# **Supporting Information**

## A supramolecular H-bond driven light switch sensor for small anions

Sebastian A. Rommel,<sup>a</sup> Dieter Sorsche,<sup>a</sup> and Sven Rau\*<sup>a</sup>

<sup>a</sup> Institute for Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

# **Table of contents**

#### **1. General Information**

#### 2. Additional Information

Scheme S1 Numbering scheme for the assignment of the <sup>1</sup>H NMR signals of Ir(tmBBI)-H<sub>2</sub>.

| 3. Crystallographic data                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| added; the "mixture" consists of equal amounts of Ci <sup>+</sup> , Br <sub>-</sub> , I <sup>+</sup> , HSO <sub>4</sub> <sup>+</sup> anions; the overall ion concentration is $3 \times 10^{-4}$ M11 |
| Fig. S 16 Plot of the normalized luminescence intensity of IrBBI- $H_2$ ···DNBA (S) as a function of number of equivalents anions                                                                    |
| (depicted is the average of two distinct measurements) and fit according to fit function FF1 (vide infra). <sup>5</sup>                                                                              |
| Fig. S15 Plot of the normalized luminescence intensity of IrBBI- $H_2$ . DNBA as a function of increasing amounts of bromide                                                                         |
| sulfate (depicted is the average of two distinct measurements) and fit according to fit function FF1 (vide infra). <sup>5</sup>                                                                      |
| Fig. S14 Plot of the normalized luminescence intensity of IrBBI-H <sub>2</sub> DNBA as a function of increasing amounts of hydrogen                                                                  |
| (depicted is the average of two distinct measurements) and fit according to fit function FF1 (vide infra). <sup>3</sup> 10                                                                           |
| Fig. S13 Plot of the normalized luminescence intensity of IrBBI- $H_2$ . DNBA as a function of increasing amounts of chloride                                                                        |
| two distinct measurements)                                                                                                                                                                           |
| Fig. S12 Luminescence of IrBBI- $H_2$ DNBA as a function of increasing amounts of bromide (depicted is only one of at least                                                                          |
| least two distinct measurements)                                                                                                                                                                     |
| Fig. S11 Luminescence of IrBBI-H <sub>2</sub> DNBA as a function of increasing amounts of hydrogen sulfate (depicted is only one of at                                                               |
| distinct measurements)                                                                                                                                                                               |
| Fig. S10 Luminescence of IrBBI-H <sub>2</sub> DNBA as a function of increasing amounts of chloride (depicted is only one of at least two                                                             |
| equivalents of DNBA added; Inset: scheme of the reagents involved                                                                                                                                    |
| Fig. S9 Main: plot of the normalized luminescence intensity of [Ir(ppy) <sub>2</sub> (bipy)][PF <sub>6</sub> ] (R2) as a function of number of                                                       |
| $H_2$ as a function of number of equivalents of DNBA added7                                                                                                                                          |
| Fig. S8 Plot (polynomial 7 <sup>th</sup> grade) of the average of three measurements of the normalized luminescence intensity of IrBBI-                                                              |
| of equivalents of DNBA added7                                                                                                                                                                        |
| three, average can be found in Fig.S8); inset: plot of the normalized iridium luminescence intensity as a function of number                                                                         |
| Fig. S7 Main: luminescence of $IrBBI-H_2$ as a function of increasing amounts of DNBA (depicted is only one measurement of                                                                           |
| Fig. S6 <sup>1</sup> H NMR titration of IrBBI-H <sub>2</sub> in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion                                                             |
| Fig. S5 $^{1}$ H NMR titration of IrBBI-H $_{2}$ in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion                                                                         |
| Fig. S4 <sup>1</sup> H NMR titration of IrBBI-H <sub>2</sub> in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion                                                             |
| Fig. S3 <sup>1</sup> H NMR titration of IrBBI-H <sub>2</sub> (bottom) in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion5                                                   |
| benzoate anion                                                                                                                                                                                       |
| Fig. S2 Plot of the shift of the NH signal in the <sup>1</sup> H NMR titration of IrBBI-H <sub>2</sub> in CDCI <sub>3</sub> with increasing equivalents of 3,5-dinitro                               |
| Fig. S1 <sup>1</sup> H NMR titration of IrBBI-H <sub>2</sub> (bottom) in CDCl <sub>3</sub> with increasing equivalents of 3,5-dinitro benzoate anion                                                 |

