Single Molecule Magnet Behavior Observed in 1-D Dysprosium Chain with quasi- $D_{5 h}$ Symmetry

Xing-Cai Huang, ${ }^{\text {a,b }}$ Ming Zhang, ${ }^{\text {a }}$ Dayu Wu, ${ }^{\text {ad }}$ Dong Shao, ${ }^{\text {b }}$ Xin-Hua Zhao, ${ }^{\text {b }}$ Wei Huang ${ }^{\text {a }}$ and Xin-Yi Wang ${ }^{*}$ b
a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Collaborative Innovation Center of Advanced Catalysis \& Green Manufacturing, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; ${ }^{\text {b }}$ State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China E-mail: wudy@cczu.edu.cn, wangxy66@nju.edu.cn

Table of contents

Experimental Section S2
Physical Measurements S4
X-ray data collection, structure solution and refinement for $\mathbf{1}$ and 2. S4
Figure S1. The powder XRD patterns for compound 1 and 2. S5
Figure S2. The crystal packing of 1 (a) and 2 (b). S6
Table S1. Crystallographic data and structure refinement for $\mathbf{1}$ and 2. S7
Table S2. Crystallographic data and structure refinement for isostructural complexes 3-6. S8
Table S3. Selected Bond Distances (\AA) and Angles (${ }^{\circ}$) for $\mathbf{1}$ and 2. S8
Table S4. Continuous Shape Measures calculation for 1 and 2. S9
Table S5. Crystal field parameters for $\mathbf{1}$ and $\mathbf{2}$ fitted from $\chi_{\mathrm{M}} T v s . T$ and $M v s . H$ data. S9
Table S6. Substates and corresponding energy levels $\mathbf{1}$ and $\mathbf{2}$. S10
Figure S3. Frequency dependence of the in-phase (χ^{\prime}) and out-of-phase ($\chi^{\prime \prime}$) ac susceptibility for $\mathbf{1}$
at 2 K under the applied static field from 0 to 1500 Oe S10
Figure S4. Frequency dependence of the in-phase (χ^{\prime}) and out-of-phase ($\chi^{\prime \prime}$) ac susceptibility for 2at 2 K under the applied static field from 0 to 1500 Oe.S11
Figure S5. Temperature dependence of the in-phase and out-of-phase ac susceptibility data for $\mathbf{1}$
under 1000 Oe dc field range from 1.8 to $10 \mathrm{~K}\left(H_{\mathrm{ac}}=1 \mathrm{Oe}\right)$. S11
Figure S6. Temperature dependence of the in-phase and out-of-phase ac susceptibility data for 2under 1000 Oe dc field range from 2 to $10 \mathrm{~K}\left(H_{\mathrm{ac}}=1 \mathrm{Oe}\right)$.S12

Figure S7. The Cole-Cole plots at $1.8-4.0 \mathrm{~K}$ of 1 (a) and at $1.8-5.0 \mathrm{~K}$ of 2 (c) measured under 1000 Oe dc field ($H_{\mathrm{ac}}=1 \mathrm{Oe}$), and the red solid lines are the best fitting according to the generalized Debye model.

Table S7. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 1 according to the Generalized Debye Model.
Table S8. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 according to the Generalized Debye Model. S13

