### Supporting Information

# Intraprotein transmethylation via a CH<sub>3</sub>–Co(III) species in myoglobin reconstituted with a cobalt corrinoid complex

Yoshitsugu Morita,<sup>a</sup> Koji Oohora,<sup>ab</sup> Akiyoshi Sawada,<sup>c</sup> Kazuki Doitomi,<sup>c</sup> Jun Ohbayashi,<sup>a</sup> Takashi Kamachi,<sup>c</sup> Kazunari Yoshizawa,<sup>cd</sup> Yoshio Hisaeda<sup>e</sup> and Takashi Hayashi<sup>\*a</sup>

<sup>a</sup>Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan <sup>b</sup>Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan <sup>c</sup>Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan <sup>d</sup>Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan <sup>e</sup>Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka

819-0395, Japan

## Contens:

| Instruments                                             | 1  |
|---------------------------------------------------------|----|
| HPLC analysis for the kinetics of the transmethylation. | 2  |
| Reference                                               | 23 |

#### Instruments

UV-vis spectral measurements were carried out with a Shimadzu UV-3150 or UV-2550 double-beam spectrophotometer, or a Shimadzu BioSpec-nano spectrometer. ESI-TOF MS and MALDI-TOF MS analyses were performed with a Bruker Daltonics micrOTOF mass spectrometer and a Bruker autoflex III smartbeam mass spectrometer, respectively. <sup>1</sup>H and <sup>13</sup>C NMR spectra were collected on a Bruker BioSpin DPX400 (400 MHz) or a Varian Unity Inova 600 MHz NMR spectrometer. The <sup>1</sup>H and <sup>13</sup>C NMR chemical shift values are reported in ppm relative to a residual solvent peak. ICP-OES (inductively coupled plasma optical emission spectroscopy) was performed on a Shimadzu ICPS-7510 emission spectrometer. EPR spectra were measured using a Bruker EMX Plus spectrophotometer at the Instrument Center of the Institute for Molecular Science (Okazaki, Japan). CD

spectra were recorded at 25 °C on a JASCO spectropolarimeter (Model J-820). The pH measurements were made with an F-52 Horiba pH meter. Air-sensitive manipulations were performed in a UNILab glove box (MBraun, Germany).

#### HPLC analysis for the kinetics of the transmethylation.

The transmethylations reactions of native myoglobin and rMb(Co(TDHC)) were evaluated by HPLC analysis.

<u>Native myoglobin</u>: The solution of native myoglobin (25  $\mu$ M, 3 mL) in 0.1 M potassium phosphate buffer solution (pH 7.0) was reduced with 30  $\mu$ L of 10 mg/mL sodium dithionite (54.8 mM) in the same buffer solution and then methyl iodide (3  $\mu$ L) was added. At desired reaction times (0, 3, 7, 12, 24, 48 h), the protein solution (25  $\mu$ M, 0.5 mL) was passed through a PD MiniTrap G-25 column (GE Healthcare) equilibrated with 50 mM Tris-HCl buffer (pH 8) containing 6 M guanidine HCl at 4 °C. The buffer was exchanged to 50 mM Tris-HCl buffer (pH 7.6) containing 1 mM CaCl<sub>2</sub> using the same gel filtration column and the solution was concentrated to 50  $\mu$ L using an Amicon Ultra-4 Centrifugal Filter (10 kDa) (GE Healthcare). To the solution, Sequencing Grade Modified Trypsin (Promega) (0.05 mg/mL, 1  $\mu$ L) was added and the mixture was incubated at 37 °C overnight.

<u>rMb(Co<sup>II</sup>(TDHC))</u>: The protein (25  $\mu$ M, 5 mL) in 0.1 M potassium phosphate buffer solution (pH 7.0) was reduced with 50  $\mu$ L of 10 mg/mL sodium dithionite (54.8 mM) in the same buffer solution and then methyl iodide (5  $\mu$ L) was added. At desired reaction times (0, 6, 12, 24, 48 h), each protein solution (12.5  $\mu$ M, 1 mL) was dissolved in 4 mL of 17 mM Tris-HCl buffer (pH 8) containing 1 M guanidine HCl at 4 °C. After concentration to 0.5 mL, the protein solution was passed through the same gel filtration column equilibrated with 17 mM Tris-HCl buffer (pH 7.5) containing 1 M guanidine HCl at 4 °C. The buffer was exchanged to 50 mM Tris-HCl buffer (pH 7.6) containing 1 mM CaCl<sub>2</sub> and concentrated until 50  $\mu$ L using the same centrifugal filter. To each solution, Sequencing Grade Modified Trypsin (Promega) (0.5 mg/mL, 1  $\mu$ L) was added and the mixture was incubated at 37 °C for 2 h.

The solutions containing the peptide fragments were analyzed by HPLC with a YMC-Pack Pro C18 column. The analysis was performed at a flow rate of 1 mL/min of 75% or 78% water/acetonitrile co-solvent containing 0.1% TFA for 40 or 70 min in a column oven at 60 °C (Fig. S10 and 5a), respectively. Each fraction was characterized by ESI-TOF-MS.

The fractions of the peaks located at about 56 and 58 min in Fig. 5a were assigned to the peptide containing non-methylated His64, HGTVVLTALGGILK, and the peptide containing methylated His64, H(CH<sub>3</sub>)GTVVLTALGGILK, by ESI-TOF MS. Found m/z = 1378.813 (56 min) and 1392.829 (58 min), calculated m/z = 1378.841 (z = 1+) and 1392.857 (z = 1+). The concentration of the methylated peptide was determined from the ratio of peak areas of methylated and non-methylated peptides.



