Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

List of Supplementary Information

Synthesis and Photocatalytic activity of Naphthyl-Substituted Photosensitizing BINAP–Palladium Complex

Changsu Son and Akiko Inagaki*

Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397

Preparation and spectral data of [(BINAP ^{naph})PdMe(Me ₂ CO)] (1-Pd).	S2
Preparation and spectral data of [(BINAP)PdMe(Me ₂ CO)] (2-Pd).	<i>S3</i>
General procedure for the catalytic dimerization of styrenes.	<i>S4</i>
Figure S1. ¹ H NMR spectra of 1-Pd .	<i>S</i> 5
Figure S2. ³¹ P and ¹³ C NMR spectra of 1-Pd .	<i>S</i> 5
Figure S3. ¹ H NMR spectra of 2-Pd .	<i>S6</i>
Figure S4. ³¹ P and ¹³ C NMR spectra of 2-Pd .	<i>S6</i>
Figure S5. NMR and GC spectral data of dimer.	<i>S</i> 7
Figure S6. Reaction of 1-Pd toward 4-methoxystyrene under irradiated and	<i>S8</i>
dark conditions.	
Figure S7. NMR spectra of poly(<i>p</i> -methoxystyrene).	<i>S9</i>
Figure S8. Plot of polymer yield vs. time for the samples with various catalyst	<i>S10</i>
concentrations.	
Figure S9. Comparison of catalyst activity between 1-Pd and 2-Pd .	<i>S10</i>
Figure S10. ESI spectra of the reaction mixture (CD ₃ CN).	<i>S</i> 11
Table S1.Crystal data and structure refinement for 1.	<i>S12</i>
Figure S11. ORTEP diagram of 1 .	<i>S13</i>
Figure S12. ¹ H NMR chart of 1-Pd .	<i>S14</i>
Figure S13. ¹³ C NMR chart of 1-Pd .	<i>S14</i>
Figure S14. ¹ H NMR chart of 2-Pd .	<i>S15</i>
Figure S15. ¹³ C NMR chart of 2-Pd .	<i>S15</i>
Table S2. Optimized geometry of 1-Pd .	<i>S16</i>
Table S3. Optimized geometry of 2-Pd .	<i>S18</i>
Figure S16. Molecular orbital diagram of 1-Pd and 2-Pd .	S20
Table S4. TDDFT calculation result (1-Pd).	S21
Table S5. TDDFT calculation result (2-Pd).	S21
Figure S17. ³¹ P NMR time course in the catalytic reaction of 1-Pd with p -	<i>S22</i>
methoxystyrene.	

General. All manipulations were carried out under N_2 atmosphere with use of standard Schlenk techniques. THF, DMSO, DMF, toluene, acetonitrile, CH_2Cl_2 , and Et_2O were treated with appropriate drying agents, distilled, and stored under N_2 . ¹H, ¹³C, ³¹P NMR spectra were recorded on Bruker AVANCE-500 (500 MHz), JEOL JNM-AL400 FT-NMR, and JEOL JNM-270 FT NMR spectrometers. Solvents for NMR measurements (CDCl₃, CD₃CN) were dried over molecular sieves, degassed, and stored under N_2 . Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) mass spectra were recorded on Bruker MicroTOF II, respectively. [Pd(cod)MeCl] were prepared according to the published procedures [1]. Other chemicals were purchased and used as received.

DFT Study. DFT calculations were performed using the Gaussian-09 Revision D.01 quantum chemistry program package² at the B3LYP/LanL2DZ level. We used LanL2DZ pseudo-potential on Pd, 6-31G(d) split-valence basis set on P, N, and C coordinated to Pd, 3-21G on the other C, and H. Geometries of the complexes were optimized without any symmetry constraint. The orbital energies were determined by using minimized singlet geometries to approximate the ground state.

Preparation and spectral data of [(BINAP^{naph})PdMe(MeCN)] (1-Pd).