Experimental Section

All preparations and manipulations were performed under aerobic conditions. The ligand H_{2} valdien was prepared according to a method described previously. ${ }^{\mathrm{S} 1}$ Preparation of $\mathbf{N a}(\mathbf{P h O})_{\mathbf{2}} \mathbf{P O}_{2} .(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}(10 \mathrm{mmol}, 0.25 \mathrm{~g})$ was added to the solution of $\mathrm{NaOH}(10 \mathrm{mmol}, 0.4 \mathrm{~g})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$, then the mixture was vigorously stirred for 2 hours at room temperature. The white solid $\left(\mathrm{Na}(\mathrm{PhO})_{2} \mathrm{PO}_{2}\right)$ was obtained after evaporating the solution to dryness under reduced pressure without further purification for use directly.
$\left[\mathbf{D y N a}(\text { valdien }) \mathbf{C l}\left((\mathbf{P h O})_{2} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}} \mathbf{(1)}$. To a solution of H_{2} valdien $(0.15 \mathrm{mmol}, 55 \mathrm{mg})$, $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{mmol}, 41.8 \mu \mathrm{~L})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added a MeOH solution $(2 \mathrm{~mL})$ of $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 57 \mathrm{mg})$. The solution was stirred for 3 min , and then a MeOH solution $(2 \mathrm{~mL})$ of $\mathrm{Na}(\mathrm{PhO})_{2} \mathrm{PO}_{2}(0.3 \mathrm{mmol}, 81 \mathrm{mg})$ was added to the mixture. The resulting clear yellow solution was stirred briefly and filtered. The yellow block crystals suitable for X-ray diffraction studies were obtained by slow diffusion of isopropyl ether vapour into the yellow solution after 3 days. Yield: ca. 45%. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClDyN}_{3} \mathrm{NaO}_{8} \mathrm{P}: \mathrm{C}, 45.78 ; \mathrm{H}, 3.96 ; \mathrm{N}$, 5.01. Found: C, 45.70; H, 3.85; N, 4.96. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3439(\mathrm{w}), 3200(\mathrm{w}), 2916(\mathrm{w})$, 1626(vs), 1454(s), 1218(s), 1097(s), 899(m) and 741(m).
$\left[\mathrm{Dy}(\text { valdien })\left((\mathbf{P h O})_{\mathbf{2}} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}}(\mathbf{2})$. To a solution of H_{2} valdien $(0.15 \mathrm{mmol}, 55 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{~N}$ $(0.30 \mathrm{mmol}, 41.8 \mu \mathrm{~L})$ and $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 57 \mathrm{mg})$ in $\mathrm{DMF} / \mathrm{MeOH}(5 \mathrm{~mL}$, $\mathrm{v} / \mathrm{v}=1 / 4)$ was added a $\mathrm{DMF} / \mathrm{MeOH}(5 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 4)$ solution of $(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}(0.3$ $\mathrm{mmol}, 112 \mathrm{mg})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{mmol}, 62.8 \mu \mathrm{~L})$. The resulting clear yellow solution was stirred briefly and filtered. The yellow block crystals suitable for X-ray diffraction studies were obtained by slow diffusion of isopropyl ether vapour into the yellow solution after 3 days. Yield: ca. 30\%. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{DyN}_{3} \mathrm{O}_{8} \mathrm{P}: \mathrm{C}, 49.21 ; \mathrm{H}, 4.26 ; \mathrm{N}, 5.38$. Found: C, 49.11; H, 4.18; N, 5.22. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3432(w), 3231(w), 2927(w), 1626(vs), 1449(m), 1225(vs), 1108(m),