**Fig. S1.** The spectral changes of rMb(CH<sub>3</sub>–Co<sup>III</sup>(TDHC)) species induced by photo-irradiation over 90 sec in the aqueous solution containing 4-hydroxy-TEMPO as a radical quencher. Green and blue spectra represents the initial and final stages of the photoreaction, respectively. The aqueous solution was irradiated by a 500 W xenon arc lamp (Ushio Optical Modulex, SX-U1501XQ) filtered with cut-off filters (Asahi Spectra, Super cold filter 5C0751 and HOYA CANDEO OPTONICS, Sharp cut filter L42). The illuminance of the irradiated light from 420 nm to 800 nm monitored by a luminometer (MINOLTA, Illuminance meter T-10P) was  $1.8 \times 10^5$  lux. Conditions: [protein] = 0.024 mM and [4-hydroxy-TEMPO] = 0.038 mM in 0.1 M potassium phosphate buffer (pH 7.0) at 25 °C under N<sub>2</sub> atmosphere.



**Fig. S2.** The CD and UV-vis spectra of (a)  $rMb(CH_3-Co^{III}(TDHC))$  and (b) native myoglobin in the visible region. Solid and dashed lines represent CD and UV-vis spectra, respectively. Conditions: (a)  $[rMb(CH_3-Co^{III}(TDHC))] = 0.023 \text{ mM}$  in 0.1 M potassium phosphate buffer (pH 7.0) at 25 °C under N<sub>2</sub> atmosphere, (b) [native myoglobin] = 0.0020 mM in the same buffer at 25 °C.



**Fig. S3.** Circular dichroism (CD) spectra of  $rMb(Co^{II}(TDHC))$  (blue),  $rMb(Co^{I}(TDHC))$  (red) and  $rMb(CH_3-Co^{III}(TDHC))$  (green). Conditions: [protein] = 0.018 mM in 0.1 M potassium phosphate buffer (pH 7.0) at 25 °C under N<sub>2</sub> atmosphere. In the case of  $rMb(CH_3-Co^{III}(TDHC))$ , the region of the spectrum below 210 nm is omitted due to the strong absorption of excess methyl iodide in this region.



**Fig. S4.** ESI mass spectra (negative mode) of the reaction sample,  $rMb(CH_3-Co^{III}(TDHC))$ , prepared by addition of methyl iodide to  $rMb(Co^{I}(TDHC))$  at 4 °C in 0.1 M ammonium acetate buffer solution (pH 6.7): (a) the raw spectrum, and (b) the expanded spectrum. The ESI-TOF MS conditions are described below. Depending on the voltage settings in the ion sampling interface, the cofactor–protein interaction in myoglobin can be disrupted by CID (collision-induced dissociation) in the interface region of the mass spectrometer.<sup>S1</sup> The voltage difference between the gas capillary exit and the 1st skimmer was 20 V. The desolvation temperature was 180 °C.



**Fig. S5.** UV-vis spectral changes of the Co(I) species after addition of methyl iodide until 20 min at 25 °C. (a) rMb(Co<sup>I</sup>(TDHC)) in 0.1 M potassium phosphate buffer solution (pH 7); (b) Co<sup>I</sup>(TDHC) dimethyl ester in CH<sub>2</sub>Cl<sub>2</sub>; (c) Co<sup>I</sup>(TDHC) dimethyl ester in CH<sub>2</sub>Cl<sub>2</sub> containing imidazole. Conditions: [Co(I) species] = 25  $\mu$ M, [CH<sub>3</sub>I] = 16 mM, [Imidazole] = 1 mM. (d) Time courses of the spectral changes of rMb(Co<sup>I</sup>(TDHC)) at 525 nm (circle,  $\circ$ ), Co<sup>I</sup>(TDHC) ester in CH<sub>2</sub>Cl<sub>2</sub> (rhombus, x) and the Co(I) complex in CH<sub>2</sub>Cl<sub>2</sub> containing imidazole (triangle,  $^{*}$ ) at 25 °C. Conditions: [Co(I) species] = 25  $\mu$ M, [CH<sub>3</sub>I] = 16 mM, [imidazole] = 1 mM.



**Fig. S6.** Crystal structures of two oxidation states of the reconstituted protein.<sup>S2</sup> The cofactors and the heme pocket residues of rMb(Co<sup>I</sup>(TDHC)) (light blue) and rMb(Co<sup>II</sup>(TDHC)) (yellow) are superimposed. The  $2F_o - F_c$  electron density is shown as a blue grid (contoured at 1.0  $\sigma$ ) around the His93 residue of rMb(Co<sup>I</sup>(TDHC)).



Fig. S7. Structure of (a) Co(corrin) and (b) Co(TDHC') optimized by DFT calculations.



**Fig. S8.** MALDI-TOF MS (in-source decay mode) spectra of  $rMb(CH_3-Co^{III}(TDHC))$  treated with methyl iodide after the reaction for 0, 3, 6, 14 and 24 h.



**Fig. S9.** (a) <sup>1</sup>H NMR (600 MHz,  $D_2O/CD_3CN$  (9:1)) spectrum of the peptide of H(<sup>13</sup>CH<sub>3</sub>)GTVVLTALGGILK and (b) <sup>1</sup>H NMR (400 MHz,  $D_2O/CD_3CN$  (9:1) containing 1% TFA) spectrum of N $\epsilon$ 2-methylated histidine as an authentic sample.



**Fig. S10**. (a) The HPLC trace for the mixture of the digested peptides including normal His64 and the N $\epsilon$ -methyl His64, which was obtained by the transmethylation. (b) The HPLC traces for the digested peptides of native myoglobin after the reaction in 0.1 M potassium phosphate buffer solution (pH 7) at 25 °C for several hours. The reaction times are indicated in each trace. The analysis was performed at a flow rate of 1 mL/min of 75% water/acetonitrile co-solvent containing 0.1% TFA for 40 min using a column oven at 60 °C. The fractions of the peaks around 37 and 38 min were assigned to the peptide containing methylated and non-methylated HGTVVLTALGGILK by ESI-TOF MS, respectively.