#### 4. References

## **1.** General Information

## Materials and Methods

4,4',5,5'-Tetramethyl-2,2'-bibenzimidazole and Tetrakis(2-phenylpyridine-C<sup>2</sup>,N)bis( $\mu$ -chloro)diiridium were synthesized according to published procedures.<sup>1–3</sup> IrBBI was synthesized as published recently.<sup>4</sup> Technical grade solvents were purchased from VWR/Prolabo and redistilled under reduced pressure at 40°C. Dry solvents were obtained from a MBraun MB SPS-800 system. All chemicals were purchased from Merck Millipore, Sigma Aldrich, ABCR, Acros Organics, Alfa Aesar or VWR/Prolabo and used as purchased ( $\geq$ 95%). <sup>1</sup>H-NMR spectra were recorded at ambient temperature, unless otherwise stated, with a Bruker 400 MHz spectrometer. All spectra were referenced to the corresponding solvent residual signal, i.e. 1.940 ppm for acetonitrile, 7.260 for chloroform, 5.320 for dichloromethane and 4.870 for methanol. Mass spectra were recorded on a Finnigan MAT SSQ 710 or on a Thermoquest-Finnigan MAT 95XL. Elemental analysis was performed on an Elementar vario MICRO cube.

## General spectroscopic Methods

Solvent chloroform used for spectral experiments was redistilled under reduced pressure at 40°C and kept over molecular sieves. Tetrabutylammonium (TBA) salts of F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, and HSO4<sup>-</sup> were purchased from Alfa Aesar and Merck Chemicals and dissolved in chloroform. Binding constants were performed in duplicate, and the average is reported. All data were manipulated with the OriginLab software package.

### **Emission spectroscopy**

Emission spectra were performed on a JASCO Spectrofluorometer FP-8500 at room temperature. Cuvettes with a 1 cm path length and a 3mL volume were used for all measurements. For the DNBA quenching experiment aliquots of the TBA-DNBA salt ( $c = 2 \times 10^{-5}$  M) were added stepwise to a 2 mL solution of IrBBI-H<sub>2</sub> ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub> ( $c = 9.04 \times 10^{-7}$  M), so no effect of dilution has to be regarded. For the anion sensor titration we prepared a mixture of IrBBI-H<sub>2</sub> ( $c = 9.04 \times 10^{-7}$  M), quenched with 6.86 equivalents of the 3,5-dinitrobenzoate salt. For a typical anion sensor titration experiment 10 µL aliquots of a TBA salt ( $c = 3 \times 10^{-4}$  M) were added stepwise to a 2 mL solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M) in chloroform by a syringe. Thereby the TBA salt was dissolved in a solution of IrBBI-H<sub>2</sub>...DNBA ( $c = 9.04 \times 10^{-7}$  M), so no effect of dilution has to be regarded. The excitation wavelengths were fixed at 378 nm with the slit width of 5 nm and repeated at least twice times.

## <sup>1</sup>H NMR Titration

<sup>1</sup>H NMR spectra were recorded at ambient temperature, unless otherwise stated, with a Bruker 400 MHz spectrometer with CDCl<sub>3</sub> as a solvent and TMS as an internal standard. For the titration experiment, aliquots of the TBA salt of 3,5-dinitrobenzoate (0 – 400  $\mu$ L, 0.0225 M in dichloromethane-d<sup>2</sup>) were added to a solution of IrBBI-H<sub>2</sub>(200  $\mu$ L, 4.5 mM in dichloromethane-d<sup>2</sup>). The complex concentration was kept constant (1.5 mM).

#### 2. Additional information

Hexafluorophosphate to 3,5-dinitro benzoate anion exchange was effected by adding the respective tetrabutylammonium benzoate salts to a solution of  $IrBBI-H_2$  in dichloromethane. The resulting ion mixture were stirred at room temperature for 5 hours, then evaporated to dryness. The resulting solid was treated with acetonitrile and filtered. Slow addition of diethyl ether to the filtrate induced precipitation of the pure benzoate salts of the iridium complex.

Single crystals of  $IrBBI-H_2$  + (3,5-dinitrobenzoate)- were grown at room temperature by layering diethyl ether above a dichloromethane solution of the iridium complex.



Scheme S2 Numbering scheme for the assignment of the <sup>1</sup>H NMR signals of Ir(tmBBI)-H<sub>2</sub>.