939(m), 859(w), and 739(m).
$\left[\mathbf{G d N a}(\text { valdien }) \mathbf{C l}\left((\mathbf{P h O})_{2} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}}(\mathbf{3})$. The same procedure was used to synthesize $\mathbf{1}$ except that $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used in place of $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yield: ca. 53%. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClGdN}_{3} \mathrm{NaO}_{8} \mathrm{P}: \mathrm{C}, 46.07$; H, 3.99; N, 5.04. Found: C, 46.14; H, 3.87; N, 5.18. IR (KBr, cm^{-1}): 3435(w), 3200(w), 2877(w), 1623(vs), 1450(m), 1220(vs), 1080(m), 901(m), 858(w), and 737(m).
$\left[\mathbf{T b N a}(\text { valdien }) \mathrm{Cl}\left((\mathbf{P h O})_{2} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}}$ (4). The same procedure was used to synthesize $\mathbf{1}$ except that $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used in place of $\mathrm{TbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yield: $c a .48 \%$. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClTbN}_{3} \mathrm{NaO}_{8} \mathrm{P}: \mathrm{C}, 45.98 ; \mathrm{H}, 3.99 ; \mathrm{N}, 5.03$. Found: C, 45.76; H, 4.03; N, 5.11. IR (KBr, cm^{-1}): 3445(w), 3201(w), 2868(w), 1625(vs), 1446(m), 1213(vs), 1096(m), 901(m), 859(w), and 739(m).
$\left[\mathrm{HoNa}(\text { valdien }) \mathrm{Cl}\left((\mathbf{P h O})_{2} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}}$ (5). The same procedure was used to synthesize $\mathbf{1}$ except that $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used in place of $\mathrm{HoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yield: $c a .42 \%$. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{ClHoN}_{3} \mathrm{NaO}_{8} \mathrm{P}: \mathrm{C}, 45.65$; H, 3.95; N, 4.99. Found: C, 45.77; H, 4.06; N, 4.88. IR (KBr, cm^{-1}): 3430(w), 3200(w), 2862(w), 1623(vs), 1449(m), 1220(vs), 1095(m), 911(m), 852(w), and 737(m).
$\left[\mathrm{Ho}(\text { valdien })\left((\mathbf{P h O})_{2} \mathbf{P O}_{2}\right)\right]_{\mathbf{n}}(\mathbf{6})$. The same procedure was used to synthesize $\mathbf{2}$ except that $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used in place of $\mathrm{HoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yield: ca. 25%. Elemental analysis (\%) calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{HoN}_{3} \mathrm{O}_{8} \mathrm{P}$: C, 49.05; H, 4.25; N, 5.36. Found: C, 48.89; H, 4.28; N, 5.22. IR (KBr, cm^{-1}): 3440(w), 3236(w), 2857(w), 1618(vs), 1458(m), 1215(vs), 1110(m), 931(m), 854(w), and 732(m).

Physical Measurements

Elemental analyses were carried out a Vario EL II Elementar. Infrared spectra were obtained on a Thermo Scientific Nicolet IS5 spectrometer. Powder X-ray diffraction (PXRD) were recorded at 298 K on a RINT2000 vertical goniometer with $\mathrm{Cu} \mathrm{K} \alpha$ X-ray source (operated at 40 kV and 100 mA). Magnetic measurements were performed on powdered samples with Quantum Design SQUID VSM magnetometers with field up to 7 T . All data were corrected for diamagnetism and the sample holder and of the constituent atoms using Pascal's constants. ${ }^{\text {S2 }}$

X-ray data collection, structure solution and refinement for 1-6

The X-ray data of 1-6 were collected on a Bruker APEX II with a CCD area detector ($\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, $\lambda=0.71073 \AA$). The APEX II program was used to determine the unit cell parameters and for data collection. The data were integrated using SAINT ${ }^{\text {S3 }}$ and SADABS. ${ }^{S 4}$ The structures for two compounds were solved by direct methods and refined by full-matrix least-squares based on F^{2} using the SHELXTL program. ${ }^{\text {S5 }}$ All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms of the organic ligands were refined as riding on the corresponding non-hydrogen atoms. Additional details of the data collections and structural refinement parameters are provided in Table S1 (1 and 2) and Table S2 (3-6). Selected bond lengths and bond angles for $\mathbf{1}$ and 2 are listed in Table S3. CCDC- 1415417 (1), CCDC- 1415418 (2), CCDC-1432155 (3), CCDC-1432156 (4), CCDC-1432157 (5) and CCDC-1432220 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. The powder XRD patterns for compound 1 and 2. The pattern simulated from the single crystal data of compound $\mathbf{1}$ and $\mathbf{2}$ are also given.

Figure S2. The crystal packing of $\mathbf{1}$ (a) and $2(\mathbf{b})$. The shortest distances of $\mathrm{Dy} \cdots \mathrm{Dy}$ in the chain for $\mathbf{1}$ (a) and 2 (b) are $8.3733(6)$ and $6.0583(8) \AA$, respectively. And the nearest distances of Dy \cdots Dy between the chain for $\mathbf{1}$ (a) and 2 (b) are $8.9941(5)$ and $11.0268(15) \AA$, respectively.