Fig. S11. UV-vis spectra of methylcobalamin in 0.1 M potassium phosphate buffer solution (pH 7.0) upon addition of each amino acid: (a) histidine or (b) cysteine until 12 h at 25 °C. Conditions: [methylcobalamin] = 16  $\mu$ M, [His] = [Cys] = 25  $\mu$ M.



**Fig. S12.** (a) Schematic structure of Co(TDHC') used for DFT calculations. The asterisks identify the fixed carbon atoms to retain the structure of the active site. (b) Optimized structure of  $CH_3$ -Co(TDHC') (RC) and (c) a superimposition of Co(TDHC') (pink) and rMb(Co(TDHC)) (PDB ID: 3WFT) (gray) structures. The fixed atoms are shown as black spheres.



**Fig. S13.** (a) UV-vis spectral changes of the Co<sup>II</sup>(TDHC) (8.7  $\mu$ M) at various concentrations of apoMb (1.55–15.5  $\mu$ M) in 0.1 M potassium phosphate buffer solution (pH 7.0) at 25 °C. (b) The plots of absorption at 510 nm against concentrations of apoMb with a fitting curve to determine the dissociation constant (*K*<sub>d</sub>). (c) UV-vis spectra of Co<sup>II</sup>(TDHC) (50  $\mu$ M) under the same conditions in the absence (red solid line) and presence of imidazole (1 mM) (blue dashed line).

| cobalt     | BDE (kcal/mol)             |                            | cobalt BDE (kcal/mol)            |                          | stabilization b<br>coordination ( | y the axial<br>kcal/mol) <sup>e</sup> |
|------------|----------------------------|----------------------------|----------------------------------|--------------------------|-----------------------------------|---------------------------------------|
| complex    | Im-coordin                 | ated                       | Im-free CH <sub>3</sub> -Co(III) | CH <sub>3</sub> -Co(III) | Co(II)                            |                                       |
|            | CH <sub>3</sub> -Co(III) c | omplex <sup><i>a</i></sup> | $complex^d$                      | complex                  | complex                           |                                       |
| Co(corrin) | $36.4^{b}$                 | $58.2^{c}$                 | 42.3                             | 15.9                     | 21.8                              |                                       |
| Co(TDHC')  | $32.5^{b}$                 | 56.1 <sup>c</sup>          | 41.8                             | 14.3                     | 23.6                              |                                       |

Table S1. DFT-computed homolytic bond-dissociation energy (BDE) and stabilization energy induced by coordination of imidazole in the gas phase.

<sup>*a*</sup>Two cases of homolytic BDE of the imidazole-coordinated CH<sub>3</sub>–Co(III) complex were calculated. <sup>*b*</sup>The methylated complex is split into two fragments, a methyl radical and a corresponding penta-coordinated Co(II) complex with imidazole as an axial ligand. Thus, the BDE of CH<sub>3</sub>–Co in the methylated complex (hexa-coordination) was determined. <sup>*c*</sup>In contrast, the methylated complex is split into three fragments, a methyl radical, imidazole, and a corresponding tetra-coordinated Co(II) complex. Thus, the BDE of the methylated complex (hexa-coordination) includes dissociation of CH<sub>3</sub>–Co and Co–Im bonds. <sup>*d*</sup>The BDE of the Co–CH<sub>3</sub> bond in the methylated complex (penta-coordination) was determined. <sup>*e*</sup>The stabilization energy was evaluated by the BDE value of the Co–N(Im) bond in the each imidazole-coordinated complex. The energy diagram for the homolytic dissociation is illustrated below.



#### Table S2. Cartesian coordinates for the optimized structure of the reaction complex (RC).

| С  | 0.381373  | 4.162653  | 1.141637  |
|----|-----------|-----------|-----------|
| С  | 0.800385  | 3.612177  | 2.323176  |
| С  | 0.836120  | 2.169769  | 2.134539  |
| N  | 0.441244  | 1.869682  | 0.822200  |
| С  | 0.138614  | 3.073448  | 0.221790  |
| С  | 1.206839  | 1.217986  | 3.080111  |
| С  | 1.308836  | -0.161496 | 2.760864  |
| N  | 1.007634  | -0.598509 | 1.523920  |
| С  | 1.374271  | -2.017331 | 1.409294  |
| С  | 1.742398  | -2.412812 | 2.805642  |
| С  | 1.761635  | -1.290471 | 3.578274  |
| С  | 0.199256  | -2.622393 | 0.587086  |
| N  | -0.081933 | -1.571960 | -0.408394 |
| С  | -0.266924 | -2.141900 | -1.609844 |
| С  | -0.027213 | -3.587194 | -1.511517 |
| С  | 0.307143  | -3.880766 | -0.227599 |
| С  | -0.619557 | -1.361094 | -2.740809 |
| С  | -0.714127 | 0.024326  | -2.683702 |
| С  | -1.077280 | 0.911297  | -3.779145 |
| С  | -1.008634 | 2.192165  | -3.301929 |
| С  | -0.594960 | 2.112523  | -1.917617 |
| N  | -0.422451 | 0.793783  | -1.546303 |
| С  | -0.353631 | 3.198471  | -1.077400 |
| Со | 0.102193  | 0.159062  | 0.135873  |
| С  | -1.659009 | 0.236893  | 1.001272  |
| С  | 4.680698  | -0.416105 | 0.318245  |
| С  | 5.846548  | -0.151022 | -0.381938 |
| N  | 5.828955  | -1.073078 | -1.425131 |
| С  | 4.693893  | -1.833150 | -1.311819 |
| С  | 6.935262  | 0.865457  | -0.188559 |
| С  | 6.887538  | 2.045062  | -1.186400 |
| N  | -4.418454 | -1.476089 | 0.129344  |
| С  | -5.072788 | -0.481557 | -0.583161 |
| С  | -6.378714 | -0.315194 | -0.148554 |
| N  | -6.513119 | -1.252119 | 0.872680  |
| С  | -5.319546 | -1.919342 | 0.999520  |
| С  | -7.472898 | 0.631718  | -0.550304 |
| С  | -7.738884 | 1.756557  | 0.476523  |
| Н  | -8.539360 | 2.427862  | 0.119967  |
| Н  | -8.054139 | 1.348752  | 1.453670  |
| Н  | -6.829592 | 2.359231  | 0.643166  |
| Н  | -8.411499 | 0.072830  | -0.737122 |
| Н  | -7.190754 | 1.078938  | -1.520371 |
| Н  | -7.359646 | -1.424383 | 1.413890  |
| Н  | -4.569041 | 0.065200  | -1.381560 |
| Н  | -5.169780 | -2.714348 | 1.730686  |
| Н  | 7.701460  | 2.760326  | -0.977303 |
| Н  | 7.002668  | 1.701246  | -2.229897 |
| Н  | 5.926597  | 2.582603  | -1.114015 |
| Н  | 7.925769  | 0.372310  | -0.244741 |
| Н  | 6.850718  | 1.253536  | 0.842256  |

