Supporting Information

Oxidase-like Mimic of Ag@Ag₃PO₄ Microcubes as A Smart Probe for Ultrasensitive and Selective Hg²⁺ Detection

Dong-Feng Chai^a[‡], Zhuo Ma^b[‡], Yunfeng Qiu^{c,d*}, Yu-Guang Lv,^a Hong Liu^{a*}, Chao-

Yu Song^a, Guang-Gang Gao^{a,e*}

^a Department of Chemistry, College of Pharmacy, Jiamusi University, Jiamusi 154004, China. Email: hliu@jmsu.edu.cn (H. Liu), gaogg@jmsu.edu.cn (G. Gao)

^b School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, Heilongjiang, 150001, China.

^c State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. E-mail: qiuyf@hit.edu.cn (Y. Qiu).

^d State Key Laboratory of Robotics and System (HIT), Harbin, Heilongjiang 150080, China.

^e Department of Chemistry, Changchun Normal University, Changchun, 130032, China.

‡ These authors contributed equally to this work.

Contents:

- 1) **Figure S1.** X-ray spectroscopy (EDS) analysis.
- 2) Figure S2. FTIR and Raman spectra of Ag₃PO₄MCs and Ag@Ag₃PO₄MCs.
- 3) Figure S3. The catalytic performances of Ag_3PO_4MCs for TMB in the presence of H_2O_2 , O_2 and N_2 .
- 4) **Figure S4.** Dependence of the oxidase-like activity of the TMB concentrations and catalysts amounts.
- 5) **Figure S5.** Dependence of the oxidase-like activity of pH values of buffer solutions and reaction temperature.
- 6) **Figure S6.** The catalytic performance of Ag_3PO_4MCs for OPD under different UV irradiation time. Inset is the relative activity versus irradiation time.
- 7) **Figure S7.** XPS of Ag@Ag₃PO₄MCs.
- Figure S8. The mercury(II)-inhibited catalytic dynamics of Ag₃PO₄MCs or Ag@Ag₃PO₄MCs.
- 9) **Figure S9.** Steady-state kinetic assays of Ag₃PO₄MCs and Ag₃PO₄MCs with Hg²⁺ ions.
- 10) Table S1. Apparent kinetic parameters of different nanostructures.
- 11) **Table S2.** Comparison of assay methods for monitoring Hg^{2+} ions.

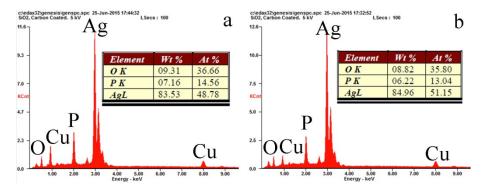


Figure S1. EDS of (a) Ag_3PO_4MCs and (b) $Ag@Ag_3PO_4MCs$. Each sample was measured in three batches for data consistency.

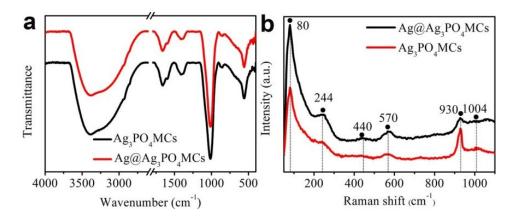
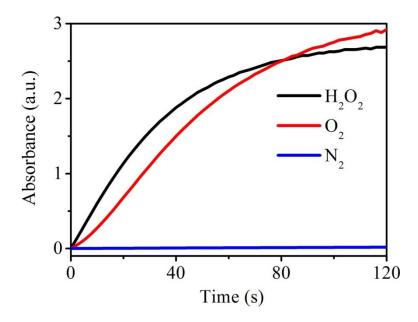
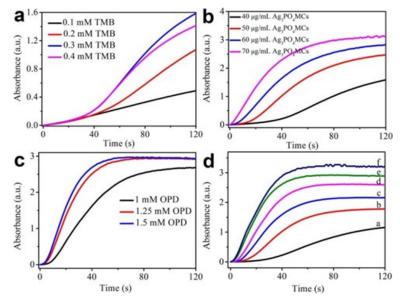
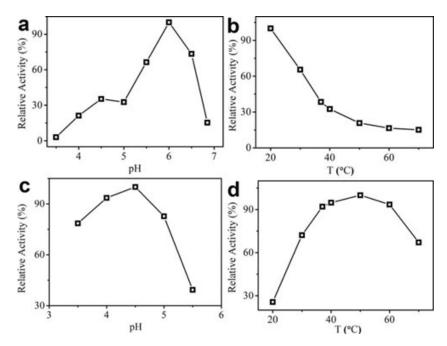


Figure S2. FTIR and Raman spectra of Ag₃PO₄MCs and Ag@Ag₃PO₄MCs.