Table S1. Crystallographic data and structure refinement for $\mathbf{1}$ and 2.

complex	1	2
Formula	DyNaC ${ }_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{ClP}$	DyC ${ }_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}$
$\mathrm{Mr}\left[\mathrm{gmol}^{-1}\right]$	839.52	781.08
CCDC number	1415417	1415418
Crystal size $\left[\mathrm{mm}^{3}\right]$	$0.54 \times 0.50 \times 0.48$	$0.24 \times 0.21 \times 0.16$
Crystal system	Orthorhombic	Monoclinic
Space group	P bca	P $21 / \mathrm{C}$
$a[\AA]$	22.2015(14)	11.0268(15)
$b[\AA]$	8.3733(5)	11.6462(16)
$c[\AA$]	36.918(2)	27.317(3)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	113.808(4)
$\gamma\left[{ }^{\circ}\right]$	90	90
$V\left[\AA^{3}\right]$	6863.0(7)	3209.5(7)
Z	8	4
$T, \mathrm{~K}$	293(2)	293(2)
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.625	1.616
$\mu(\mathrm{Mo}-\mathrm{K} \alpha)\left[\mathrm{mm}^{-1}\right]$	2.368	2.432
$F(000)$	3352	1564
θ range [$\left.{ }^{\circ}\right]$	1.83-27.63	1.93-27.62
Refl. collected / unique	43751 / 7952	20718 / 7318
R (int)	0.0311	0.0537
$T_{\text {max }} / T_{\text {min }}$	$0.3961 / 0.3613$	0.6969 / 0.5929
Data/restraints/parameters	7952 / 0 / 430	7318 / 0 / 408
$R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}(I>2 \sigma(I))$	$0.0403 / 0.0792$	0.0390 / 0.0808
$R_{1} / w R_{2}$ (all data)	0.0496 / 0.0823	$0.0678 / 0.1016$
GOF on F^{2}	1.239	1.032
Max/min [e \AA^{-3}]	1.391/-1.942	0.725 / -0.953

Table S2. Crystallographic data and structure refinement for isostructural complexes 3-6.

complex	3	4	5	6
Formula	$\mathrm{GdNaC}_{32} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{8} \mathrm{P}$	$\mathrm{TbNaC}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{ClP}$	$\mathrm{HoNaC}_{32} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{ClP}$	$\mathrm{HoC}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}$
$\mathrm{Mr}\left[\mathrm{gmol}^{-1}\right]$	834.27	835.94	841.95	783.51
CCDC number	1432155	1432156	1432157	1432220
Crystal size $\left[\mathrm{mm}^{3}\right.$]	$0.32 \times 0.31 \times 0.28$	$0.54 \times 0.46 \times 0.35$	$0.41 \times 0.22 \times 0.10$	$0.24 \times 0.20 \times 0.14$
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Monoclinic
Space group	P bca	P bca	P bca	$P 2_{1} / \mathrm{C}$
$a[\AA]$	22.267(3)	22.2076(17)	22.220(4)	10.990(2)
$b[\AA]$	8.4192(13)	8.4021(7)	$8.3683(16)$	11.579(2)
$c[\AA]$	36.839(6) A	36.877(3)	36.890(7)	27.216(5)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	90.00	90.00	90.00	113.817(6)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00	90.00	90.00
$V\left[\AA^{3}\right]$	6906.3(18)	6880.9(10)	6859(2)	3168.4(10)
Z	8	8	8	4
$T, \mathrm{~K}$	293(2)	293(2)	293(2)	293(2)
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{~cm}^{-3}\right]$	1.605	1.614	1.631	1.643
$\mu(\mathrm{Mo}-\mathrm{K} \alpha)\left[\mathrm{mm}^{-1}\right]$	2.110	2.245	2.497	2.603
$F(000)$	3336	3344	3360	1568
θ range [${ }^{\circ}$]	2.14-27.47	2.14-27.45	1.43-27.47	$1.94-26.00$
Refl. collected / unique	42211 / 7834	41969 / 7836	42754 / 7821	33248 / 5992
R(int)	0.0438	0.0575	0.0726	0.0367
$T_{\text {max }} / T_{\text {min }}$	$0.5896 / 0.5517$	$0.5071 / 0.3769$	$0.7883 / 0.4275$	$0.7120 / 0.5739$
Data/restraints/ parameters	7834 / 0 / 426	7836 / 0 / 426	7821 / 0 / 426	6206 / 144 / 408
$R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}(I>2 \sigma(I))$	0.0415 / 0.0738	0.0425 / 0.0777	0.0367 / 0.0852	0.0357/0.0744
$R_{1} / w R_{2}$ (all data)	$0.0561 / 0.0778$	$0.0651 / 0.0842$	$0.0722 / 0.1134$	0.0480/ 0.0798
GOF on F^{2}	1.173	1.077	1.014	1.064
$\mathrm{Max} / \mathrm{min}\left[\mathrm{e} \AA^{-3}\right]$	$0.821 /-2.064$	1.045 / -1.489	0.532 / -0.697	1.460 / -1.869