| Н | 6.549304  | -1.175028 | -2.139426 |
|---|-----------|-----------|-----------|
| Н | 4.317345  | 0.087434  | 1.214293  |
| Н | 4.450079  | -2.637409 | -2.005527 |
| Н | -0.544747 | 4.204177  | -1.463077 |
| Н | -0.822318 | -1.862393 | -3.691277 |
| Н | -0.112115 | -4.282534 | -2.349518 |
| Н | 0.519691  | -4.867499 | 0.188414  |
| Н | -0.679535 | -2.697294 | 1.262484  |
| Н | 2.299002  | -2.057406 | 0.759640  |
| Н | 2.075709  | -3.411006 | 3.096971  |
| Н | 2.076141  | -1.210588 | 4.621196  |
| Н | 1.469029  | 1.554315  | 4.087310  |
| Н | -1.498027 | 0.219357  | 2.091127  |
| Н | -2.123051 | 1.186262  | 0.693704  |
| Н | -2.266447 | -0.615817 | 0.658712  |
| Н | -1.337814 | 0.577009  | -4.784375 |
| Н | -1.205036 | 3.121641  | -3.838757 |
| Н | 0.243295  | 5.218623  | 0.903837  |
| Н | 1.078274  | 4.123104  | 3.246127  |
| N | 3.970806  | -1.458246 | -0.260474 |

Table S3. Cartesian coordinates for the optimized structure of the transition state (TS1) of deligation of imidazole in the stepwise pathway.

| С  | 0.897200  | 3.771321  | 1.830367  |
|----|-----------|-----------|-----------|
| С  | 1.161760  | 2.983442  | 2.918539  |
| С  | 1.026919  | 1.599517  | 2.487533  |
| Ν  | 0.691825  | 1.575910  | 1.126250  |
| С  | 0.585986  | 2.890493  | 0.726620  |
| С  | 1.196925  | 0.463245  | 3.276049  |
| С  | 1.128101  | -0.846097 | 2.731694  |
| Ν  | 0.845964  | -1.026359 | 1.431089  |
| С  | 1.017769  | -2.444592 | 1.084373  |
| С  | 1.257053  | -3.115611 | 2.406762  |
| С  | 1.373613  | -2.151111 | 3.359769  |
| С  | -0.195605 | -2.729300 | 0.146208  |
| Ν  | -0.255005 | -1.507991 | -0.676036 |
| С  | -0.439411 | -1.847296 | -1.959644 |
| С  | -0.425003 | -3.310511 | -2.088776 |
| С  | -0.224323 | -3.848238 | -0.857123 |
| С  | -0.596231 | -0.853158 | -2.961681 |
| С  | -0.493485 | 0.504137  | -2.680931 |
| С  | -0.663960 | 1.599356  | -3.625247 |
| С  | -0.449263 | 2.762714  | -2.937194 |
| С  | -0.133260 | 2.401547  | -1.571850 |
| Ν  | -0.168198 | 1.031325  | -1.421719 |
| С  | 0.200021  | 3.292489  | -0.551734 |
| Со | 0.168774  | 0.065441  | 0.145155  |
| С  | -1.608798 | 0.278420  | 0.953070  |
|    |           |           |           |

