Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

A luminescent silver-phosphine tetragonal cage based on tetraphenylethylene

Juan Feng, Liu Yao, Jianyong Zhang,* Yingxiao Mu, Zhenguo Chi and Cheng-Yong Su

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China. Email: zhjyong@mail.sysu.edu.cn

	Sample	$\tau_1/ns^{[a]}$	$A_1^{[b]}$	$\tau_2/ns^{[a]}$	$A_2^{[b]}$	$<\tau$ >/ns ^[c]
L	in CHCl ₃	0.30	0.66	3.08	0.34	1.25
	$(3.64 \times 10^{-5} \text{ mol } \text{L}^{-1})$					
	solid	2.84	0.55	6.13	0.45	4.32
Ag_4L_2	in CHCl ₃	1.24	0.22	2.93	0.78	2.56
	$(1.42 \times 10^{-5} \text{ mol } \text{L}^{-1})$					
	solid	2.10	0.40	3.89	0.60	3.17
[9]	iic ii [b] r	1		[c] 11		1.6

Table S1 Fluorescence lifetime data of L and Ag_4L_2 in solution and in solid state. (The resulting signals were fitted with a double exponential decay function, which obtained the best fit with respect to both the recorded phase and intensity information.)

^[a] Fluorescence lifetime. ^[b] Fractional contribution. ^[c] Weighted mean lifetime $\langle \tau \rangle = \frac{A_1 \tau_1 + A_2 \tau_2}{A_1 + A_2}.$

Scheme S1 Synthetic route for 1,1,2,2-tetrakis(4-diphenylphosphino-(1,1'-biphenyl))ethane (L).

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃) of TPE-F4.

Fig. S4 FT-IR spectrum of TPE-F4 (KBr pellets).

Fig. S5 ${}^{31}P{}^{1}H$ NMR spectrum (CDCl₃, 162 MHz) of L.

Fig. S6¹H NMR spectrum (CDCl₃, 400 MHz) of L.

Fig. S7¹³C NMR spectrum (CDCl₃, 101 MHz) of L.

Fig. S8 FT-IR spectrum of L (KBr pellets).

Fig. S9 ${}^{31}P{}^{1}H$ NMR titration of L with AgBF₄ (CDCl₃-MeCN, 202 MHz) (reference: 85% conc. H₃PO₄).

Fig. S10 ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 162 MHz) of Ag₄L₂.

Fig. S11 1 H NMR spectrum (CD₂Cl₂, 400 MHz) of Ag₄L₂.

Fig. S13 Section of ¹H DOSY NMR spectrum (CD₂Cl₂, 400 MHz) of Ag₄L₂.

6.0 F2 [ppm]

Fig. S14 ESI-TOF-MS spectrum of Ag_4L_2 in CHCl₃ (diluted by MeCN), and isotopic distributions and simulations of some key peaks. HRMS: m/z found (calcd) for $[Ag_4L_2+Cl]^{3+}$, 1071.1699 (1071.1796); $[Ag_4L_2+2Cl]^{2+}$, 1624.7775 (1624.7414).

Fig. S15 ³¹P{¹H} NMR (298 K, 162 MHz) spectra for mixtures of L and Ag⁺ with different anions (Ag:L = 2:1), a) NO₃⁻; b) BF₄⁻; c) SbF₆⁻ in toluene–methanol (v:v = 1:1), and d) OTf in CD₃CN.

Fig. S16 ESI-TOF-MS spectrum of mixtures of L and AgOTf (L:Ag = 1:2) in toluene–methanol (v:v = 1:1). HRMS: m/z found (calcd.) for $[Ag_4L_2+OTf]^{3+}$, 1109.1771 (1109.1645); $[Ag_4L_2]^{4+}$, 794.6468 (794.6353).

Fig. S17 ESI-TOF-MS spectrum of mixtures of L and $AgSbF_6$ (L:Ag = 1:2) in toluene–methanol (v:v = 1:1). HRMS: m/z found (calcd.) for $[Ag_4L_2+SbF_6]^{3+}$, 1137.8231 (1137.8118); $[Ag_4L_2]^{4+}$, 794.6429 (794.6353).

