Electronic supplementary information

Alcohol- and water-soluble bis(*tpy*)quaterthiophenes with phosphonium side groups: new conjugated units for metallo-supramolecular polymers

Pavla Štenclová, Kristýna Šichová, Ivana Šloufová, Jiří Zedník, Jiří Vohlídal* and Jan Svoboda *

Charles University in Prague, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, CZ-128 40, Prague 2, Czech Republic. Fax:+420 224919752; Tel:+420 221951310;

E-mail: jan.svoboda@natur.cuni.cz (J. Svoboda) jiri.vohlidal@natur.cuni.cz (J. Vohlídal)

Figure S1. Time-development of the UV/vis spectra during the dissolution of **Q2457-P**⁺ in water. Room temperature, $2 \cdot 10^{-5}$ M

Figure S2. Infrared spectra of prepared unimers.

Figure S3. Off-resonance Raman spectra of prepared unimers (λ_{exc} = 1064 nm).

Figure S4. Off-resonance Raman spectra of Fe-polymers at λ_{exc} = 780 nm (a) and deconvolution of spectra (b).

Figure S5. Off-resonance Raman spectra of Fe-polymers at λ_{exc} = 445 nm (a) and deconvolution of spectra (b).

Figure S6. Off-resonance Raman spectra of Fe-polymers at λ_{exc} = 532 nm (a) and deconvolution of spectra (b).

Figure S7. Off-resonance Raman spectra of Fe-polymers at λ_{exc} = 633 nm (a) and deconvolution of spectra (b).

Figure S9. Luminescence spectra of prepared unimers in solution (a) and unimers and Zn-polymers in thin film (b-d).

Figure S10. Complete set of UV/vis spectra accompanying the titration of non-ionic and ionic unimers with Zn²⁺ ions. Initial unimer concentration 2·10⁻⁵M in chloroform/acetonitrile (non-ionic species) or methanol (ionic unimers), room temperature. Each column depicts the particular stage of assembling.

Figure S11. Complete set of UV/vis spectra accompanying the titration of non-ionic and ionic unimers with Fe²⁺ ions. Initial unimer concentration 2·10⁻⁵M in chloroform/acetonitrile (non-ionic species) or methanol (ionic unimers), room temperature. Each column depicts the particular stage of assembling.

Figure S12. Changes in photoluminescence spectra accompanying titration of unimers **Q45-Br** (a) and **Q45-P**⁺ (b) with Fe²⁺ in chloroform/acetonitrile (a) or methanol (b).

Figure S13. The SEC records of the Fe²⁺/Q27-Br systems of different composition.

Figure S14. The DAD spectra at different elution time t_{el} (a) and the UV/vis spectra of SEC fractions $(t_{el} = 1456 \text{ s})$ of Fe²⁺ / **Q27-Br** systems of different composition (b).

Figure S15. Relative viscosity of solution of the system $Fe^{2+}/Q45$ -Br as a function of composition.

Table S1. The photoluminescence maxima, $\lambda_{F,}$ in solution and in thin film, photoluminescence quantum yield, ϕ , and lifetime of excited states, τ . Solvent: methanol for ionic unimers and polymers (suffix -**P**⁺); acetonitrile/chloroform (1/1 by vol.) for all the other unimers and polymers.

	λ _F , nm (φ , %)		<i>τ,</i> ns	
Sample	solution	film	solution	film
Q	514,546 (30%)	Unimers 645 (<1%)	0.79 (100%)	0.24 (35%) 0.98 (49%) 3.71 (16%)
Q27-H	554 (26%)	630 (1%)	0.62 (94%) 1.53 (6%)	0.15 (56%) 0.51 (38%) 1.84 (6%)
Q27-Br	554 (31%)	630 (1%)	0.57 (85%) 1.20 (15%)	0.13 (54%) 0.50 (36%) 1.98 (10%)
Q27-P⁺	550 (18%)	~650 (<1%)	0.69 (100%)	0.15 (35%) 0.83 (43%) 2.54 (22%)
Q45-Br	530 (14%)	610 (1%)	0.43 (9%) 0.55 (91%)	0.18 (51%) 0.75 (39%) 3.82 (10%)
Q45-P ⁺	536 (11%)	550 (1%)	0.31 (33%) 0.57 (67%)	0.08 (62%) 0.40 (30%) 2.27 (8%)
Q2457-Br	536 (14%)	560,603 (3%)	0.37 (44%) 0.50 (56%)	0.07 (79%) 0.42 (16%) 1.84 (5%)
Q2457-P ⁺	536 (10%)	560 (1%)	0.39 (57%) 0.56 (43%)	0.07 (74%) 0.39 (22%) 1.84 (4%)
Zn-polymers				
P _{zn} Q	656	~690 (1%)		0.27 (53%) 0.92 (34%) 2.51 (13%)
P _{zn} Q27-H	673	~640 (2%)		0.18 (41%) 0.91 (44%) 3.54 (15%)
P _{zn} Q27-Br	675	~710 (1%)		0.16 (57%) 0.72 (36%) 3.05 (7%)
$P_{zn}Q27-P^{+}$	550	~705 (<1%)		0.11 (47%) 0.54 (42%) 1.92 (11%)
P _{zn} Q45-Br	673	585 (3%)		0.21 (45%) 0.98 (39%) 3.63 (16%)
$P_{zn}Q45-P^{+}$	536	660 (1%)		0.06 (79%) 0.29 (17%) 1.98 (4%)
P _{zn} Q2457-Br	668	590 (3%)		0.15 (43%) 0.71 (42%) 3.24 (15%)
$P_{zn}Q2457-P^+$	552	625 (1%)		0.15 (56%) 0.56 (36%) 2.05 (8%)