$$
{ }^{\mathrm{a}} R_{1}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\sum\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \sum\left[w\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}
$$

Table S3. Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for 1 and 2.

$\mathbf{1}$					
Dy1-O1	$2.211(3)$	O1-Dy1-O5	$89.49(10)$	O3-Dy1-N3	$72.36(11)$
Dy1-O3	$2.232(3)$	O3-Dy1-O5	$89.06(10)$	O5-Dy1-N3	$85.95(11)$
Dy1-O5	$2.294(3)$	O1-Dy1-N2	$140.60(11)$	N2-Dy1-N3	$68.06(12)$
Dy1-N2	$2.493(3)$	O3-Dy1-N2	$139.34(11)$	N1-Dy1-N3	$136.42(12)$
Dy1-N1	$2.515(4)$	O5-Dy1-N2	$79.41(10)$	O1-Dy1-Cl1	$103.71(8)$
Dy1-N3	$2.530(4)$	O1-Dy1-N1	$73.31(11)$	O3-Dy1-Cl1	$104.32(8)$

Dy1-Cl1	2.6390(12)	O3-Dy1-N1	150.16(11)	O5-Dy1-Cl1	162.87(7)
Dy1-Na1	$3.6270(16)$	O5-Dy1-N1	86.20(11)	N2-Dy1-Cl1	83.46(8)
		N2-Dy1-N1	68.36(12)	N1-Dy1-Cl1	87.21(9)
O1-Dy1-O3	77.21(10)	O1-Dy1-N3	149.28(11)	N3-Dy1-Cl1	87.98(9)
O1-Dy1-Na1	40.57(8)	O3-Dy1-Na1	40.83(8)	O5-Dy1-Na1	75.05(7)
N2-Dy1-Na1	154.46(8)	N1-Dy1-Na1	109.82(9)	N3-Dy1-Na1	109.30(9)
Cl1-Dy1-Na1	122.08(4)				
2					
Dy1-O1	2.197(3)	O1-Dy1-O6 ${ }^{\text {a }}$	99.69(13)	N3-Dy1-N2	66.78(14)
Dy1-O3	2.202(3)	O3-Dy1-O6 ${ }^{\text {a }}$	91.83(13)	O1-Dy1-N1	72.52(14)
Dy1-O5	2.261(3)	O5-Dy1-O6 ${ }^{\text {a }}$	163.10(13)	O3-Dy1-N1	153.81(14)
Dy1-O6 ${ }^{\text {a }}$	2.279(3)	O1-Dy1-N3	152.56(14)	O5-Dy1-N1	86.58(13)
Dy1-N3	2.532(4)	O3-Dy1-N3	71.56(14)	O6 ${ }^{\text {a }}$-Dy1-N1	85.61(13)
Dy1-N2	$2.533(4)$	O5-Dy1-N3	85.28(13)	N3-Dy1-N1	134.35(15)
Dy1-N1	2.536(4)	O6 ${ }^{\text {a }}$-Dy1-N3	89.50(13)	N2-Dy1-N1	67.59(14)
		O1-Dy1-N2	139.87(14)	O3-Dy1-O5	101.69(13)
O1-Dy1-O5	92.21(13)	O3-Dy1-N2	137.85(13)	O6 ${ }^{\text {a }}$-Dy1-N2	81.83(13)
O1-Dy1-O3	82.28(13)	O5-Dy1-N2	81.33(14)		

Symmetry transformations used to generate equivalent atoms: ${ }^{a} \mathrm{x}, \mathrm{y}-1, \mathrm{z}$
Table S4. Continuous Shape Measures calculation for 1 and 2.