**Fig. S1** <sup>1</sup>H NMR titration of IrBBI-H<sub>2</sub> (bottom) in CDCl<sub>3</sub> with increasing equivalents of 3,5-dinitro benzoate anion. The N-H signal of IrBBI-H<sub>2</sub> is shifting into the lowfield with increasing amount of DNBA. After 1.0 eq. the signal vanishes.



Fig. S2 Plot of the shift of the NH signal in the  ${}^{1}$ H NMR titration of IrBBI-H<sub>2</sub> in CDCl<sub>3</sub> with increasing equivalents of 3,5dinitro benzoate anion.



**Fig. S3** <sup>1</sup>H NMR titration of IrBBI-H<sub>2</sub> (bottom) in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion. The proton signals H-7", H-3' and H-4" are marked (host concentration = 1.5mM).



Fig. S4 <sup>1</sup>H NMR titration of IrBBI-H<sub>2</sub> in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion. Depicted are the proton signals H-3' and H-4'' (host concentration = 1.5mM).



Fig. S5 <sup>1</sup>H NMR titration of IrBBI-H<sub>2</sub> in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion. Depicted is the shift of the proton signal H-7" (host concentration = 1.5mM).



**Fig. S6** <sup>1</sup>H NMR titration of IrBBI-H<sub>2</sub> in deuterated DCM with increasing equivalents of 3,5-dinitro benzoate anion. Depicted is the difference of the shifts of the proton signals H-3' and H-4''[ $\delta$ (H-3' – H-4'')]; (host concentration = 1.5mM).



**Fig. S7** Main: luminescence of IrBBI-H<sub>2</sub> as a function of increasing amounts of DNBA (depicted is only one measurement of three, average can be found in Fig.S8); inset: plot of the normalized iridium luminescence intensity as a function of number of equivalents of DNBA added.



Fig. S8 Plot (polynomial 7<sup>th</sup> grade) of the average of three measurements of the normalized luminescence intensity of IrBBI-H<sub>2</sub> as a function of number of equivalents of DNBA added.



Fig. S9 Main: plot of the normalized luminescence intensity of  $[Ir(ppy)_2(bipy)][PF_6]$  (R2) as a function of number of equivalents of DNBA added; Inset: scheme of the reagents involved.



Fig. S10 Luminescence of IrBBI-H<sub>2</sub> $\cdots$ DNBA as a function of increasing amounts of chloride (depicted is only one of at least two distinct measurements).



Fig. S11 Luminescence of IrBBI-H<sub>2</sub>…DNBA as a function of increasing amounts of hydrogen sulfate (depicted is only one of at least two distinct measurements).



Fig. S12 Luminescence of IrBBI-H<sub>2</sub>…DNBA as a function of increasing amounts of bromide (depicted is only one of at least two distinct measurements).



**Fig. S13** Plot of the normalized luminescence intensity of IrBBI-H<sub>2</sub>...DNBA as a function of increasing amounts of chloride (depicted is the average of two distinct measurements) and fit according to fit function FF1 (*vide infra*).<sup>5</sup>



**Fig. S14** Plot of the normalized luminescence intensity of IrBBI-H<sub>2</sub>...DNBA as a function of increasing amounts of hydrogen sulfate (depicted is the average of two distinct measurements) and fit according to fit function FF1 (*vide infra*).<sup>5</sup>



**Fig. S15** Plot of the normalized luminescence intensity of IrBBI-H<sub>2</sub>...DNBA as a function of increasing amounts of bromide (depicted is the average of two distinct measurements) and fit according to fit function FF1 (*vide infra*).<sup>5</sup>



**Fig. S 16** Plot of the normalized luminescence intensity of IrBBI-H<sub>2</sub>...DNBA (S) as a function of number of equivalents anions added; the "mixture" consists of equal amounts of Cl<sup>-</sup>, Br., I<sup>-</sup>, HSO<sub>4</sub><sup>-</sup> anions; the total ion concentration is  $3 \times 10^{-4}$  M.