Figure S3. The catalytic performances of Ag₃PO₄MCs for TMB in the presence of H₂O₂, O₂ and

N₂.

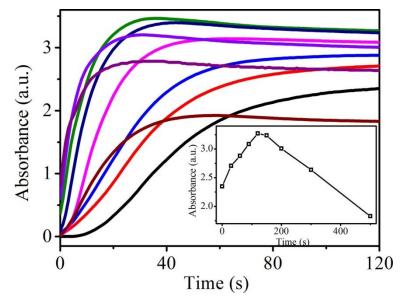

In order to have a deep understanding on the intrinsic oxidase-like properties of Ag_3PO_4MCs , systematic studies are performed on the effect of the TMB or OPD concentrations, catalysts amounts, pH values of buffer solutions, and reaction temperature. It has been well established that enzyme-reactions are dependent on all the above mentioned reaction parameters, such as horseradish peroxidase (HRP). Under our experimental conditions, various TMB or OPD concentrations were checked for better observation of UV-vis spectra measurement. As shown in Fig. S4a and S4c, 0.3 mM TMB or 1.25 mM OPD was found to be optimal to provide satisfied absorbance of UV-vis measurement, and the bluish or yellowish colour after reaction is clear to see by naked eyes. Meanwhile, 70 μ g mL⁻¹ Ag₃PO₄MCs was optimal to catalyze the oxidation reaction to equilibrium in a short time (120 s) in both cases of TMB and OPD in Fig. S4b and S4d. To evaluate the effects of pH values and reaction temperature on catalytic performance, the catalytic experiments in various pH values and reaction temperature have been carried out. In Fig. S5a, the relative activity was defined according to the absorption at 652 nm of the characteristic peak of oxidized TMB. It is clear to see that the relative activity of the Ag₃PO₄MCs gradually reached a maximum at pH value of 6.0 in 120 s, and decreased rapidly as increasing the pH to 6.8. Similar to previous work, the catalytic activity of most enzyme mimics is greatly affected by pH values. Ag₃PO₄MCs almost lost its oxidase-like activity at lower pH value around 3. As shown in Fig. S5b, Ag₃PO₄MCs exhibited higher catalytic activity at lower reaction temperature around 20 °C in the case of TMB, which lost its activity as increasing the reaction temperature. Similarly, using OPD as indicator also gives rise to the dependence on pH values in Fig. S5c. However, the absorption at 450 nm of oxidized OPD became maximal at pH value of 4.5, ascribing to different structural configuration of TMB and OPD. We observed different profiles using OPD as substrate as increasing reaction temperature, and Ag₃PO₄MCs shows the highest catalytic activity at 50 °C in Fig. S5d.

Figure S4. (a) Dependence of the oxidase-like activity on TMB concentrations. (b) Dependence of the oxidase-like activity on Ag₃PO₄MCs concentrations (by weight). (c) Dependence of the oxidase-like activity on OPD concentrations. (d) Dependence of the oxidase-like activity on the Ag₃PO₄MCs concentrations (a: 40 μ g mL⁻¹, b: 50 μ g mL⁻¹, c: 60 μ g mL⁻¹, d: 70 μ g mL⁻¹, e: 80 μ g mL⁻¹, f: 90 μ g mL⁻¹.). TMB experiments were conducted in time course mode in acetate buffer solution (pH = 6) at 20 °C. OPD experiments were conducted in time course mode in acetate buffer solution (pH = 4.5) at 50 °C.

Figure S5. (a) (b) Dependence of the oxidase-like activity on the pH values (3.5, 4, 4.5, 5, 5.5, 6, 6.5, and 6.8), and reaction temperature (T) (20, 30, 37, 40, 50, 60, and 70 °C) using TMB as indicator. (c) (d) Dependence of the oxidase-like activity on the pH values (3.5, 4, 4.5, 5, and 5.5), and reaction temperature (T) (20, 30, 37, 40, 50, 60, and 70 °C) using OPD as indicator.

Figure S6. The catalytic performance of Ag_3PO_4MCs for OPD under different UV irradiation time. Inset is the relative activity versus irradiation time.