Structure [ML7]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
1	33.490	25.169	0.775	8.133	6.113	4.712	23.157
2	33.887	24.701	0.496	6.561	4.970	3.056	23.699

HP-7 1 D7h Heptagon; HPY-7 2 C6v Hexagonal pyramid;
PBPY-7 3 D5h Pentagonal bipyramid; COC-7 4 C3v Capped octahedron;
CTPR-7 5 C2v Capped trigonal prism; JPBPY-7 6 D5h Johnson pentagonal bipyramid J13;
JETPY-7 7 C3v Johnson elongated triangular pyramid J7
Table S5. Crystal field parameters and anisotropy g-factors for $\mathbf{1}$ and 2 fitted from $\chi_{\mathrm{M}} T$ vs. T and M vs. H data.

	$\mathbf{1}$	$\mathbf{2}$
B_{2}^{0}	-21.203	-17.096
B_{4}^{0}	-36.539	-26.606
B_{6}^{0}	56.616	55.275
g_{x}	1.320	1.927
g_{y}	1.373	0.128
g_{z}	1.189	1.342
Residual	0.038	0.041

Table S6. The substates and corresponding energy levels $\mathbf{1}$ and 2.

$\mathbf{1}$			$\mathbf{2}$	
$\left\|m_{\mathrm{J}}\right\rangle$	$E\left(\mathrm{~cm}^{-1}\right)$	$\left\|m_{\mathrm{J}}\right\rangle$	$E\left(\mathrm{~cm}^{-1}\right)$	
$\pm 13 / 2$	0	$\pm 13 / 2$	0	
$\pm 11 / 2$	41.63	$\pm 11 / 2$	45.65	
$\pm 1 / 2$	53.49	$\pm 1 / 2$	46.09	
$\pm 3 / 2$	87.11	$\pm 3 / 2$	80.71	
$\pm 9 / 2$	119.8	$\pm 9 / 2$	122.0	
$\pm 5 / 2$	131.8	$\pm 5 / 2$	127.5	
$\pm 7 / 2$	152.3	$\pm 7 / 2$	151.0	
$\pm 15 / 2$	200.7	$\pm 15 / 2$	183.3	

Figure S3. Frequency dependence of the in-phase (χ^{\prime}) and out-of-phase ($\chi^{\prime \prime}$) ac susceptibility for $\mathbf{1}$ at 2 K under the applied static field from 0 to 1500 Oe . The solid lines are a guide for the eye.

Figure S4. Frequency dependence of the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ ac susceptibility for 2 at 2 K under the applied static field from 0 to 1500 Oe . The solid lines are a guide for the eye.

Figure S5. Temperature dependence of the in-phase and out-of-phase ac susceptibility data for $\mathbf{1}$ under 1000 Oe dc field range from 1.8 to $10 \mathrm{~K}\left(H_{\mathrm{ac}}=1 \mathrm{Oe}\right)$. The solid lines are a guide for the eye.

Figure S6. Temperature dependence of the in-phase and out-of-phase ac susceptibility data for $\mathbf{2}$ under 1000 Oe dc field range from 2 to $10 \mathrm{~K}\left(H_{\mathrm{ac}}=1 \mathrm{Oe}\right)$. The solid lines are a guide for the eye.

Figure S7. The Cole-Cole plots at $1.8-4.0 \mathrm{~K}$ of 1 (a) and at $1.8-5.0 \mathrm{~K}$ of 2 (c) measured under 1000 Oe dc field $\left(H_{\mathrm{ac}}=1 \mathrm{Oe}\right)$, and the red solid lines are the best fitting according to the generalized Debye model.
Table S7. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of $\mathbf{1}$ according to the Generalized Debye Model. ${ }^{\text {a }}$

