## Electronic supplementary information

## Alcohol- and water-soluble bis(tpy)quaterthiophenes with phosphonium side groups: new conjugated units for metallo-supramolecular polymers

Pavla Štenclová, Kristýna Šichová, Ivana Šloufová, Jiří Zedník, Jiří Vohlídal* and Jan Svoboda *

Charles University in Prague, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, CZ-128 40, Prague 2, Czech Republic. Fax:+420 224919752; Tel:+420 221951310;

E-mail: jan.svoboda@natur.cuni.cz (J. Svoboda) jiri.vohlidal@natur.cuni.cz (J. Vohlídal)


Figure S1. Time-development of the UV/vis spectra during the dissolution of Q2457-P ${ }^{+}$in water. Room temperature, $2 \cdot 10^{-5} \mathrm{M}$


Figure S2. Infrared spectra of prepared unimers.


Figure S3. Off-resonance Raman spectra of prepared unimers ( $\lambda_{\mathrm{exc}}=1064 \mathrm{~nm}$ ).


Figure S4. Off-resonance Raman spectra of Fe-polymers at $\lambda_{\text {exc }}=780 \mathrm{~nm}$ (a) and deconvolution of spectra (b).


Figure S5. Off-resonance Raman spectra of Fe-polymers at $\lambda_{\mathrm{exc}}=445 \mathrm{~nm}$ (a) and deconvolution of spectra (b).


Figure S6. Off-resonance Raman spectra of Fe-polymers at $\lambda_{\mathrm{exc}}=532 \mathrm{~nm}$ (a) and deconvolution of spectra (b).


Figure S7. Off-resonance Raman spectra of Fe-polymers at $\lambda_{\text {exc }}=633 \mathrm{~nm}$ (a) and deconvolution of spectra (b).


Figure S8. UV/vis spectra of prepared unimers and polymers.





Figure S9. Luminescence spectra of prepared unimers in solution (a) and unimers and Zn -polymers in thin film (b-d).


Figure S10. Complete set of UV/vis spectra accompanying the titration of non-ionic and ionic unimers with $\mathrm{Zn}^{2+}$ ions. Initial unimer concentration $2 \cdot 10^{-5} \mathrm{M}$ in chloroform/acetonitrile (non-ionic species) or methanol (ionic unimers), room temperature. Each column depicts the particular stage of assembling.


Figure S11. Complete set of UV/vis spectra accompanying the titration of non-ionic and ionic unimers with $\mathrm{Fe}^{2+}$ ions. Initial unimer concentration $2 \cdot 10^{-5} \mathrm{M}$ in chloroform/acetonitrile (non-ionic species) or methanol (ionic unimers), room temperature. Each column depicts the particular stage of assembling.


Figure S12. Changes in photoluminescence spectra accompanying titration of unimers $\mathbf{Q 4 5 - B r}$ (a) and Q45- $\mathrm{P}^{+}$(b) with $\mathrm{Fe}^{2+}$ in chloroform/acetonitrile (a) or methanol (b).


Figure $\mathbf{S 1 3}$. The SEC records of the $\mathrm{Fe}^{2+} / \mathbf{Q 2 7}-\mathrm{Br}$ systems of different composition.


Figure S14. The DAD spectra at different elution time $t_{\mathrm{el}}$ (a) and the UV/vis spectra of SEC fractions ( $t_{\text {el }}=1456 \mathrm{~s}$ ) of $\mathrm{Fe}^{2+} / \mathrm{Q} 27-\mathrm{Br}$ systems of different composition (b).


Figure S15. Relative viscosity of solution of the system $\mathrm{Fe}^{2+} / \mathbf{Q 4 5 - B r}$ as a function of composition.

Table S1. The photoluminescence maxima, $\lambda_{F}$, in solution and in thin film, photoluminescence quantum yield, $\Phi$, and lifetime of excited states, $\tau$. Solvent: methanol for ionic unimers and polymers (suffix $-\mathbf{P}^{+}$); acetonitrile/chloroform (1/1 by vol.) for all the other unimers and polymers.