#### 3. Crystallographic data



Crystal data for [(ppy)<sub>2</sub>Ir(tmBBI)](DNBA): C<sub>47</sub> H<sub>37</sub> Ir N<sub>8</sub> O<sub>6</sub>, M<sub>r</sub> = 1002.04 g mol<sup>-1</sup>, yellow fragment, crystal size 0.1186 x 0.0535 x 0.0246 mm<sup>3</sup>, monoclinic, space group *P* 2<sub>1</sub>/c, a = 12.14320(10) Å, b = 30.0046(4) Å, c = 11.12950(10) Å,  $\beta$ = 92.4390(10)°, V = 4051.38(7) Å<sup>3</sup>, T = 150(2) K, Z = 4,  $\rho_{calcd.}$  = 1.643 Mg/m<sup>3</sup>,  $\mu$  (Cu-K $\alpha$ ) = 6.897 mm<sup>-1</sup>, F(000) = 2000, altogether 33117 reflexes up to h(-6/15), k(-35/37), l(-13/13) measured in the range of 7.450°  $\leq \Theta \leq$  74.469°, completeness  $\Theta_{max}$  = 99.7 %, 8244 independent reflections, R<sub>int</sub> = 0.0333, 7209 reflections with F<sub>0</sub> > 4  $\sigma$ (Fo), 563 parameters, 0 restraints, R1<sub>obs</sub> = 0.0239, wR2<sub>obs</sub> = 0.0540, R1<sub>all</sub> = 0.0299, wR2<sub>all</sub> = 0.0564, GOOF = 1.052, largest difference peak and hole: 0.787/-0.504 e·Å<sup>-3</sup>. CCDC 1432106 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

