Supporting Information

Preparation of α_1 - and α_2 -isomers of Mono-Ru-substituted Dawson-type Phosphotungstates with an Aqua Ligand and comparison of their Redox Potentials, Catalytic Activities, and Thermal stabilities with Keggin-type derivatives

Kensuke Nishiki,^a Naoya Umehara,^a Yusuke Kadota,^a Xavier López,^b Josep M. Poblet,^b Charyle Ayingone Mezui,^c Anne-Lucie Teillout,^c Israël M. Mbomekalle,^c Pedro de Oliveira,^e Mayumi Miyamoto,^a Tsuneji Sano,^a and Masahiro Sadakane^{*, a, d}

^a Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan. Fax: +81 82 424 5494; Tel: +81
82 424 4456; E-mail: <u>sadakane09@hiroshima-u.ac.jp</u>

^b Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain

^c Laboratoire de Chimie-Physique, Université Paris-Sud, UMR 8000 CNRS, Orsay F-91405, France

^d PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012, Japan

Figure S1. ESI-MS spectroscopy of (a) and (b) $K_7[\alpha_1 - P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O), (c) and (d) $K_7[\alpha_2 - P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_2 -RuH₂O).

Figure S1. Continued.

Figure S2. Cyclic voltammograms of the isolated brown solids, (black line) $K_7[\alpha_1 - P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O) and (red line) $K_7[\alpha_2 - P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_2 -RuH₂O). Cyclic voltammetry was performed in 0.5 M KH₂PO₄ aqueous solutions (pH ca. 4.3). POM concentration: 1.0×10^{-3} M. Scan rate: 25 mV·s⁻¹.

Figure S3. IR spectra of (a) $K_8[\alpha_1-P_2W_{17}O_{61}Ru^{II}(DMSO)]$ (α_1 -RuDMSO), (b) the brown solid, $K_7[\alpha_1-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O), obtained after reaction of $K_8[\alpha_1-P_2W_{17}O_{61}Ru^{II}(DMSO)]$ (α_1 -RuDMSO) in H₂O, (c) $K_8[\alpha_2-P_2W_{17}O_{61}Ru^{II}(DMSO)]$ (α_2 -RuDMSO), and (d) the brown solid $K_7[\alpha_2-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_2 -RuH₂O), obtained after reaction of $K_8[\alpha_2-P_2W_{17}O_{61}Ru^{II}(DMSO)]$ (α_2 -RuDMSO) in H₂O.

Figure S4. Cyclic voltammograms of re-generated $[\alpha_1$ - and α_2 -P₂W₁₇O₆₁Ru^{III}(DMSO)]⁷⁻ complexes. (black line) the reaction mixture obtained after reaction of $[\alpha_1$ -P₂W₁₇O₆₁Ru(H₂O)]⁷⁻ and DMSO in water at 80 °C for 4 days. (grey line with open circles) the reaction mixture obtained after reaction of $[\alpha_2$ -P₂W₁₇O₆₁Ru(H₂O)]⁷⁻ and DMSO in water at 80 °C for 4 days. The reaction of $[\alpha_2$ -P₂W₁₇O₆₁Ru(H₂O)]⁷⁻ and DMSO in water at 80 °C for 4 days. The reaction mixture (0.2 mL) was diluted with 0.54 M KH₂PO₄ (2.8 mL) to obtain a solution containing ca. 1.0 mM of Ru and 0.5 M KH₂PO₄ (pH 4.3).

Figure S5. Cyclic voltammograms of $K_7[\alpha_1-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O) in Britton-Robinson buffer with 0.5 M NaNO₃ solution (pH 6.0). (red line) potential window was between 600 mV and -300 mV. (black line) scans between 1200 mV and -400 mV were continually repeated 21 times. Potential scan was started from 200 mV to a positive direction.

Figure S6. Pourbaix diagram (redox potentials against pH of the solution) of (closed black circles) a_1 -RuH₂O, (closed red circles) a_2 -RuH₂O, (open green circles) [SiW₁₁O₃₉Ru(H₂O)]ⁿ⁻, (open blue circles) [GeW₁₁O₃₉Ru(H₂O)]ⁿ⁻, and (open black circles) [PW₁₁O₃₉Ru(H₂O)]ⁿ⁻. Britton-Robinson buffer (0.2 M NaOH was added to a solution containing CH₃CO₂H (0.04 M), H₃PO₄ (0.04 M), and B(OH)₃ (0.04 M)) with 0.5 M NaNO₃ for pH range of 1.8-7.0 and 0.5 M NaHSO₄ + 0.5 M H₂SO₄ for pH less than 1.8.

Figure S7. Highest occupied molecular orbital (HOMO), corresponding to the monooccupied orbital in Figure 8, for (a) α_1 -P₂W₁₇Ru(III), side view, and (b) α_2 -P₂W₁₇Ru(III), top view. In both cases, the orbital has majority of Ru character.

Figure S8. TG-DTA of (a) $K_7[\alpha_1-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O), (b) $K_7[\alpha_2-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_2 -RuH₂O), (c) $K_5[SiW_{11}O_{39}Ru(H_2O)]$, (d) $K_5[GeW_{11}O_{39}Ru(H_2O)]$, and (e) $Cs_4[PW_{11}O_{39}Ru(H_2O)]$.

Figure S9. Cyclic voltammograms of (a) $K_7[\alpha_1-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_1 -RuH₂O), (b) $K_7[\alpha_2-P_2W_{17}O_{61}Ru^{III}(H_2O)]$ (α_2 -RuH₂O), (c) $K_5[SiW_{11}O_{39}Ru(H_2O)]$, (d) $K_5[GeW_{11}O_{39}Ru(H_2O)]$, and (e) $Cs_4[PW_{11}O_{39}Ru(H_2O)]$ before heating and heating at several temperatures. Samples were heating using TG-DTA apparatus with heating rate of 10 °C·min⁻¹. Samples (ca. 1 mM of Ru) were dissolved in 0.5 M KH₂PO₄ (pH ca. 4.2).