1 (400 mg, 0.49 mmol) and (COD)PdMeCl (129 mg, 0.49 mmol) were dissolved in CH_2Cl_2 (12 mL) and stirred at room temperature for 1h. The solvent was removed under reduced pressure and resulting solid was washed with ether (3 × 6 mL), and dried in vacuo to give (1)PdMeCl (477 mg, 0.49 mmol, >99%) as a pale yellow solid. (1)PdMeCl (480 mg, 0.49 mmol) was dissolved in 3 mL CH_2Cl_2 and 7 mL CH_3CN and added $AgBF_4$ solution (95 mg, 0.49 mmol, in 3 mL CH_3CN) and stirred at room temperature for 1h in a Schlenk tube foiled with Al sheet. Resulting mixture was filtered through Celite and the filtrate was concentrated under reduced pressure, precipitated with CH_3CN - Et_2O to give 1-Pd (467 mg, 0.44 mmol, 88.8%) as a dark yellow solid.

◆ Spectral Data for **1-Pd**.

¹H NMR (500 MHz, CD₃CN, RT, δ /ppm): 8.25 - 6.43 (m, Ar - *H*, 40H), 0.64 (dd, ²*J* = 7 Hz, ²*J* = 2 Hz, Me - *H*, 3H), CH₃CN proton signal was overlapped with CD₃CN signal.

³¹P NMR (202 MHz, CD₃CN, RT, δ /ppm): 38.65 (d, ³*J*_{P-P} = 42 Hz), 14.97 (d, ³*J*_{P-P} = 42 Hz)

¹³C NMR (125 MHz, CD₃CN, RT, δ /ppm): 140.6 - 122.2 (Ar - C), 13.48 (d, ³*J*_{P-C} = 87 Hz, Me - C), CH₃CN carbon signal is overlapped with CD₃CN signal.

ESI-MS : m/z = 984.21466 (M - BF₄), calculated : 984.21403

Anal. Calcd for C₆₃H₄₆BF₄NP₂Pd-1.5H₂O: C, 68.84; H, 4.49; N, 1.27. Found: C, 68.98; H, 4.49; N, 1.34.

Preparation and spectral data of [(BINAP)PdMe(MeCN)] (2-Pd).

2 (200 mg, 0.32 mmol) and (COD)PdMeCl (85 mg, 0.32 mmol) were dissolved in 10 mL CH₂Cl₂ and stirred at room temperature for 1h. The solvent was removed from the reaction mixture under reduced pressure. The obtained solid was washed with Et₂O (3×3 mL), dried in vacuo to give (**2**)PdMeCl (226 mg, 0.29 mmol, 90%) as a pale yellow solid. (**2**)PdMeCl (215 mg, 0.28 mmol) was dissolved in 2 mL CH₂Cl₂ and 6 mL CH₃CN and added of AgBF₄ CH₃CN solution (54 mg, 0.28 mmol) and stirred at room temperature for 1h in a Schlenk tube foiled with Al sheet.. Resulting mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The resulting solution was precipitated with CH₃CN - Et₂O to give **2-Pd** (230 mg, 0.26 mmol, 96%) as a dark yellow solid.

◆ Spectral Data for **2-Pd**.

¹H NMR (500 MHz, CD₃CN, RT, δ /ppm): 7.77 - 6.48 (m, Ar - *H*, 32H), 0.52 (dd, ²*J* = 8 Hz, ²*J* = 2 Hz, Me - *H*, 3H), CH₃CN proton signal was overlapped with CD₃CN signal.

³¹P NMR (202 MHz, CD₃CN, RT, δ /ppm): 39.09 (d, ³*J*_{P-P} = 43 Hz), 13.80 (d, ³*J*_{P-P} = 43 Hz)

¹³C NMR (125 MHz, CD₃CN, RT, δ /ppm): 140.62 - 122.12 (Ar - C), 13.63 (d, ³*J*_{P-C} = 86 Hz, Me - C), CH₃CN carbon signal is overlapped with CD₃CN signal.

ESI-MS : m/z = 784.15151 (M - BF₄), calculated : 784.15143

Anal. Calcd. for $C_{47}H_{38}BF_4NP_2Pd$ - $2H_2O$: C, 62.17; H, 4.66; N, 1.54. Found: C, 62.02; H, 4.48; N,1.63.

General procedure for the catalytic polymerization of *p*-methoxystyrene.