| Sample | $\lambda_{\mathrm{F}}, \mathrm{nm}(\phi, \%)$ |  | $\tau$, ns |  |
| :---: | :---: | :---: | :---: | :---: |
|  | solution | film | solution | film |
|  |  | Unimers |  |  |
| Q | 514,546 (30\%) | 645 (<1\%) | 0.79 (100\%) | $\begin{aligned} & 0.24(35 \%) \\ & 0.98(49 \%) \\ & 3.71(16 \%) \end{aligned}$ |
| Q27-H | 554 (26\%) | 630 (1\%) | $\begin{gathered} 0.62 \text { (94\%) } \\ 1.53 \text { (6\%) } \end{gathered}$ | $\begin{gathered} 0.15(56 \%) \\ 0.51(38 \%) \\ 1.84(6 \%) \end{gathered}$ |
| Q27-Br | 554 (31\%) | 630 (1\%) | $\begin{aligned} & 0.57 \text { (85\%) } \\ & 1.20 \text { (15\%) } \end{aligned}$ | $\begin{aligned} & 0.13(54 \%) \\ & 0.50(36 \%) \\ & 1.98(10 \%) \end{aligned}$ |
| Q27-P ${ }^{+}$ | 550 (18\%) | $\sim 650$ (<1\%) | 0.69 (100\%) | $\begin{aligned} & 0.15(35 \%) \\ & 0.83(43 \%) \\ & 2.54(22 \%) \end{aligned}$ |
| Q45-Br | 530 (14\%) | 610 (1\%) | $\begin{gathered} 0.43(9 \%) \\ 0.55(91 \%) \end{gathered}$ | $\begin{aligned} & 0.18(51 \%) \\ & 0.75(39 \%) \\ & 3.82(10 \%) \end{aligned}$ |
| Q45-P ${ }^{+}$ | 536 (11\%) | 550 (1\%) | $\begin{aligned} & 0.31 \text { (33\%) } \\ & 0.57 \text { (67\%) } \end{aligned}$ | $\begin{gathered} 0.08(62 \%) \\ 0.40(30 \%) \\ 2.27(8 \%) \end{gathered}$ |
| Q2457-Br | 536 (14\%) | 560,603 (3\%) | $\begin{aligned} & 0.37(44 \%) \\ & 0.50(56 \%) \end{aligned}$ | $\begin{gathered} 0.07 \text { (79\%) } \\ 0.42(16 \%) \\ 1.84(5 \%) \end{gathered}$ |
| Q2457-P ${ }^{+}$ | 536 (10\%) | 560 (1\%) | $\begin{aligned} & 0.39(57 \%) \\ & 0.56 \text { (43\%) } \end{aligned}$ | $\begin{gathered} 0.07(74 \%) \\ 0.39(22 \%) \\ 1.84(4 \%) \end{gathered}$ |
|  |  | Zn-polymers |  |  |
| $\mathrm{P}_{\mathrm{zn}} \mathbf{Q}$ | 656 | $\sim 690$ (1\%) |  | $\begin{aligned} & 0.27(53 \%) \\ & 0.92(34 \%) \\ & 2.51(13 \%) \end{aligned}$ |
| $\mathrm{P}_{\mathrm{zn}} \mathbf{Q} 27-\mathrm{H}$ | 673 | $\sim 640$ (2\%) |  | $\begin{aligned} & 0.18(41 \%) \\ & 0.91(44 \%) \\ & 3.54(15 \%) \end{aligned}$ |
| $\mathrm{P}_{\mathrm{zn}} \mathbf{Q}$ 27-Br | 675 | ~710 (1\%) |  | $\begin{gathered} 0.16(57 \%) \\ 0.72(36 \%) \\ 3.05(7 \%) \end{gathered}$ |
| $\mathrm{P}_{\mathrm{Zn}} \mathbf{Q} 27-\mathrm{P}^{+}$ | 550 | ~705 (<1\%) |  | $\begin{aligned} & 0.11(47 \%) \\ & 0.54(42 \%) \\ & 1.92 \text { (11\%) } \end{aligned}$ |
| $\mathrm{P}_{\mathrm{zn}} \mathrm{Q} 45-\mathrm{Br}$ | 673 | 585 (3\%) |  | $\begin{aligned} & 0.21(45 \%) \\ & 0.98(39 \%) \\ & 3.63(16 \%) \end{aligned}$ |
| $\mathrm{P}_{\mathrm{Zn}} \mathrm{Q} 45-\mathrm{P}^{+}$ | 536 | 660 (1\%) |  | $\begin{gathered} 0.06(79 \%) \\ 0.29(17 \%) \\ 1.98(4 \%) \end{gathered}$ |
| $\mathrm{P}_{\mathrm{Zn}} \mathrm{Q} 2457-\mathrm{Br}$ | 668 | 590 (3\%) |  | $\begin{aligned} & 0.15(43 \%) \\ & 0.71(42 \%) \\ & 3.24(15 \%) \end{aligned}$ |
| $\mathrm{P}_{\mathrm{Zn}} \mathrm{Q} 2457$ - $\mathrm{P}^{+}$ | 552 | 625 (1\%) |  | $\begin{gathered} 0.15(56 \%) \\ 0.56(36 \%) \\ 2.05(8 \%) \end{gathered}$ |

