Supporting Information

Synthesis, characterization, and H/D exchange of μ -hydridecontaining [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ -TDT)Fe₂(CO)₄(PMe₃)₂ (TDT = SCH₂SCH₂S) with protic acids

Li-Cheng Song,* ^{1,2} An-Guo Zhu,^{1,2} and Yuan-Qiang Guo^{1,2} ¹Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ²Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University, Tianjin 300071, China

Contents:

Table S1	Selected bond lengths (Å) and angles (°) for 1page S3
Table S2	Selected bond lengths (Å) and angles (°) for 3–5 page S3
Table S3	In situ ¹ H NMR data of μ -H in complexes 2–7 taken after the 5 min
	protonation reactions of complex 1 with the corresponding acids page S4
Table S4	In situ ³¹ P{ ¹ H} NMR data of complexes 2–7 taken after the 5 min
	protonation reactions of complex 1 with the corresponding acidspage S5
Table S5	In situ ¹ H NMR data of μ -H in complex 5 taken at time intervals during
	the protonation reactions of complex 1 with HBF_4 ·Et ₂ Opage S6
Table S6	In situ ${}^{31}P{}^{1}H$ NMR data of complex 5 taken at time intervals during
	the protonation reactions of complex 1 with HBF_4 ·Et ₂ Opage S7
Table S7	Selected bond lengths (Å) and angles (°) for 8page S7
Table S8	Crystal data and structure refinements details for 1, 3, and 4page S8
Table S9	Crystal data and structure refinements details for 5 and 8 page S9
Fig. S1	In situ ¹ H NMR spectra of μ -H in complexes 2–7 taken after the 5 min
	protonation reactions of complex 1 with the corresponding acidspage S10
Fig. S2	In situ ${}^{31}P{}^{1}H$ NMR spectra of complexes 2–7 taken after the 5 min protonation
	reactions of complex 1 with the corresponding acidspage S10
Fig. S3	In situ ¹ H NMR spectra of μ -H in complex 5 taken at time intervals
	during the protonation reactions of complex 1 with HBF ₄ ·Et ₂ Opage S11
Fig. S4	In situ ${}^{31}P{}^{1}H$ NMR spectra in complex 5 taken at time intervals during
	the protonation reactions of complex 1 with $HBF_4 \cdot Et_2O$ page S11
Discussi	on of the unsuccessful H/D exchange resultspage S12

Table ST Beleeted	bolid lenguis (II) and a		
Fe(1)–C(2)	1.750(4)	Fe(1)-S(1A)	2.2498(12)
Fe(1)-C(1)	1.758(4)	Fe(1)– $Fe(1A)$	2.5710(14)
Fe(1) - P(1)	2.2333(12)	S(1)–C(6)	1.831(4)
Fe(1) - S(1)	2.2481(12)	S(1A)–C(6)	1.709(4)
C(1)-Fe(1)-P(1)	96.15(13)	Fe(1)-S(1)-Fe(1A)	69.72(4)
C(1)-Fe(1)-S(1)	105.32(12)	S(1)-Fe(1)-S(1A)	85.65(4)
P(1)-Fe(1)-S(1)	89.50(5)	C(6)-S(1A)-C(6A)	99.4(2)
P(1)-Fe(1)-S(1A)	162.28(4)	C(3)-P(1)-Fe(1)	113.0(4)