| С | 4.174977  | -0.208086 | 0.138224  |
|---|-----------|-----------|-----------|
| С | 5.463876  | -0.149702 | -0.368177 |
| Ν | 5.373180  | -0.809021 | -1.591433 |
| С | 4.077568  | -1.223582 | -1.762422 |
| С | 6.740001  | 0.435773  | 0.166989  |
| С | 7.319567  | 1.597121  | -0.671668 |
| Ν | -4.404947 | -1.375244 | 0.021931  |
| С | -4.969193 | -0.305604 | -0.658818 |
| С | -6.237377 | -0.008093 | -0.184601 |
| Ν | -6.443355 | -0.941884 | 0.827492  |
| С | -5.324933 | -1.734250 | 0.911370  |
| С | -7.231890 | 1.059809  | -0.539767 |
| С | -7.344470 | 2.188590  | 0.511004  |
| Н | -8.074780 | 2.949917  | 0.186339  |
| Н | -7.677498 | 1.801030  | 1.490517  |
| Н | -6.369953 | 2.684345  | 0.660819  |
| Н | -8.231002 | 0.610607  | -0.707699 |
| Н | -6.928870 | 1.491068  | -1.510742 |
| Н | -7.289108 | -1.033093 | 1.389287  |
| Н | -4.431660 | 0.197756  | -1.463679 |
| Н | -5.241674 | -2.552565 | 1.627268  |
| Н | 8.240450  | 1.986697  | -0.205089 |
| Н | 7.578691  | 1.274013  | -1.696119 |
| Н | 6.595744  | 2.425881  | -0.754060 |
| Н | 7.505210  | -0.359971 | 0.268932  |
| Н | 6.535997  | 0.789434  | 1.193459  |
| Н | 6.141719  | -0.959961 | -2.244060 |
| Н | 3.816361  | 0.198516  | 1.084203  |
| Н | 3.747125  | -1.768412 | -2.646647 |
| Н | 0.167456  | 4.364096  | -0.769100 |
| Н | -0.808568 | -1.162149 | -3.989000 |
| Н | -0.558262 | -3.846462 | -3.031142 |
| Н | -0.194093 | -4.908646 | -0.599150 |
| Н | -1.110472 | -2.770251 | 0.773988  |
| Н | 1.931675  | -2.500501 | 0.449433  |
| Н | 1.429632  | -4.186106 | 2.535184  |
| Н | 1.625254  | -2.290632 | 4.413468  |
| Н | 1.432667  | 0.591006  | 4.336355  |
| Н | -1.492768 | 0.203908  | 2.046155  |
| Н | -1.970843 | 1.278151  | 0.668309  |
| Н | -2.278755 | -0.503893 | 0.563365  |
| Н | -0.908641 | 1.473086  | -4.680871 |
| Н | -0.484428 | 3.785101  | -3.316926 |
| Н | 0.908072  | 4.860857  | 1.771427  |
| Н | 1.434767  | 3.293977  | 3.928065  |
| Ν | 3.317516  | -0.875331 | -0.726873 |

 Table S4. Cartesian coordinates for the optimized structure of the intermediate (Int) in the stepwise pathway.

| С  | 0.381373  | 4.162653  | 1.141637  |
|----|-----------|-----------|-----------|
| С  | 0.800385  | 3.612177  | 2.323176  |
| С  | 0.836120  | 2.169769  | 2.134539  |
| Ν  | 0.441244  | 1.869682  | 0.822200  |
| С  | 0.138614  | 3.073448  | 0.221790  |
| С  | 1.206839  | 1.217986  | 3.080111  |
| С  | 1.308836  | -0.161496 | 2.760864  |
| N  | 1.007634  | -0.598509 | 1.523920  |
| С  | 1.374271  | -2.017331 | 1.409294  |
| C  | 1.742398  | -2.412812 | 2.805642  |
| C  | 1.761635  | -1.290471 | 3.578274  |
| C  | 0.199256  | -2.622393 | 0.587086  |
| N  | -0.081933 | -1 571960 | -0 408394 |
| C  | -0 266924 | -2 141900 | -1 609844 |
| C  | -0.027213 | -3 587194 | -1 511517 |
| C  | 0.307143  | -3 880766 | -0 227599 |
| C  | -0.619557 | -1 361094 | -2 740809 |
| C  | -0 714127 | 0.024326  | -2 683702 |
| C  | -1 077280 | 0.911297  | -3 779145 |
| C  | -1 008634 | 2 192165  | -3 301929 |
| C  | -0 594960 | 2 112523  | -1 917617 |
| N  | -0 422451 | 0 793783  | -1 546303 |
| C  | -0.353631 | 3 198471  | -1 077400 |
| Co | 0 102193  | 0 159062  | 0 135873  |
| C  | -1 659009 | 0.236893  | 1 001272  |
| C  | 4 680698  | -0 416105 | 0.318245  |
| C  | 5 846548  | -0 151022 | -0.381938 |
| N  | 5 828955  | -1 073078 | -1 425131 |
| C  | 4 693893  | -1 833150 | -1.311819 |
| C  | 6 935262  | 0 865457  | -0 188559 |
| C  | 6 887538  | 2 045062  | -1 186400 |
| N  | -4 418454 | -1 476089 | 0 129344  |
| C  | -5 072788 | -0 481557 | -0.583161 |
| C  | -6 378714 | -0 315194 | -0 148554 |
| N  | -6 513119 | -1 252119 | 0.872680  |
| C  | -5 319546 | -1 919342 | 0.999520  |
| C  | -7 472898 | 0.631718  | -0 550304 |
| C  | -7 738884 | 1 756557  | 0 476523  |
| н  | -8 539360 | 2 427862  | 0 119967  |
| н  | -8 054139 | 1 348752  | 1 453670  |
| н  | -6 829592 | 2 359231  | 0.643166  |
| н  | -8 411499 | 0.072830  | -0 737122 |
| н  | -7 190754 | 1 078938  | -1 520371 |
| н  | -7 359646 | -1 424383 | 1 413890  |
| н  | -4 569041 | 0.065200  | -1 381560 |
| н  | -5 169780 | -2 714348 | 1 730686  |
| н  | 7 701460  | 2 760326  | -0.977303 |
| н  | 7 002668  | 1 701246  | -2 220807 |
| н  | 5 926597  | 2 582603  | -1 114015 |
| н  | 7 925769  | 0.372310  | -0 244741 |
| H  | 6.850718  | 1.253536  | 0.842256  |
|    | 2.0001.0  |           |           |