#### **Bond angles**

| Atom1      | Atom2 | Atom3    | Angle    | Atom1 | Atom2 | Atom3 | Angle    | Atom1    | Atom2 | Atom3     | Angle    |
|------------|-------|----------|----------|-------|-------|-------|----------|----------|-------|-----------|----------|
| H1         | C1    | C2       | 119.0(3) | C12   | C22   | lr1   | 128.0(2) | C35      | C41   | H41C      | 109.5(3) |
| H1         | C1    | N6       | 118.8(3) | C16   | C22   | lr1   | 114.6(2) | H41A     | C41   | H41B      | 109.5(4) |
| C2         | C1    | N6       | 122.2(3) | C24   | C23   | N1    | 117.5(2) | H41A     | C41   | H41C      | 109.5(4) |
| C1         | C2    | H2       | 120.5(3) | C24   | C23   | N4    | 128.8(3) | H41B     | C41   | H41C      | 109.4(4) |
| C1         | C2    | C3       | 118.8(3) | N1    | C23   | N4    | 113.6(2) | C23      | N1    | C25       | 105.2(2) |
| H2         | C2    | C3       | 120.6(3) | C23   | C24   | N2    | 116.1(2) | C23      | N1    | lr1       | 114.6(2) |
| C2         | C3    | H3       | 120.3(3) | C23   | C24   | N3    | 130.1(3) | C25      | N1    | lr1       | 140.1(2) |
| C2         | C3    | C4       | 119.4(3) | N2    | C24   | N3    | 113.8(2) | C24      | N2    | C27       | 104.8(2) |
| H3         | C3    | C4       | 120.3(3) | C26   | C25   | C29   | 121.3(2) | C24      | N2    | lr1       | 115.9(2) |
| C3         | C4    | H4       | 120.0(3) | C26   | C25   | N1    | 108.1(2) | C27      | N2    | lr1       | 139.2(2) |
| C3         | C4    | C5       | 120.1(3) | C29   | C25   | N1    | 130.6(2) | C24      | N3    | C28       | 106.3(2) |
| H4         | C4    | C5       | 119.9(3) | C25   | C26   | C32   | 120.9(2) | C24      | N3    | H3A       | 126.8(3) |
| C4         | C5    | C6       | 126.5(3) | C25   | C26   | N4    | 107.2(2) | C28      | N3    | H3A       | 126.9(3) |
| C4         | C5    | N6       | 119.6(3) | C32   | C26   | N4    | 131.9(2) | C23      | N4    | C26       | 105.8(2) |
| C6         | C5    | N6       | 113.9(3) | C28   | C27   | C33   | 120.1(3) | C23      | N4    | H4A       | 127.1(3) |
| C5         | C6    | C7       | 124.0(3) | C28   | C27   | N2    | 108.6(2) | C26      | N4    | H4A       | 127.1(3) |
| C5         | C6    | C11      | 115.0(3) | C33   | C27   | N2    | 131.3(3) | C1/      | N5    | C21       | 119.7(3) |
| C7         | Cb    | C11      | 120.8(3) | C27   | C28   | C36   | 121.6(3) | C1/      | N5    | Ir1       | 115.3(2) |
| C0<br>C6   | C7    | П/<br>С9 | 120.1(3) | C27   | C28   | ND ND | 100.5(2) | C21      | NG    | 05        | 124.0(2) |
|            | C7    | C0       | 119.0(3) | C35   | C20   |       | 131.9(3) |          | NG    | LS<br>Ir1 | 119.7(2) |
| C7         | C8    | HR       | 110.5(4) | C25   | C29   | C30   | 118 /(3) | C1<br>C5 | NG    | lr1       | 116 0(2) |
| C7         | C8    | C9       | 120 5(3) | H29   | C29   | C30   | 120.4(3) | C11      | Ir1   | C22       | 87 /(1)  |
| ня         | C8    | (9       | 119 8(4) | C29   | C30   | C37   | 120.0(3) | C11      | lr1   | N1        | 169 8(1) |
| C8         | C9    | H9       | 119.7(4) | C29   | C30   | C39   | 119.8(3) | C11      | Ir1   | N2        | 94.6(1)  |
| C8         | C9    | C10      | 120.7(3) | C37   | C30   | C39   | 120.0(3) | C11      | lr1   | N5        | 97.8(1)  |
| H9         | C9    | C10      | 119.6(4) | C26   | C32   | H32   | 120.8(3) | C11      | lr1   | N6        | 80.5(1)  |
| C9         | C10   | H10      | 119.8(3) | C26   | C32   | C37   | 118.4(3) | C22      | lr1   | N1        | 102.3(1) |
| C9         | C10   | C11      | 120.3(3) | H32   | C32   | C37   | 120.8(3) | C22      | lr1   | N2        | 176.1(1) |
| H10        | C10   | C11      | 119.8(3) | C27   | C33   | H33   | 120.7(3) | C22      | lr1   | N5        | 80.1(1)  |
| C6         | C11   | C10      | 118.0(3) | C27   | C33   | C34   | 118.5(3) | C22      | lr1   | N6        | 95.2(1)  |
