity in C–H Activation: reagent control in cyclometallation of 2-(1-naphthyl)-pyridine

Mikhail Kondrashov, David Provost and Ola F. Wendt*

Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, S-

221 00 Lund, Sweden. E-mail: <u>ola.wendt@chem.lu.se</u>

Contents

1. Crystallography	.S2
2. NMR-spectra	.S4
H NMR Spectrum of Ruthenacycle 2	
¹³ C{ ¹ H} NMR Spectrum of Ruthenacycle 2	
H COSY NMR Spectrum of Ruthenacycle 2	
H NMR Spectrum of δ-deuterated 2-(1-naphthyl)-pyridine 1-da	
H NMR Spectrum of bis-deuterated 2-(1-naphthyl)-pyridine 1-d2	
H NMR Spectra of boracycle 6	
H COSY NMR Spectrum of boracycle 6	
¹³ C{ ¹ H} NMR Spectrum of boracycle 6	

Crystallography

	4	6
Formula	C ₂₅ H ₂₄ ClNRu	$C_{15}H_{10}BF_2N$
Fw	474.97	253.05
Space group	$P2_{1}/n$	$P2_{1}/c$
Crystal system	monoclinic	monoclinic
T/K	293	293
$a\Box/ m \AA$	7.9093(4)	7.9355(5)
b/Å	16.4319(8)	19.5025(11)
c/Å	16.0856(10)	8.0301(5)
β/deg	103.852(6)	111.383(7)
$V/Å^3$	2029.8(2)	1157.21(13)
Ζ	4	4
D_{calcd} /g cm ⁻³	1.554	1.452
μ /mm ⁻¹	0.914	0.106
θ -range /deg	2.48-28.93	2.76-30.03
No. reflns collected	14971	16901
No. of unique reflns	4668	3388
$R(F) (I > 2 \Box (I))^{a}$	0.0435	0.0495
$wR^2(F^2)$ (all data) ^b	0.1140	0.1392
S^{c}	1.072	1.048
$R_{\rm int}$	0.0592	0.0210
CCDC	1404269	1404270

 Table S1.Crystal data and refinement details for compounds 4 and 6.

 $\frac{1}{2} R = \Sigma (|F_o| - |F_c|) / \Sigma |F_o| \cdot {}^{\mathrm{b}} wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (F_o^2)^2]^{1/2}.$

^c $S = [\Sigma w F_o^2 - F_c^2)^2 / (n-p)]^{1/2}.$

Figure S1. Molecular structure of 4 at the 30% probability level.

Table S2. Selected distances (Å) and angles (deg) in 4:

Ru…N	2.088(3)	C(7)-Ru-C(21)	91.4(1)	N-C(5)-C(6)-C(7)	-10.2
RuC(7)	2.051(3)	C(7)-Ru-Cl	86.2(1)	N-Ru-C(16)-C(22)	41.0
Ru…Cl	2.4367(10)	N-Ru-Cl	85.2(1)	C(7)-C(6)-C(15)-C(14)	171.1
C(7)-Ru-N	76.6(1)	C(5)-C(6)-C(14)-H(14)	-14.3	C(25)-C(19)-Ru-Cl(1)	5.8
		C(5)-C(6)-C(7)-Ru	6.2	C(5)-C(6)-C(14)-H(14)	14.3

Figure S2. Molecular structure of 6 at the 30% probability level.

Table S3. Selected distances (Å) and angles (deg) in 6:

BN	1.604(2)	F(2)-B-F(1)	108.4(1)	C(15)-C(14)-B-N	-8.8
BC(14)	1.576(2)	F(1)-B-N	106.5(1)	B-C(14)-C(6)-C(5)	4.7
BF(2)	1.398(2)	N-B-C(14)	110.3(1)	C(6)-C(5) -N-B	8.2
BF(1)	1.404(2)	C(15)-C(14)-B	121.6(1)	C(5)-N-B-C(14)	12.3

NMR Spectra

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S4. Aromatic region of the ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S6. Low-field aromatic region of the COSY NMR spectrum (400 MHz, CDCl₃) of compound 4

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃) of δ -deuterated compound **1**-da

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃) of bis-deuterated compound 1-d2

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 6

Figure S10. Aromatic region of the ¹H NMR spectrum (400 MHz, CDCl₃) of compound 6

Figure S11. Aromatic region of the ¹H NMR spectrum (500 MHz, CD_2Cl_2) of bis-deuterated compound **6**, which was found to have better resolution of the resonances, than a spectrum in $CDCl_3$ and was used for gCOSY analysis.

Figure S12. Aromatic region of the COSY NMR spectrum (500 MHz, CD₂Cl₂) of compound 6

Figure S13. $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum (400 MHz, CDCl_3) of compound $\boldsymbol{6}$