Photocatalytic reactions were performed as below. 0.5 mL of a 1 mM CD₃CN solution of catalyst (1 mol%) was added in a 5 ϕ quartz NMR tube. 1,1,2,2 - tetrachroloethane (an internalstandard) and a substrate was added in the NMR tube. The system was placed in a water bath, and exposed to 5W LED lamp (λ = 395 nm). The reaction was followed by ¹H NMR after appropriate time intervals.

Figure S1. ¹H NMR spectra of **1-Pd** (500MHz, CD₃CN).

¹H NMR spectra of **1-Pd** (500 MHz, CD_3CN)

Figure S2. ³¹P and ¹³C NMR spectra of **1-Pd**.

Figure S3. ¹H NMR spectra of **2-Pd**.

Figure S4. ³¹P and ¹³C NMR spectra of **2-Pd**.

Figure S5. NMR and GC spectral data of dimer.

¹H NMR (500MHz, CDCl₃, RT, δ /ppm): 7.13 (d, *J* = 5 Hz, 2H, Ar-H), 6.82 (d, *J* = 5 Hz, 2H, Ar-H), 3.77 (s, 3H, OMe-H), 3.44 (t, *J* = 15 Hz, 1H), 2.27 (m, 1H), 2.06 (m, 1H). ¹³C NMR (125MHz, CDCl₃, RT, δ /ppm): 158.0 (s), 136.9 (s), 127.6 (d), 113.7 (d), 55.29(q), 47.8 (d), 26.0 (t). APCI-MS : 269.1852 Figure S6. Reaction of **1-Pd** toward 4-methoxystyrene under irradiated and dark conditions. (1 mol% CD₃CN solution in 5f quartz NMR tube, λ_{irr} = 395 nm. Plot of polymer yield vs. time).

Figure S7. NMR spectra of poly(*p*-methoxystyrene) (a) ¹H NMR spectra (270 MHz, CDCl₃, r.t.). (b) ¹³C NMR spectra (100 MHz, CDCl₃, r.t.).

¹H NMR (500MHz, CDCl₃, RT, δ/ppm): 6.5 (brs, Ar-*H*, 4H), 3.7 (brs, -OC*H*₃, 3H), 1.7 (brs, -C*H*-, 1H), 1.3 (brs, -C*H*₂-, 2H)

¹³C NMR (125MHz, CDCl₃, RT, δ/ppm): 141.5 (s), 125.5 (brs), 118.3 (s), 106.1 (s), 59.6 (s), 50.6 (m), 47.0 (s)

Figure S8. Plot of polymer yield vs. time for the samples with various catalyst concentrations (λ_{irr} = 395 nm in CD₃CN solution).

Figure S9. Comparison of catalyst activity between **1-Pd** and **2-Pd** (1 mol% CD₃CN solution, λ_{irr} = 395 nm. Plot of polymer yield vs. time).

Figure S10. ESI spectra of the reaction mixture (CD₃CN).

Table 01. Orystal data and structure refinering			
Empirical formula	C60 H40 P2		
Formula weight	822.86		
Temperature	93(2) K		
Wavelength	0.71075 Å		
Crystal system	monoclinic		
Space group	C2		
Unit cell dimensions	a = 19.756(11) Å	α= 90°.	
	b = 10.922(6) Å	β= 92.043(7)°.	
	c = 10.065(5) Å	$\gamma = 90^{\circ}$.	
Volume	2170(2) Å ³		
Ζ	2		
Density (calculated)	1.259 Mg/m ³		
Absorption coefficient	0.141 mm ⁻¹		
F(000)	860		
Crystal size	0.50 x 0.40 x 0.20 mm ³		
Theta range for data collection	3.61 to 27.50°.		
Index ranges	-25<=h<=25, -14<=k<=14, -12<=l<=13		
Reflections collected	11446		
Independent reflections	4954 [R(int) = 0.0199]		
Completeness to theta = 27.50°	99.4 %		
Max. and min. transmission	0.9723 and 0.9326		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4954 / 1 / 360		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0374, w $R2 = 0.0968$		
R indices (all data)	R1 = 0.0386, $wR2 = 0.0979$		
Absolute structure parameter	0.00(7)		
Largest diff. peak and hole	1.418 and -0.209 e.Å ⁻³		

Table S1. Crystal data and structure refinement for **1.**

Figure S11. ORTEP diagram of 1.