| C6         | C11   | lr1      | 114.5(2) | H33   | C33   | C34   | 120.8(3) | N1       | lr1   | N2        | 75.82(9) |
| C10        | C11   | lr1      | 127.2(2) | C33   | C34   | C35   | 120.9(3) | N1       | lr1   | N5        | 86.94(9) |
| H12        | C12   | C13      | 119.4(3) | C33   | C34   | C40   | 119.2(3) | N1       | lr1   | N6        | 95.43(9) |
| H12        | C12   | C22      | 119.5(3) | C35   | C34   | C40   | 120.0(3) | N2       | lr1   | N5        | 96.31(9) |
| C13        | C12   | C22      | 121.1(3) | C34   | C35   | C36   | 120.5(3) | N2       | lr1   | N6        | 88.40(9) |
| C12        | C13   | H13      | 119.7(3) | C34   | C35   | C41   | 119.6(3) | N5       | lr1   | N6        | 175.1(1) |
| C12        | C13   | C14      | 120.7(3) | C36   | C35   | C41   | 119.8(3) | 04       | N8    | 03        | 124.2(3) |
| H13        | C13   | C14      | 119.6(4) | C28   | C36   | C35   | 118.4(3) | 04       | N8    | C47       | 118.3(3) |
| C13        | C14   | H14      | 120.1(4) | C28   | C36   | H36   | 120.8(3) | 03       | N8    | C4/       | 117.5(3) |
|            | C14   | C15      | 119.8(3) | C35   | C30   | H30   | 120.8(3) | 05       | N7    | C4F       | 124.0(3) |
| П14<br>С14 | C14   |          | 120.1(4) | C30   | C37   | C32   | 120.8(3) | 05       | N7    | C45       | 117.0(2) |
| C14        | C15   | C16      | 110 8(2) | C30   | C37   | C38   | 110.9(2) | C14      | C/12  | C43       | 110 5(2) |
| C14<br>H15 | C15   | C16      | 120 1(3) | C32   | C38   | H384  | 109 5(3) | C44      | C43   | C40       | 120.8(3) |
| C15        | C16   | C17      | 123 4(3) | C37   | C38   | H38B  | 109 4(3) | C48      | C43   | C42       | 119 6(3) |
| C15        | C16   | C22      | 121.5(3) | C37   | C38   | H38C  | 109.5(3) | C43      | C44   | H44       | 120.6(3) |
| C17        | C16   | C22      | 114.9(3) | H38A  | C38   | H38B  | 109.5(3) | C43      | C44   | C45       | 118.9(3) |
| C16        | C17   | C18      | 125.6(3) | H38A  | C38   | H38C  | 109.4(3) | H44      | C44   | C45       | 120.5(3) |
| C16        | C17   | N5       | 114.4(3) | H38B  | C38   | H38C  | 109.5(3) | N8       | C47   | C48       | 119.0(3) |
| C18        | C17   | N5       | 120.0(3) | C30   | C39   | H39A  | 109.5(3) | N8       | C47   | C46       | 118.1(3) |
| C17        | C18   | H18      | 120.2(4) | C30   | C39   | H39B  | 109.5(3) | C48      | C47   | C46       | 122.9(3) |
| C17        | C18   | C19      | 119.6(3) | C30   | C39   | H39C  | 109.4(3) | C43      | C48   | C47       | 119.3(3) |
| H18        | C18   | C19      | 120.2(4) | H39A  | C39   | H39B  | 109.5(3) | C43      | C48   | H48       | 120.3(3) |
| C18        | C19   | H19      | 120.0(4) | H39A  | C39   | H39C  | 109.5(3) | C47      | C48   | H48       | 120.4(3) |
| C18        | C19   | C20      | 119.9(4) | H39B  | C39   | H39C  | 109.5(3) | 01       | C42   | 02        | 127.5(3) |
| H19        | C19   | C20      | 120.1(4) | C34   | C40   | H40A  | 109.5(3) | 01       | C42   | C43       | 115.6(3) |
| C19        | C20   | H20      | 120.7(4) | C34   | C40   | H40B  | 109.5(3) | 02       | C42   | C43       | 116.9(3) |
| C19        | C20   | C21      | 118.6(4) | C34   | C40   | H40C  | 109.5(3) | C47      | C46   | H46       | 121.8(3) |
| H20        | C20   | C21      | 120.6(4) | H40A  | C40   | H40B  | 109.4(4) | C47      | C46   | C45       | 116.4(3) |
| C20        | C21   | H21      | 119.0(4) | H40A  | C40   | H40C  | 109.6(4) | H46      | C46   | C45       | 121.8(3) |
| C20        | C21   | N5       | 122.1(3) | H40B  | C40   | H40C  | 109.4(4) | N7       | C45   | C44       | 119.2(3) |
| H21        | 621   | N5       | 119.0(3) | C35   | C41   | H41A  | 109.5(3) | N /      | C45   | C46       | 117.8(3) |
| C1Z        | C22   | C10      | 117.1(3) | C35   | C41   | F141B | 109.2(3) | C44      | C45   | C40       | 123.0(3) |