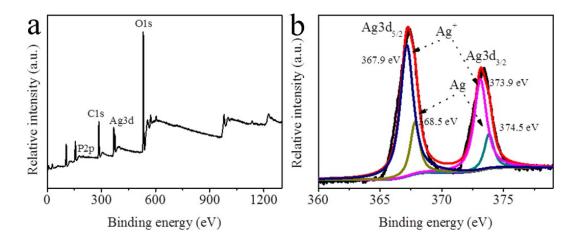
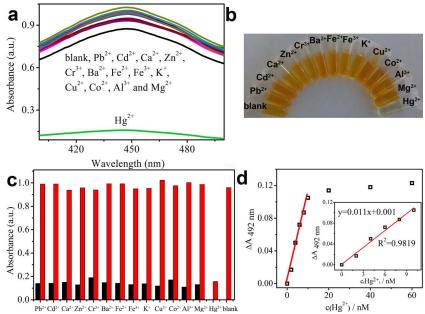
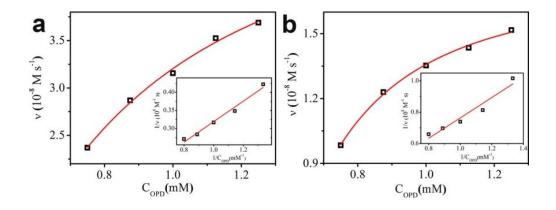




Figure S7. (a) XPS survey of Ag@Ag₃PO₄MCs, and (a) deconvoluted spectra of Ag 3d.

Figure S8. (a) The UV-vis spectra of Ag₃PO₄MCs/OPD solutions without and with addition of different metal ions (50 nM). (b) The photographs of Ag₃PO₄MCs/OPD solutions without and with addition of different metal ions (50 nM). (c) The absorbance values at 450 nm of Ag₃PO₄MCs/OPD solutions without and with addition of different metal ions; the red bars represent the cases of the addition of metal ions (50 nM), the black bars represent the cases of the addition of metal ions (50 nM). (d) Dose-response curve for Hg²⁺ detection based on inhibition reaction. Inset of d: linear calibration plot, absorbance change ΔA at 492 nm after addition of Ag₃PO₄MCs for 30 s *versus* Hg²⁺ concentrations. $\Delta A_{492 nm} = A_0 - A_i (A_0 and A_i are the absorbance without Hg²⁺ and that with a Hg²⁺ concentration of i, respectively). Ag₃PO₄MCs/OPD solutions: [OPD] = 1.25 mM, [Ag₃PO₄MCs] = 150 µg mL⁻¹ in 0.1 M, pH = 4.5 acetate buffer solution at 50 °C.$

Figure S9. Steady-state kinetic assays of Ag_3PO_4MCs (70 µg mL⁻¹) with Hg^{2+} 50 nM (a) and $Ag@Ag_3PO_4MCs$ (20 µg mL⁻¹) with Hg^{2+} 100 nM (b).

Cat.	Substrate	$K_{\rm m}/{ m mM}$	$V_{\rm max}/{ m M}~{ m s}^{-1}$	Ref.
HRP	OPD	0.59	4.65×10^{-8}	1
HRP	TMB	0.434	$10 imes 10^{-8}$	2
Ag ₃ PO ₄ MCs	OPD	3.31	2.77×10^{-6}	This work
Ag@Ag ₃ PO ₄ MCs	OPD	1.23	5.18×10^{-6}	This work
Ag ₃ PO ₄ MCs	TMB	2.09	2.42×10^{-5}	This work
Ag@Ag ₃ PO ₄ MCs	TMB	0.11	6.32×10^{-6}	This work

Table S1. Apparent kinetic parameters of different nanostructures. $K_{\rm m}$ is the Michaelis constantand $V_{\rm max}$ is the maximal reaction velocity.

Table S2. Comparison of assay methods for monitoring Hg²⁺ ions.

Strategy	Detection signal	Dynamic range (nM)	Detection limit (nM)	Ref.
Gel-AgNPs	colorimetric		0.125	3
L-tyrosine-AgNPs	colorimetric		16	4
AgNPs	colorimetric	16-660	16	4
Cit-AgNPs	colorimetric		28	5
Ag ₃ PO ₄ MCs	colorimetric	0-10	0.277	This work
Ag@Ag ₃ PO ₄ MCs	colorimetric	0-30	0.253	This work

References:

- 1. W.-Q. Kan, J. Yang, Y.-Y. Liu and J.-F. Ma, Inorg. Chem., 2012, 51, 11266.
- 2. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, **2**, 577.
- 3. Z. Sun, N. Zhang, Y. Si, S. Li, J. Wen, X. Zhu and H. Wang, Chem. Commun., 2014, 50, 9196.
- M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu and N. Rajendiran, ACS Sustain. Chem. Eng., 2014, 2, 887.
- 5. G.-L. Wang, X.-F. Xu, L.-H. Cao, C.-H. He, Z.-J. Li and C. Zhang, RSC Adv., 2014, 4, 5867.