Figure S12. ¹H NMR chart of **1-Pd**

Figure S13. ¹³C NMR chart of 1-Pd

Figure S14. ¹H NMR chart of 2-Pd

Figure S15. ¹³C NMR chart of 2-Pd

Table S2.Optimized geometry of 1-Pd

				С	-4.0804070000	3.2933160000
atom	Х	У	Z	С	-4.2099750000	2.1599930000
Pd	0.1115300000	-0.1774610000	1.8486590000	С	-3.0956870000	1.5868860000
Р	-1.7543680000	-0.1704250000	0.5041120000	С	-2.2470630000	-1.8158970000
Р	1.7071620000	0.1594070000	-0.0082000000	С	-3.1899560000	-1.9537550000
С	-1.1215210000	-0.7691270000	3.4302120000	С	-3.6288410000	-3.1991560000
Ν	1.6759760000	-0.0495350000	3.3105080000	С	-3.1582230000	-4.3752470000
С	2.5690600000	-0.0180450000	4.0411540000	С	-3.5995090000	-5.6744620000
С	3.7232510000	0.0027110000	4.9348120000	С	-3.1190700000	-6.7889490000
С	-1.5591580000	0.9496010000	-0.9567280000	С	-2.1741490000	-6.6587230000
С	-2.2593130000	2.1948260000	-0.9257380000	С	-1.7248480000	-5.4150310000
С	-2.0923850000	3.1336920000	-1.9118400000	С	-2.2012090000	-4.2433790000
С	-1.2161630000	2.8997520000	-3.0003330000	С	-1.7636590000	-2.9448640000
С	-1.0403650000	3.8592830000	-4.0351170000	С	2.0496690000	1.8371520000
С	-0.1982810000	3.6051840000	-5.0917470000	С	2.7809230000	2.0556770000
С	0.5083720000	2.3784880000	-5.1556590000	С	3.0968310000	3.3324290000
С	0.3626410000	1.4315920000	-4.1681770000	С	2.7021710000	4.4623460000
С	-0.5040840000	1.6572010000	-3.0584920000	С	3.0196370000	5.7926450000
С	-0.6850460000	0.6800990000	-2.0154340000	С	2.6166110000	6.8612670000
С	0.0610820000	-0.6180570000	-2.1709120000	С	1.8762070000	6.6515130000
С	1.2225010000	-0.8969050000	-1.4461260000	С	1.5524640000	5.3755700000
С	1.9523990000	-2.0916220000	-1.7167470000	С	1.9547660000	4.2499800000
С	1.5283910000	-2.9815700000	-2.6725480000	С	1.6441100000	2.9190020000
С	0.3539010000	-2.7364140000	-3.4283240000	С	3.3606180000	-0.4789210000
С	-1.2082210000	-3.3642880000	-5.1827820000	С	4.5614560000	0.2605800000
С	-1.9356550000	-2.1688810000	-4.9571220000	С	5.7684160000	-0.2161520000
С	-1.5383020000	-1.2780740000	-3.9868610000	С	5.8576760000	-1.4525820000
С	-0.3862440000	-1.5321890000	-3.1866170000	С	7.0905030000	-1.9682850000
С	-3.2393700000	0.4903240000	1.3635000000	С	7.1314070000	-3.1684930000
С	-4.5288670000	-0.0924430000	1.1910650000	С	5.9421000000	-3.9120750000
С	-5.6241510000	0.4380320000	1.8341300000	С	4.7328040000	-3.4426550000
С	-5.5065090000	1.5745040000	2.6783550000	С	4.6548870000	-2.2049010000
С	-6.6231400000	2.1460340000	3.3482180000	С	3.4233490000	-1.6843730000
С	-6.4642560000	3.2437230000	4.1625910000	С	-0.0887870000	-3.6402960000