## Bond lengths

| Atom 1 | Atom 2 | Length   | Atom 1 | Atom 2 | Length   | Atom 1 | Atom 2 | Length   |
|--------|--------|----------|--------|--------|----------|--------|--------|----------|
| C1     | H1     | 0.930(3) | C18    | C19    | 1.376(6) | C37    | C38    | 1.508(5) |
| C1     | C2     | 1.379(5) | C19    | H19    | 0.929(4) | C38    | H38A   | 0.959(4) |
| C1     | N6     | 1.349(4) | C19    | C20    | 1.380(6) | C38    | H38B   | 0.960(3) |
| C2     | H2     | 0.929(4) | C20    | H20    | 0.930(4) | C38    | H38C   | 0.960(4) |
| C2     | C3     | 1.379(5) | C20    | C21    | 1.378(5) | C39    | H39A   | 0.959(4) |
| C3     | H3     | 0.930(3) | C21    | H21    | 0.929(4) | C39    | H39B   | 0.959(4) |
| C3     | C4     | 1.381(5) | C21    | N5     | 1.343(4) | C39    | H39C   | 0.959(3) |
| C4     | H4     | 0.930(3) | C22    | lr1    | 2.020(3) | C40    | H40A   | 0.961(4) |
| C4     | C5     | 1.395(5) | C23    | C24    | 1.454(4) | C40    | H40B   | 0.961(4) |
| C5     | C6     | 1.459(4) | C23    | N1     | 1.330(4) | C40    | H40C   | 0.960(4) |
| C5     | N6     | 1.364(4) | C23    | N4     | 1.348(4) | C41    | H41A   | 0.960(4) |
| C6     | C7     | 1.398(5) | C24    | N2     | 1.337(4) | C41    | H41B   | 0.960(4) |
| C6     | C11    | 1.416(5) | C24    | N3     | 1.335(4) | C41    | H41C   | 0.960(4) |
| С7     | H7     | 0.931(3) | C25    | C26    | 1.399(4) | N1     | lr1    | 2.175(2) |
| C7     | C8     | 1.377(5) | C25    | C29    | 1.395(4) | N2     | lr1    | 2.150(2) |
| C8     | H8     | 0.931(4) | C25    | N1     | 1.393(3) | N3     | H3A    | 0.860(2) |
| C8     | C9     | 1.377(5) | C26    | C32    | 1.397(4) | N4     | H4A    | 0.861(2) |
| С9     | H9     | 0.928(4) | C26    | N4     | 1.383(4) | N5     | lr1    | 2.054(2) |
| С9     | C10    | 1.396(5) | C27    | C28    | 1.404(4) | N6     | lr1    | 2.038(2) |
| C10    | H10    | 0.930(3) | C27    | C33    | 1.404(4) | 01     | C42    | 1.251(4) |
| C10    | C11    | 1.396(4) | C27    | N2     | 1.386(4) | 02     | C42    | 1.252(4) |
| C11    | lr1    | 2.000(3) | C28    | C36    | 1.387(4) | 05     | N7     | 1.218(4) |
| C12    | H12    | 0.930(3) | C28    | N3     | 1.383(4) | 04     | N8     | 1.225(4) |
| C12    | C13    | 1.391(5) | C29    | H29    | 0.930(3) | O6     | N7     | 1.220(4) |
| C12    | C22    | 1.399(4) | C29    | C30    | 1.392(4) | N8     | 03     | 1.227(5) |
| C13    | H13    | 0.931(3) | C30    | C37    | 1.430(5) | N8     | C47    | 1.465(4) |
| C13    | C14    | 1.382(5) | C30    | C39    | 1.505(5) | N7     | C45    | 1.475(4) |
| C14    | H14    | 0.930(4) | C32    | H32    | 0.929(3) | C43    | C44    | 1.393(5) |
| C14    | C15    | 1.379(5) | C32    | C37    | 1.386(4) | C43    | C48    | 1.389(4) |
| C15    | H15    | 0.930(3) | C33    | H33    | 0.929(3) | C43    | C42    | 1.522(4) |
| C15    | C16    | 1.398(5) | C33    | C34    | 1.383(5) | C44    | H44    | 0.929(3) |
| C16    | C17    | 1.461(5) | C34    | C35    | 1.421(5) | C44    | C45    | 1.387(4) |
| C16    | C22    | 1.408(4) | C34    | C40    | 1.516(5) | C47    | C48    | 1.380(5) |
| C17    | C18    | 1.391(5) | C35    | C36    | 1.386(5) | C47    | C46    | 1.383(5) |
| C17    | N5     | 1.362(4) | C35    | C41    | 1.507(5) | C48    | H48    | 0.930(3) |
| C18    | H18    | 0.931(4) | C36    | H36    | 0.931(3) | C46    | H46    | 0.931(3) |
|        |        |          |        |        |          | C46    | C45    | 1.380(4) |

\*All bond lengths are given in Å.

## Hydrogen bond distances

| Atom 1 | Atom 2 | Length*  |
|--------|--------|----------|
| N3     | 01     | 2.616(3) |
| N4     | 02     | 2.690(3) |

\*All distances are given in Å.

#### 4. References

- 1 E. Müller, G. Bernardinelli and J. Reedijkt, *Inorg. Chem.*, 1995, **34**, 5979–5988.
- 2 B. Schmid, F. O. Garces and R. J. Watts, *Inorg. Chem*, 1994, **33**, 9–14.
- 3 F. O. Garces, K. A. King and R. J. Watts, *Inorg. Chem.*, 1988, **27**, 3464–3471.
- 4 S. A. Rommel, D. Sorsche, N. Rockstroh, F. W. Heinemann, J. Kübel, M. Wächtler, B. Dietzek and S. Rau, *Eur. J. Inorg. Chem.*, 2015, 3730–3739.
- 5 Y. Liu, B.-H. Han and Y.-T. Chen, J. Phys. Chem. B, 2002, **106**, 4678–4687.