| Н | 6.549304  | -1.175028 | -2.139426 |
|---|-----------|-----------|-----------|
| Н | 4.317345  | 0.087434  | 1.214293  |
| Н | 4.450079  | -2.637409 | -2.005527 |
| Н | -0.544747 | 4.204177  | -1.463077 |
| Н | -0.822318 | -1.862393 | -3.691277 |
| Н | -0.112115 | -4.282534 | -2.349518 |
| Н | 0.519691  | -4.867499 | 0.188414  |
| Н | -0.679535 | -2.697294 | 1.262484  |
| Н | 2.299002  | -2.057406 | 0.759640  |
| Н | 2.075709  | -3.411006 | 3.096971  |
| Н | 2.076141  | -1.210588 | 4.621196  |
| Н | 1.469029  | 1.554315  | 4.087310  |
| Н | -1.498027 | 0.219357  | 2.091127  |
| Н | -2.123051 | 1.186262  | 0.693704  |
| Н | -2.266447 | -0.615817 | 0.658712  |
| Н | -1.337814 | 0.577009  | -4.784375 |
| Н | -1.205036 | 3.121641  | -3.838757 |
| Н | 0.243295  | 5.218623  | 0.903837  |
| Н | 1.078274  | 4.123104  | 3.246127  |
| N | 3.970806  | -1.458246 | -0.260474 |

 Table S5. Cartesian coordinates for the optimized structure of the transition state (TS2) of the transmethylation in the stepwise pathway.

| 8.060826  | -0.071712                                                                                                                                                                                                                                                                                                          | 1.113579                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 7.639743  | -0.726638                                                                                                                                                                                                                                                                                                          | -0.221735                                            |
| 6.292071  | -0.263375                                                                                                                                                                                                                                                                                                          | -0.691438                                            |
| 6.091269  | 0.916276                                                                                                                                                                                                                                                                                                           | -1.404490                                            |
| 5.017939  | -0.758703                                                                                                                                                                                                                                                                                                          | -0.476424                                            |
| 4.753989  | 1.100097                                                                                                                                                                                                                                                                                                           | -1.599568                                            |
| 4.087226  | 0.088957                                                                                                                                                                                                                                                                                                           | -1.045779                                            |
| 9.049854  | -0.445444                                                                                                                                                                                                                                                                                                          | 1.428641                                             |
| 8.127080  | 1.026728                                                                                                                                                                                                                                                                                                           | 1.023462                                             |
| 7.334759  | -0.302979                                                                                                                                                                                                                                                                                                          | 1.911101                                             |
| 8.399991  | -0.526772                                                                                                                                                                                                                                                                                                          | -1.000652                                            |
| 7.605348  | -1.823971                                                                                                                                                                                                                                                                                                          | -0.103618                                            |
| 6.829461  | 1.534340                                                                                                                                                                                                                                                                                                           | -1.743410                                            |
| 4.717602  | -1.662340                                                                                                                                                                                                                                                                                                          | 0.052348                                             |
| 4.319919  | 1.945378                                                                                                                                                                                                                                                                                                           | -2.130399                                            |
| -6.464505 | 2.293847                                                                                                                                                                                                                                                                                                           | 1.569791                                             |
| -6.883791 | 1.461467                                                                                                                                                                                                                                                                                                           | 0.337171                                             |
| -5.960490 | 0.314087                                                                                                                                                                                                                                                                                                           | 0.047696                                             |
| -5.956033 | -0.871378                                                                                                                                                                                                                                                                                                          | 0.777933                                             |
| -4.929875 | 0.151005                                                                                                                                                                                                                                                                                                           | -0.863483                                            |
| -4.957162 | -1.674147                                                                                                                                                                                                                                                                                                          | 0.289778                                             |
| -4.313396 | -1.081054                                                                                                                                                                                                                                                                                                          | -0.710451                                            |
| -7.163196 | 3.133848                                                                                                                                                                                                                                                                                                           | 1.727199                                             |
| -6.460046 | 1.682627                                                                                                                                                                                                                                                                                                           | 2.489926                                             |
| -5.449896 | 2.706581                                                                                                                                                                                                                                                                                                           | 1.436700                                             |
|           | 8.060826<br>7.639743<br>6.292071<br>6.091269<br>5.017939<br>4.753989<br>4.087226<br>9.049854<br>8.127080<br>7.334759<br>8.399991<br>7.605348<br>6.829461<br>4.717602<br>4.319919<br>-6.464505<br>-6.883791<br>-5.960490<br>-5.956033<br>-4.929875<br>-4.957162<br>-4.313396<br>-7.163196<br>-6.460046<br>-5.449896 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

| Н  | -7.920262 | 1.093481  | 0.469926  |
|----|-----------|-----------|-----------|
| Н  | -6.906089 | 2.111725  | -0.555566 |
| Н  | -6.599142 | -1.105712 | 1.533402  |
| Н  | -4.601209 | 0.856246  | -1.627295 |
| Н  | -4.751315 | -2.668216 | 0.685962  |
| С  | 0.933053  | -0.095736 | 4.103339  |
| С  | 0.682923  | -1.433200 | 3.931419  |
| С  | 0.302430  | -1.623921 | 2.542887  |
| Ν  | 0.323732  | -0.384394 | 1.882045  |
| С  | 0.695081  | 0.550924  | 2.833920  |
| С  | 0.785790  | 1.920176  | 2.585763  |
| С  | -0.054098 | -2.829088 | 1.937745  |
| С  | -0.364062 | -2.917686 | 0.561521  |
| Ν  | -0.264377 | -1.835833 | -0.242275 |
| С  | -0.839132 | -4.066840 | -0.217733 |
| С  | -1.030131 | -3.672671 | -1.504054 |
| С  | -0.583983 | -2.241515 | -1.629917 |
| С  | -1.504164 | -1.091454 | -2.125276 |
| Ν  | -0.886827 | 0.108852  | -1.532734 |
| С  | -1.714574 | -0.725514 | -3.563747 |
| С  | -1.436980 | 0.599804  | -3.711383 |
| С  | -0.933918 | 1.115037  | -2.434656 |
| С  | -0.544740 | 2.425379  | -2.069215 |
| С  | -0.127550 | 2.741419  | -0.775327 |
| С  | 0.202026  | 4.062139  | -0.269437 |
| Ν  | 0.039503  | 1.798103  | 0.251896  |
| С  | 0.467417  | 2.507397  | 1.360403  |
| С  | 0.559850  | 3.913922  | 1.046778  |
| Н  | 1.104167  | 2.573387  | 3.404051  |
| Н  | -0.096537 | -3.731992 | 2.553828  |
| Н  | -0.613060 | 3.229462  | -2.808072 |
| Н  | 0.347739  | -2.201062 | -2.235115 |
| Н  | -2.511427 | -1.239543 | -1.638370 |
| Н  | 0.741087  | -2.231807 | 4.672727  |
| Н  | -1.010346 | -5.062150 | 0.199590  |
| Н  | -1.355137 | -4.292523 | -2.342020 |
| Н  | -2.157237 | -1.387687 | -4.310807 |
| Н  | -1.571893 | 1.206786  | -4.609959 |
| Н  | 0.142691  | 4.981956  | -0.853627 |
| Co | -0.120223 | -0.060404 | 0.095094  |
| С  | 2.167551  | 0.018710  | -0.609160 |
| Н  | 1.864515  | 0.585893  | -1.487768 |
| Н  | 2.338634  | 0.526981  | 0.335782  |
| Н  | 2.160329  | -1.068139 | -0.644576 |
| Н  | 1.236823  | 0.419421  | 5.016321  |
| Н  | 0.855927  | 4.690453  | 1.754330  |