С

С

-5.1817360000

3.8224050000

4.3497960000

3.7183570000

2.8663490000

2.2008770000

-0.0939000000

-1.1587440000

-1.5380170000

-0.8895520000

-1.2590370000

-0.6087310000

0.4409720000

0.8217050000

0.1707590000

0.5444360000

-0.6312070000

-1.8389630000

-2.2361210000

-1.4647690000

-1.8508240000

-1.0815270000

0.1096110000

0.5114650000

0.1301180000

0.4967690000

0.2847930000

0.7445630000

1.4400470000

1.9282120000

2.6008730000

2.8199690000

2.3614620000

1.6598640000

1.1823010000

-4.4336750000

-0.2592190000

Н	2.5173340000	-2.2517370000	1.3757590000
Н	-2.0906890000	-1.1750610000	3.1336020000
Н	-0.5318480000	-1.5269550000	3.9605780000
Η	-1.2636960000	0.1176660000	4.0581860000
Н	3.4548560000	-0.4134930000	5.9112770000
Н	4.5288980000	-0.5964080000	4.4955580000
Н	4.0750580000	1.0310900000	5.0692180000
Η	2.8585780000	-2.2922840000	-1.1627310000
Н	2.0998230000	-3.8822790000	-2.8690760000
Н	0.4796300000	-4.5484110000	-4.6012350000
Η	-1.5353530000	-4.0536610000	-5.9518040000
Η	-2.8094620000	-1.9549280000	-5.5613340000
Н	-2.0912740000	-0.3625340000	-3.8286950000
Н	0.8993610000	0.4957440000	-4.2290850000
Η	1.1663840000	2.1856140000	-5.9947280000
Η	-0.0730870000	4.3377750000	-5.8799800000
Η	-1.5870630000	4.7936960000	-3.9743210000
Н	-2.6413960000	4.0680650000	-1.8704730000
Η	-2.9422350000	2.3955750000	-0.1135780000
Η	-2.1150230000	2.0229720000	2.3679760000
Η	-4.6432380000	-0.9650650000	0.5622820000
Н	-6.6006380000	-0.0156010000	1.7031610000
Η	-3.0985130000	3.7326830000	3.8598020000
Η	-7.6017650000	1.7012610000	3.2058910000
Η	-5.0773480000	4.6855510000	4.9961280000
Η	-7.3200730000	3.6739650000	4.6686400000
Н	-1.0411390000	-2.8476540000	1.3484030000
Η	-3.5473350000	-1.0703330000	-1.6737300000
Η	-4.3370380000	-3.3012120000	-2.3527750000
Η	-1.0053800000	-5.3103130000	1.6269450000
Н	-4.3226640000	-5.7729290000	-2.0609950000
Η	-1.8106600000	-7.5471970000	0.9430790000
Н	-3.4629970000	-7.7756620000	-0.8948300000
Н	4.5186060000	1.2052800000	-0.2403180000
Н	6.6756750000	0.3543420000	0.5764420000

Н	3.8229810000	-4.0123390000	2.5204350000
Н	7.9986690000	-1.4011230000	1.7559350000
Н	5.9953220000	-4.8566620000	3.3479050000
Н	8.0752010000	-3.5562080000	2.9650110000
Н	1.0757520000	2.7611250000	1.0420920000
Н	3.0775590000	1.2066180000	-2.4432040000
Н	3.6474940000	3.4971040000	-3.1558310000
Н	0.9872630000	5.2106660000	1.4227560000
Н	3.5847470000	5.9517480000	-2.7625880000
Н	1.5681590000	7.5046700000	0.7020310000
Н	2.8641300000	7.8720780000	-1.3828680000