 Table S1
 Selected bond lengths (Å) and angles (°) for 1

Table S2Selected bond lengths (Å) and angles (°) for 3-5

3			
P(1)-C(3)	1.813(3)	S(1) - Fe(2)	2.2783(6)
P(1)-Fe(1)	2.2588(7)	Fe(1)– $Fe(2)$	2.5774(4)
S(1) - Fe(1)	2.2645(7)	Fe(1)-H(1)	1.6297
S(1)-Fe(1)-Fe(2)	55.687(17)	C(1)-S(1)-Fe(1)	113.05(9)
P(1)-Fe(1)-Fe(2)	109.72(2)	C(4)-P(1)-Fe(1)	114.57(10)
S(3)-Fe(1)-Fe(2)	55.083(17)	C(9)-Fe(1)-Fe(2)	112.64(7)
Fe(1)-S(1)-Fe(2)	69.13(2)	Fe(1) –Fe(2) –H	37.9
4			
P(1)-C(4)	1.786(5)	Fe(1)-C(1)	1.775(4)
P(1)-Fe(1)	2.2580(11)	Fe(1)- $Fe(1A)$	2.5799(10)
S(1)-Fe(1)	2.2536(11)	Fe(1)-H(1)	1.67(3)
S(1)-Fe(1)-Fe(1A)	55.85(3)	C(3)-S(1)-Fe(1)	111.4(3)
P(1)-Fe(1)-S(1)	165.75(4)	C(4)-P(1)-Fe(1)	114.7(2)
P(1)-Fe(1)-Fe(1A)	111.40(3)	C(1)-Fe(1)-Fe(1A)	141.66(16)
Fe(1)-S(1)-Fe(1A)	69.33(3)	Fe(1)-Fe(1A)-H	39.5(14)
5			
P(1) - C(3)	1.814(8)	S(1) - Fe(2)	2.306(16)
P(1)-Fe(1)	2.238(2)	Fe(1)– $Fe(2)$	2.5721(15)
S(1) - Fe(1)	2.258(17)	Fe(1)-H(1)	1.5810
S(1)-Fe(1)-Fe(2)	56.6(5)	C(2)-S(3)-Fe(1)	117.0(5)
P(1)-Fe(1)-Fe(2)	111.93(6)	C(3)-P(1)-Fe(1)	114.8(3)
S(3)–Fe(1)–Fe(2)	59.79(14)	C(9)–Fe(1)–Fe(2)	139.3(3)
Fe(1)-S(1)-Fe(2)	68.6(4)	Fe(1) –Fe(2)–H	35.5

complex	spectral data/isomer assignment	molar ratio
		trans-ba/ba : cis-ba/ba : ap/ba
2	-15.02 (t, $J_{P-H} = 21.2$ Hz)/trans-ba/ba	only trans-ba/ba
3	-15.00 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.67 (t, $J_{P-H} = 20.0$ Hz)/cis-ba/ba -14.20 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	6.2 : 1.0 : 2.2
4	-15.02 (t, J_{P-H} = 21.6 Hz)/trans-ba/ba -14.66 (t, J_{P-H} = 20.4Hz)/cis-ba/ba -14.20 (d, J_{P-H} = 22.0 Hz)/ap/ba	19.3 : 1.0 : 3.5
5	-15.02 (t, J_{P-H} = 21.6 Hz)/trans-ba/ba -14.66 (t, J_{P-H} = 19.6Hz)/cis-ba/ba -14.20 (d, J_{P-H} = 22.0 Hz)/ap/ba	2.0 : 1.0 : 1.4
6	-15.03 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.20 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	3.3:0:1.0
7	-15.03 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.66 (t, $J_{P-H} = 19.6$ Hz)/cis-ba/ba -14.20 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	1.6 : 1.0 : 1.4

Table S3. In situ ¹H NMR data of μ -H in complexes **2–7** taken after the 5 min protonation reactions of complex **1** with the corresponding acids

complex	spectral data/isomer assignment	molar ratio
2	21.10 (s)/trans-ba/ba	trans-ba/ba : cis-ba/ba : ap/ba only trans-ba/ba
3	18.83 (s)/cis-ba/ba 21.08 (s)/trans-ba/ba 22.78(d, <i>J</i> = 7.8 Hz), 21.66 (d, <i>J</i> = 7.8 Hz)/ap/ba	2.4 : 0.5 : 1.0
4	18.79 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, $J = 7.8$ Hz), 21.63 (d, $J = 7.8$ Hz)/ap/ba	4.6 : 0.2 : 1.0
5	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.77(d, <i>J</i> = 7.8 Hz), 21.65 (d, <i>J</i> = 7.8 Hz)/ap/ba	1.1 : 0.5 : 1.0
6	21.05 (s)/trans-ba/ba 22.76 (d, <i>J</i> = 7.8 Hz), 21.60 (d, <i>J</i> = 7.8 Hz) ap/ba	2.6 : 0 : 1.0
7	18.79 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	1.1 : 0.6 : 1.0