Table S6. Cartesian coordinates for the optimized structure of the transition state ( $TS_{concerted}$ ) of the concerted pathway.

| С | 7.697488  | 0.787248  | -1.445764 |
|---|-----------|-----------|-----------|
| С | 7.467503  | 0.497745  | 0.055071  |
| С | 6.145668  | -0.163377 | 0.312457  |
| Ν | 5.936503  | -1.535514 | 0.194932  |
| С | 4.892068  | 0.356730  | 0.580788  |
| С | 4.614234  | -1.805969 | 0.388601  |
| Ν | 3.965920  | -0.667380 | 0.629201  |
| Н | 8.671779  | 1.282602  | -1.595890 |
| Н | 7.694436  | -0.141506 | -2.042754 |
| Н | 6.909495  | 1.448454  | -1.843878 |
| Н | 8.288479  | -0.127932 | 0.453791  |
| Н | 7.498363  | 1.442364  | 0.625952  |
| Н | 6.661782  | -2.229363 | 0.009235  |
| Н | 4.601746  | 1.395149  | 0.734873  |
| Н | 4.175588  | -2.801354 | 0.350758  |
| С | -6.861699 | -1.387039 | -1.740589 |
| С | -6.537997 | -0.696063 | -0.397984 |
| С | -5.208197 | -0.001586 | -0.394575 |
| Ν | -4.971255 | 1.204461  | -1.048166 |
| С | -3.972282 | -0.350062 | 0.124857  |
| С | -3.645888 | 1.523238  | -0.894922 |
| Ν | -3.008755 | 0.597049  | -0.185609 |
| н | -7.838426 | -1.898999 | -1.690444 |
| Н | -6.906069 | -0.659749 | -2.570883 |
| Н | -6.090664 | -2.135166 | -1.991758 |
| Н | -7.344553 | 0.018958  | -0.141314 |
| Н | -6.530448 | -1.447817 | 0.411448  |
| Н | -5.667528 | 1.754924  | -1.549945 |
| Н | -3.720752 | -1.242669 | 0.698924  |
| Н | -3.201080 | 2.425973  | -1.312439 |
| С | 0.337339  | 2.115622  | -3.398806 |
| С | 0.191155  | 3.188916  | -2.555750 |
| С | -0.012295 | 2.658756  | -1.217736 |
| Ν | 0.012752  | 1.257244  | -1.270977 |
| С | 0.214267  | 0.921394  | -2.596578 |
| С | 0.260346  | -0.389691 | -3.072619 |
| С | -0.222375 | 3.396411  | -0.050017 |
| С | -0.365940 | 2.782997  | 1.217181  |
| Ν | -0.259749 | 1.444900  | 1.354979  |
| С | -0.671384 | 3.386049  | 2.520637  |
| С | -0.754669 | 2.398494  | 3.450836  |
| С | -0.404768 | 1.094747  | 2.784428  |
| С | -1.364055 | -0.134285 | 2.738728  |
| Ν | -0.885873 | -0.884283 | 1.562464  |
| С | -1.452954 | -1.173243 | 3.825245  |
| С | -1.210862 | -2.390679 | 3.268753  |
| С | -0.871599 | -2.203025 | 1.851328  |
| С | -0.573605 | -3.154568 | 0.847460  |
| С | -0.313415 | -2.781948 | -0.475540 |

| С  | -0.077507 | -3.674596 | -1.598060 |
|----|-----------|-----------|-----------|
| N  | -0.231165 | -1.454526 | -0.919314 |
| С  | 0.055026  | -1.512397 | -2.269834 |
| С  | 0.142590  | -2.887785 | -2.701056 |
| Н  | 0.456295  | -0.545444 | -4.138027 |
| Н  | -0.272374 | 4.486940  | -0.122356 |
| Н  | -0.586069 | -4.219326 | 1.098588  |
| Н  | 0.569262  | 0.727813  | 3.173966  |
| Н  | -2.374327 | 0.262368  | 2.504109  |
| Н  | 0.217508  | 4.251183  | -2.804598 |
| Н  | -0.814096 | 4.457148  | 2.683861  |
| Н  | -0.937168 | 2.515647  | 4.520985  |
| Н  | -1.774515 | -0.972444 | 4.849287  |
| Н  | -1.263055 | -3.362822 | 3.765272  |
| Н  | -0.098049 | -4.764168 | -1.539265 |
| Co | -0.311236 | 0.085689  | 0.150885  |
| С  | 2.062289  | -0.371273 | 0.493650  |
| Н  | 1.779563  | -1.334245 | 0.915506  |
| Н  | 2.106888  | -0.243020 | -0.584379 |
| Н  | 2.086162  | 0.505442  | 1.136784  |
| Н  | 0.505548  | 2.126859  | -4.477215 |
| Н  | 0.340109  | -3.207622 | -3.725789 |