SCF energy : -3279.43079059 Hartree

Table S3. Optimized geometry of 2-Pd

				-	
atom	Х	v	Z	С	-1.8696480000
Pd	1.1640380000	1.8972590000	-0.0581060000	С	-3.1172490000
Р	-1.1060330000	1.5886210000	-0.2488410000	С	-3.7612910000
Р	1.6829210000	-0.5057340000	0.1341770000	С	-3.1714000000
С	0.8010900000	3.9510890000	0.1019060000	С	1.8950860000
Ν	3.2443180000	2.4137560000	-0.0822100000	С	2.0698850000
С	4.3642170000	2.6923560000	-0.0940990000	С	2.3044740000
С	5.7888430000	3.0096460000	-0.0831800000	С	2.3631020000
С	-1.5112400000	0.0306920000	-1.1615340000	С	2.1813610000
С	-1.9476820000	0.1645800000	-2.5155700000	С	1.9462410000
С	-2.1574280000	-0.9336810000	-3.3099360000	С	3.2776130000
С	-1.9520920000	-2.2440190000	-2.8113000000	С	4.2881440000
С	-2.1749050000	-3.3920460000	-3.6202870000	С	5.5014370000
С	-1.9901310000	-4.6557850000	-3.1114850000	С	5.7206140000
С	-1.5708020000	-4.8244790000	-1.7683480000	С	4.7224520000
С	-1.3423280000	-3.7336570000	-0.9612970000	С	3.5148740000
С	-1.5242110000	-2.4075000000	-1.4526110000	Н	-0.2194430000
С	-1.2986860000	-1.2461920000	-0.6304460000	Н	1.5113070000
С	-0.8818920000	-1.4953740000	0.7947190000	Н	1.0449510000
С	-1.8683610000	-2.0109640000	1.7045500000	Н	6.3098170000
С	-3.2235740000	-2.2282710000	1.3188550000	Н	6.2012180000
С	-4.1430830000	-2.7231710000	2.2150320000	Н	5.9459160000
С	-3.7635560000	-3.0291150000	3.5461340000	Н	1.8297550000
С	-2.4636160000	-2.8392640000	3.9514120000	Н	0.1593040000
С	-1.4867250000	-2.3352930000	3.0487250000	Н	-2.1591810000
С	-0.1333770000	-2.1671940000	3.4367300000	Н	-4.5004970000
С	0.8015210000	-1.6905990000	2.5515490000	Н	-5.1670600000
С	0.4412170000	-1.3404750000	1.2167580000	Н	-3.5181690000
С	-1.9889710000	1.5795690000	1.3431710000	Н	-1.0321460000
С	-3.3079010000	1.0989190000	1.4388850000	Н	-1.4342090000
С	-3.9954410000	1.1834790000	2.6492640000	Н	-2.1684200000
С	-3.3767200000	1.7412860000	3.7711180000	Н	-2.4997220000
С	-2.0645820000	2.2117310000	3.6853130000	Н	-2.4957880000
С	-1.3704750000	2.1317840000	2.4773320000	Н	-2.1266150000

С	-1.9234310000	2.9026770000	-1.2418360000
С	-1.2712460000	3.3855940000	-2.3936480000
С	-1.8696480000	4.3637920000	-3.1858810000
С	-3.1172490000	4.8861910000	-2.8309680000
С	-3.7612910000	4.4267950000	-1.6821400000
С	-3.1714000000	3.4387230000	-0.8886450000
С	1.8950860000	-1.5247740000	-1.3635650000
С	2.0698850000	-0.8773220000	-2.5977290000
С	2.3044740000	-1.6228120000	-3.7546450000
С	2.3631020000	-3.0164690000	-3.6880610000
С	2.1813610000	-3.6681730000	-2.4646800000
С	1.9462410000	-2.9291320000	-1.3054610000
С	3.2776130000	-0.6982910000	1.0381050000
С	4.2881440000	-1.5758300000	0.6138680000
С	5.5014370000	-1.6441830000	1.3054930000
С	5.7206140000	-0.8440080000	2.4274810000
С	4.7224520000	0.0370310000	2.8576160000
С	3.5148740000	0.1170600000	2.1642500000
Н	-0.2194430000	4.2173210000	0.3850530000
Н	1.5113070000	4.2895060000	0.8659760000
Н	1.0449510000	4.3878460000	-0.8730550000
Н	6.3098170000	2.3070750000	0.5769170000
Н	6.2012180000	2.9236670000	-1.0942210000
Н	5.9459160000	4.0308800000	0.2798450000
Н	1.8297550000	-1.5835790000	2.8673980000
Н	0.1593040000	-2.4341440000	4.4464430000
Н	-2.1591810000	-3.0784790000	4.9643510000
Н	-4.5004970000	-3.4205090000	4.2370000000
Н	-5.1670600000	-2.8893070000	1.9016310000
Н	-3.5181690000	-2.0095580000	0.3015920000
Н	-1.0321460000	-3.8721120000	0.0645900000
Н	-1.4342090000	-5.8246820000	-1.3745320000
Н	-2.1684200000	-5.5264840000	-3.7309440000
Н	-2.4997220000	-3.2493130000	-4.6449670000
Н	-2.4957880000	-0.8077600000	-4.3326520000
Н	-2.1266150000	1.1507530000	-2.9179920000