Table S4. In situ ${}^{31}P{}^{1}H$ NMR data of complexes 2–7 taken after the 5min protonation reactions of complex 1 with the corresponding acids

reaction time (min)	spectral data/isomer assignment	molar ratio trans-ba/ba : cis-ba/ba : ap/ba
5	-14.99 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.63 (t, $J_{P-H} = 22.0$ Hz)/cis-ba/ba -14.17 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	1.3 : 1.0: 1.2
15	-14.99 (t, J_{P-H} = 21.6 Hz)/trans-ba/ba -14.63 (t, J_{P-H} = 22.0 Hz)/cis-ba/ba -14.17 (d, J_{P-H} = 22.0 Hz)/ap/ba	3.0 : 1.0 : 1.9
25	-14.99 (t, J_{P-H} = 21.6 Hz)/trans-ba/ba -14.63 (t, J_{P-H} = 22.0 Hz)/cis-ba/ba -14.17 (d, J_{P-H} = 22.0 Hz)/ap/ba	7.5 : 1.0: 2.4
35	-14.99 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.63 (t, $J_{P-H} = 22.0$ Hz)/cis-ba/ba -14.17 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	15.3 : 1.0 : 2.4
45	-14.99 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba -14.63 (t, $J_{P-H} = 22.0$ Hz)/cis-ba/ba -14.17 (d, $J_{P-H} = 22.0$ Hz)/ap/ba	28.2 : 1.0 : 3.1
85	-14.99 (t, $J_{P-H} = 21.6$ Hz)/trans-ba/ba	only trans-ba/ba

Table S5. In situ ¹H NMR data of μ -H in complex **5** taken at time intervals during the protonation reactions of complex **1** with HBF₄·Et₂O

reaction time	spectral data/isomer assignment	molar ratio
(min)		trans-ba/ba : cis-ba/ba : ap/ba
5	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	2.1 : 1.0 : 2.0
15	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	3.1 : 0.82 : 2.0
25	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	6.1 : 0.75 : 2.0
35	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	11.5 : 0.76 : 2.0
45	18.80 (s)/cis-ba/ba 21.10 (s)/trans-ba/ba 22.75(d, <i>J</i> = 7.8 Hz), 21.63 (d, <i>J</i> = 7.8 Hz)/ap/ba	17.8 : 0.80 : 2.0
85	21.10 (s)/trans ba/ba	only trans-ba/ba

Table S6. In situ ${}^{31}P{}^{1}H$ NMR data of complex 5 taken at timeintervals during the protonation reactions of complex 1 with HBF₄·Et₂O

Table S7Selected bond lengths (Å) and angles (°) for 8

Fe(1)–C(2)	1.789(5)	Fe(1)– $Fe(2)$	2.5866(13)
Fe(1) - P(1)	2.2597(13)	S(1) - C(5)	1.838(4)
Fe(1) - S(1)	2.2681(12)	S(2)–C(6)	1.757(5)
Fe(1)–D	1.70(4)	Fe(2)-D	1.61(4)
C(1)-Fe(1)-P(1)	91.58(16)	Fe(1)-S(1)-Fe(2)	69.40(4)
C(1)-Fe(1)-S(1)	169.21(14)	P(1)-Fe(1)-D	87.0(14)
P(1)-Fe(1)-S(1)	88.40(5)	C(2)– $Fe(1)$ – D	178.1(13)
P(1)-Fe(1)-S(3)	163.30(5)	Fe(1)– $Fe(2)$ – D	39.9(14)

	1	3	4
Formula	$C_{12}H_{22}Fe_2O_4P_2S_3$	$C_{12}H_{23}ClFe_2O_8P_2S_3$	$C_{12}H_{23}F_{6}Fe_{2}O_{4}P_{3}S_{3}$
M_w	500.12	600.57	646.09
Cryst syst	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	P2(1)/n	C2/c
<i>a</i> (Å)	17.214(9)	13.1779(5)	20.742(3)
<i>b</i> (Å)	10.277(5)	8.7547(3)	8.9084(11)
<i>c</i> (Å)	12.324(6)	20.2242(7)	13.7249(17)
α (°)	90	90	90
$\beta(^{\circ})$	100.177(6)	103.3770(10)	103.040(2)
γ(°)	90	90	90
$V(Å^3)$	2145.9(19)	2269.93(14)	2470.6(5)
Ζ	4	4	4
Crystal size (mm)	$0.18 \times 0.16 \times 0.10$	$0.18 \times 0.17 \times 0.15$	$0.46 \times 0.34 \times 0.30$
$D_{\rm c}({\rm g}\cdot{\rm cm}^{-3})$	1.548	1.757	1.737
μ (mm $^{-1}$)	1.804	1.848	1.683
<i>F</i> (000)	1024	1224	1304
Reflns collected	5618	12755	6507
Reflns unique	1893	4001	2190
$\theta_{\min/\max}$ (°)	2.32/25.00	2.07/25.00	2.50/25.02
Final <i>R</i>	0.0315	0.0244	0.0404
Final $R_{\rm W}$	0.0867	0.0582	0.1141
GOF on F^2	1.094	1.072	1.052
$\Delta ho_{ m max/min}$ (e Å ⁻³)	0.350/-0.303	0.520/-0.266	0.386/-0.440