#### Table S7. Cartesian coordinates for the optimized structure of the product (PRO).

| С | 8.023808  | 0.375410  | 0.610954  |
|---|-----------|-----------|-----------|
| С | 6.578220  | 0.765741  | 0.996797  |
| С | 5.526926  | 0.164458  | 0.110253  |
| Ν | 5.348384  | -1.210492 | -0.036210 |
| С | 4.578836  | 0.735590  | -0.714266 |
| С | 4.342757  | -1.465104 | -0.903930 |
| Ν | 3.867269  | -0.284717 | -1.336976 |
| Н | 8.736058  | 0.867786  | 1.292776  |
| Н | 8.195139  | -0.713288 | 0.688093  |
| Н | 8.261369  | 0.687631  | -0.419623 |
| Н | 6.375919  | 0.476021  | 2.046208  |
| Н | 6.459427  | 1.861958  | 0.954982  |
| Н | 5.897031  | -1.929822 | 0.436148  |
| Н | 4.345199  | 1.780842  | -0.901796 |
| Н | 3.984291  | -2.446523 | -1.202915 |
| С | -6.503376 | 2.737794  | 0.204265  |
| С | -6.870911 | 1.272344  | 0.529412  |
| С | -5.685524 | 0.356033  | 0.622119  |
| Ν | -4.731875 | 0.440155  | 1.633450  |
| С | -5.229423 | -0.674633 | -0.184519 |
| С | -3.772587 | -0.511950 | 1.399621  |
| Ν | -4.047612 | -1.210398 | 0.302485  |
| Н | -7.412708 | 3.358928  | 0.128032  |
| Н | -5.861046 | 3.180665  | 0.986857  |
| Н | -5.957665 | 2.802802  | -0.752596 |

| Н  | -7.455734 | 1.238004  | 1.470509  |
|----|-----------|-----------|-----------|
| Н  | -7.539464 | 0.876961  | -0.255974 |
| Н  | -4.747714 | 1.096966  | 2.412449  |
| Н  | -5.695840 | -1.062024 | -1.091084 |
| Н  | -2.911457 | -0.655820 | 2.052158  |
| С  | 0.980788  | 1.923905  | 3.394002  |
| С  | 0.791555  | 0.670280  | 3.922090  |
| С  | 0.431173  | -0.206533 | 2.825186  |
| Ν  | 0.405553  | 0.531094  | 1.628697  |
| С  | 0.734827  | 1.833913  | 1.975421  |
| С  | 0.785666  | 2.890943  | 1.067613  |
| С  | 0.123478  | -1.566855 | 2.915645  |
| С  | -0.192300 | -2.342085 | 1.780582  |
| Ν  | -0.164808 | -1.797718 | 0.538571  |
| С  | -0.637285 | -3.737089 | 1.696803  |
| С  | -0.890093 | -4.040629 | 0.396832  |
| С  | -0.519064 | -2.850409 | -0.445764 |
| С  | -1.515814 | -2.115336 | -1.383862 |
| Ν  | -0.912674 | -0.774057 | -1.510869 |
| С  | -1.805285 | -2.526253 | -2.797390 |
| С  | -1.575454 | -1.455806 | -3.606913 |
| С  | -1.034674 | -0.361350 | -2.795361 |
| С  | -0.665485 | 0.951491  | -3.161243 |
| С  | -0.199975 | 1.877510  | -2.223306 |
| С  | 0.095592  | 3.275725  | -2.464968 |
| Ν  | 0.042247  | 1.578607  | -0.869037 |
| С  | 0.459846  | 2.765424  | -0.283350 |
| С  | 0.489591  | 3.820489  | -1.266626 |
| Н  | 1.069931  | 3.880156  | 1.440834  |
| Н  | 0.117759  | -2.037409 | 3.903517  |
| Н  | -0.800057 | 1.278619  | -4.196823 |
| Н  | 0.379614  | -3.093754 | -1.052708 |
| Н  | -2.479790 | -1.996359 | -0.815145 |
| Н  | 0.876857  | 0.356688  | 4.964086  |
| Н  | -0.759474 | -4.393952 | 2.561763  |
| Н  | -1.220273 | -5.001185 | -0.003790 |
| Н  | -2.256604 | -3.478379 | -3.084739 |
| Н  | -1.769065 | -1.386876 | -4.680416 |
| Н  | -0.019613 | 3.776217  | -3.428075 |
| Со | -0.114275 | -0.092178 | -0.050954 |
| С  | 2.709659  | -0.106803 | -2.226431 |
| Н  | 2.678247  | -0.936823 | -2.946826 |
| Н  | 2.820901  | 0.845087  | -2.763280 |
| Н  | 1.777579  | -0.085803 | -1.617417 |
| Н  | 1.254509  | 2.840236  | 3.920677  |
| Н  | 0.763860  | 4.856693  | -1.058887 |

#### Reference

- S1 O. O. Sogbein, D. A. Simmons, L. Konermann, J. Am. Soc. Mass Spectrom. 2000, 11, 312–319.
- S2 T. Hayashi, Y. Morita, E. Mizohata, K. Oohora, J. Ohbayashi, T. Inoue and Y. Hisaeda, *Chem. Commun.*, 2014, 50, 12560–12563.