Н	2.7523690000	0.8142110000	2.4965130000
Н	4.8837850000	0.6575020000	3.7317950000
Н	6.6582730000	-0.9077350000	2.9669030000
Н	6.2708070000	-2.3284740000	0.9676100000
Н	4.1295300000	-2.2038030000	-0.2529480000
Н	1.7944700000	-3.4366520000	-0.3597150000
Н	2.2140480000	-4.7499040000	-2.4160600000
Н	2.5435090000	-3.5942630000	-4.5866630000
Н	2.4369290000	-1.1180650000	-4.7042780000
Н	2.0154100000	0.2051070000	-2.6492460000
Н	-0.2921550000	3.0007040000	-2.6588360000
Н	-1.3604500000	4.7258730000	-4.0712340000
Н	-3.5777990000	5.6527950000	-3.4423990000
Н	-4.7223580000	4.8375060000	-1.3965910000
Н	-3.6764140000	3.0982540000	0.0055770000
Н	-3.7858320000	0.6508010000	0.5758820000
Н	-5.0070510000	0.8029650000	2.7197190000
Н	-3.9141060000	1.8032610000	4.7097880000
Н	-1.5822150000	2.6392560000	4.5561880000
Н	-0.3517990000	2.4964730000	2.4083870000

SCF energy : -2668.24628571 Hartree

Figure S16, Molecular orbital diagram of **1-Pd** (left) and **2-Pd** (right).

state	Energy /eV (wavelength /nm)	f	Excitation with oscillator strength
1	3.4800 eV (356.28 nm)	f=0.0037	236 -> 240 : 0.16379 238 -> 240 : -0.24985
			239 -> 240 : 0.62427
2	3.5868 eV (345.67 nm)	f=0.0170	236 -> 240 : -0.15368
			238 -> 240 : 0.59532
			239 ->240 : 0.29695
3	3.7157 eV (333.67 nm)	f=0.0053	232 -> 240 : 0.11540
			236 -> 240 : -0.25578
			237 -> 240 : 0.58927
			238 -> 240 : -0.17260
4	3.7583 eV (329.90 nm)	f=0.0153	236 -> 240 : 0.57257
			237 -> 240 : 0.33770
			238 -> 240 : 0.18364
5	3.8934 eV (318.45 nm)	f=0.0007	233 -> 240 : 0.11554
			234 -> 240 : 0.63546
			235 -> 240 : -0.13199
			239 ->241: -0.11331
6	3.9457 eV (314.22 nm)	f=0.0400	233 -> 240 : 0.24050
			235 -> 240 : 0.61640

Table S4. TDDFT calculation result (1-Pd)

Table S5. TDDFT calculation result (2-Pd)

state	Energy /eV (wavelength /nm)	f	Excitation with oscillator
			strength
1	3.5466 eV (349.59 nm)	f=0.0067	187 ->188 : 0.68289
2	3.7476 eV (330.84 nm)	f=0.0301	186 -> 188 : 0.66739
			187 ->189: 0.11408
3	3.9228 eV (316.06 nm)	f=0.0522	176 -> 188 : -0.10815
			182 -> 188 : -0.10172
			184 -> 188 : -0.41679
			185 -> 188 : 0.41714
			186 -> 188 : -0.13182
4	4.0612 eV (305.29 nm)	f=0.0500	174 -> 188 : 0.10233
			184 -> 188 : 0.38823
			185 -> 188 : 0.50791
			186 ->189: 0.11721
			187 ->189: -0.11015
5	4.2070 eV (294.71 nm)	f=0.0050	186 ->188: -0.10449
			187 ->189: 0.66084
6	4.2972 eV (288.52 nm)	f=0.0349	186 ->189: 0.66705

Figure S17, ³¹P NMR time course in the catalytic reaction of **1-Pd** with *p*-methoxystyrene

References

1 R. E. Rülke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen, K. Vrieze, *Inorg. Chem.* 1993, **32**, 5769-5778.

2 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc.: Wallingford CT, 2013.