Table S8 Crystal data and structure refinements details for 1, 3 and 4

	5	8
Formula	$C_{12}H_{23}BF_4Fe_2O_4P_2S_3$	$C_{13}H_{22}DF_3Fe_2O_7P_2S_4$
M_w	587.93	651.20
Cryst syst	Monoclinic	Monoclinic
Space group	P21/c	P2(1)/c
<i>a</i> (Å)	13.2814(7)	11.214(2)
<i>b</i> (Å)	17.4609(9)	18.025(4)
<i>c</i> (Å)	21.0295(9)	13.720(3)
α (°)	90	90
$\beta(^{\circ})$	111.970(2)	112.30(3)
$\gamma(^{\circ})$	90	90
$V(Å^3)$	4522.7(4)	2565.8(9)
Ζ	8	4
Crystal size (mm)	$0.18 \times 0.17 \times 0.16$	$0.20 \times 0.18 \times 0.12$
$D_{\rm c}({\rm g~cm^{-3}})$	1.727	1.686
μ (mm ⁻¹)	1.750	1.633
<i>F</i> (000)	2384	1324
Reflns collected	25853	25386
Reflns unique	7967	6063
$\theta_{\min/\max}$ (°)	1.57/25.01	2.26/27.85
Final <i>R</i>	0.0669	0.0624
Final $R_{\rm W}$	0.1865	0.1845
GOF on F^2	0.925	1.096
$\Delta \rho_{\text{max/min}}$ (e Å ⁻³)	1.926/-1.698	1.621/-0.661

Table S9Crystal data and structure refinements details for **5** and **8**

Fig. S1 In situ ¹H NMR spectra of μ -H in complexes 2–7 taken after the 5 min protonation reactions of complex 1 with the corresponding acids.

Fig. S2 In situ ${}^{31}P{}^{1}H$ NMR spectra of complexes 2–7 taken after the 5 min protonation reactions of complex 1 with the corresponding acids.

Fig. S3 In situ ¹H NMR spectra of μ -H in complex 5 taken at time intervals during the protonation reactions of complex 1 with HBF₄·Et₂O.

Fig. S4 In situ ${}^{31}P{}^{1}H$ NMR spectra in complex 5 taken at time intervals during the protonation reactions of complex 1 with HBF₄·Et₂O.

Discussion of the unsuccessful H/D exchange results

(i) Attempted H/D exchange between 7 and D_2

As described in Experimental Section, the H/D exchange reaction of complex 7 with D₂ was carried out at room temperature in a J-Young NMR tube containing a CD₂Cl₂ (for ¹H NMR determination) or CH₂Cl₂ (for ²H NMR determination) solution of complex 7 and filled with D₂ pressured to 2 bar. Unfortunately, after the reaction system was exposured to ambient laboratory light for 3 days or left in the dark for 3 days, the in situ ¹H and ²H NMR spectra proved that the H/D exchange reaction between 7 and D₂ did not occur under such conditions. This is because the ¹H NMR signal for the expected H/D exchange product HD ($\delta_{\rm H}$: a triplet at 4.57 ppm with *J*_{D-H} = 42.51 Hz, see: D. Sellmann and A. Fürsattel, *Angew. Chem. Int. Ed.*, 1999, **38**, 2023-2026) or the ²H NMR signal for the expected H/D exchange product **8** ($\delta_{\mu-D}$: a triplet at –14.33 ppm with *J*_{P-D} = 3.23 Hz) was not observed.

(ii) Attempted H/D exchange between 7 and D_2O

Similarly, the study on the H/D exchange reaction between 7 and D₂O was carried out at room temperature in an NMR tube containing an acetone-d₆ (for ¹H NMR determination) or acetone (for ²H NMR determination) solution of complex 7 and excess D₂O under irradiation of ambient laboratory light for 3 days or in the dark for 3 days. The in situ ²H NMR spectra demonstrated that the H/D exchange reaction of 7 with D₂O could not occur also under such conditions, since no ²H NMR signal for the expected μ -deuterium complex **8** ($\delta_{\mu-D}$: a triplet at -14.33 ppm with $J_{P-D} = 3.23$ Hz) was observed.