Temperature $/ \mathrm{K}$	$\chi_{\mathrm{S}} / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$	$\chi_{\mathrm{T}} / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$	τ / s	α
1.8	0.3007	4.26079	0.00125	0.21613
2.0	0.24872	3.96021	$9 \mathrm{E}-4$	0.23388
2.2	0.08	3.75	$6.3 \mathrm{E}-4$	0.26204
2.4	0.17654	3.52561	$4.8 \mathrm{E}-4$	0.23201
2.6	0.09349	3.37062	$3.4 \mathrm{E}-4$	0.23747

2.8	0.05413	3.2255	$2.5 \mathrm{E}-4$	0.22901
3.0	0.07196	3.07289	$1.9 \mathrm{E}-4$	0.20791
3.2	0.07427	2.93357	$1.4 \mathrm{E}-4$	0.18789
3.4	0.09215	2.80117	$1 \mathrm{E}-4$	0.15851
3.6	0.12008	2.69382	$8 \mathrm{E}-5$	0.14092
3.8	0.15747	2.57161	$6 \mathrm{E}-5$	0.11322
4.0	0.15366	2.46967	$4 \mathrm{E}-5$	0.09959

${ }^{\mathrm{a}}$ The Generalized Debye equation: $\chi^{\prime \prime}=\left(\chi_{\mathrm{S}}-\chi_{\mathrm{T}}\right) \tanh [\alpha \pi / 2] / 2+\left\{\left(\chi^{\prime}-\chi_{\mathrm{S}}\right)\left(\chi_{\mathrm{T}}-\chi^{\prime}\right)+\left(\chi_{\mathrm{T}}-\chi_{\mathrm{S}}\right)^{2}\right.$ $\left.\tanh ^{2}[\alpha \pi / 2] / 4\right\}^{1 / 2}$ (1), where χ_{S} is the adiabatic magnetic susceptibility and χ_{T} is the isothermal magnetic susceptibility; χ^{\prime} is in-phase susceptibility and $\chi^{\prime \prime}$ is out-of-phase susceptibility.

Table S8. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 according to the Generalized Debye Model. ${ }^{\text {a }}$

Temperature $/ \mathrm{K}$	$\chi_{\mathrm{S}} / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$	$\chi_{\mathrm{T}} / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$	τ / s	α
1.8	1.05191	4.22402	$5.9 \mathrm{E}-4$	0.13751
1.9	1.00641	4.0556	$5.3 \mathrm{E}-4$	0.13933
2.0	0.91727	3.91552	$4.8 \mathrm{E}-4$	0.16110
2.2	0.94394	3.90885	$4 \mathrm{E}-4$	0.15365
2.4	0.89640	3.70188	$3.3 \mathrm{E}-4$	0.15746
2.6	0.91505	3.52592	$2.9 \mathrm{E}-4$	0.14628
2.8	0.90774	3.34191	$2.4 \mathrm{E}-4$	0.13855
3.0	0.90059	3.19673	$2 \mathrm{E}-4$	0.12951
3.2	0.89943	2.88249	$1.7 \mathrm{E}-4$	0.10524
3.4	0.90184	2.75335	$1.5 \mathrm{E}-4$	0.09352
3.6	0.88372	2.63081	$1.3 \mathrm{E}-4$	0.08295
3.8	0.85160	2.52265	$1 \mathrm{E}-4$	0.08740
4.0	0.78402	2.42057	$9 \mathrm{E}-5$	0.08155
4.2	0.74374	2.32119	$7 \mathrm{E}-5$	0.07072
4.5	0.68980	2.18606	$5 \mathrm{E}-5$	0.06711
5.0	0.68457	1.99502	$3 \mathrm{E}-5$	0.06768

Reference

(S1) J. Long, F. Habib, P.-H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru and M. Murugesu, J. Am. Chem. Soc., 2011, 133, 5319.
(S2) O. Kahn, Molecular Magnetism, VCH Publishers, Inc., New York, 1993, 2.
(S3) SAINT Version 7.68A, Bruker AXS, Inc.; Madison, WI 2009.
(S4) G. M. Sheldrick, SADABS, Version 2008/1, Bruker AXS, Inc.; Madison, WI 2008.
(S5) G. M. Sheldrick, SHELXTL, Version 6.14, Bruker AXS, Inc.; Madison, WI 2000-2003.