Fig. S18 a) Photoluminescence spectra of L in THF–water mixtures with different water fractions (f_w) and in pure THF $(f_w = 0\%)$. b) Variations of fluorescence quantum yields of L with water fractions in THF/water mixtures. $c = 1.82 \times 10^{-5}$ mol L⁻¹; $\lambda_{ex} = 310$ nm. Inset shows the photos of L in pure THF and THF-water mixtures taken under UV light (365 nm) (from left to right: $0 \rightarrow 90\%$ H₂O fraction/vol%).

Fig. S19 a) UV-vis absorption spectrum of L in solid state and b) excitation spectrum of L in solid state ($\lambda_{em} = 530$ nm).

Fig. S20 a) UV-vis absorption and b) excitation spectra of L in CHCl₃ ($c = 1.53 \times 10^{-5} \text{ mol } \text{L}^{-1}$) ($\lambda_{em} = 490 \text{ nm}$).

Fig. S21 Size distributions of L in THF-water mixture ($f_w = 90\%$, $c = 1.82 \times 10^{-5} \text{ mol } \text{L}^{-1}$).

Fig. S22 a) Fluorescence emission spectra of Ag_4L_2 in CH_2Cl_2 -hexane mixtures with the volume fractions of hexane (*f*) varying in the range of 0-90% ($1.42 \times 10^{-5} \text{ mol } L^{-1}$, $\lambda_{ex} = 310 \text{ nm}$). b) Photos of Ag_4L_2 in pure CH_2Cl_2 and CH_2Cl_2 -hexane mixtures taken under UV light (365 nm) (from left to right: $0 \rightarrow 90\%$ hexane fraction/vol%).

Fig. S23 a) UV-vis absorption spectrum of Ag_4L_2 in solid state and b) excitation spectrum of Ag_4L_2 in solid state ($\lambda_{em} = 530$ nm).

Fig. S24 a) UV-vis absorption and b) excitation spectra of Ag_4L_2 in CHCl₃ ($c = 1.42 \times 10^{-5} \text{ mol } \text{L}^{-1}$) ($\lambda_{em} = 490 \text{ nm}$), c) UV-vis spectra of Ag_4L_2 in CHCl₃ ($7.99 \times 10^{-6} \text{ mol } \text{L}^{-1}$) in the presence of four equiv TBA salts of anions, d) UV-vis spectra of Ag_4L_2 in CHCl₃ ($1.69 \times 10^{-5} \text{ mol } \text{L}^{-1}$) in the presence of four equiv aromatic compounds, cis-stilbene, trans-stilbene and blank.

Fig. S25 Photoluminescence intensity upon addition of various TBA salts of anions of Ag_4L_2 in CHCl₃ (7.99×10⁻⁶ mol L⁻¹, $\lambda_{ex} = 310$ nm) in the presence of 4 equiv TBA salts of anions.

Fig. S26 ³¹P{¹H} NMR spectrum (CD₂Cl₂, 162 MHz) of Ag₄L₂, a) blank ($J_{109Ag-31P} = 500$ Hz), b) upon addition of excess NO₃NBu₄ ($J_{109Ag-31P} = 452$ Hz).

Fig. S27 ³¹P{¹H} NMR spectrum (CD₂Cl₂, 162 MHz) (top) and ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) (bottom) of Ag₄L₂, a) blank, b,c) upon addition of excess cis-stilbene (Note the olefin H change on the high field) and d) cis-stilbene.

Fig. S28 ${}^{31}P{}^{1}H{}$ NMR spectrum (CD₂Cl₂, 162 MHz) (top) and ${}^{1}H{}$ NMR (CD₂Cl₂, room temperature, 400 MHz) (bottom) of Ag₄L₂, a) blank, b,c) upon addition of excess styrene (* is due to CD₂Cl₂) and d) styrene.

Fig. S29 ³¹P{¹H} NMR spectrum (CD₂Cl₂, 162 MHz) (top) and ¹H NMR (CD₂Cl₂, room temperature, 400 MHz) (bottom) of Ag_4L_2 , a) blank, b,c) upon addition of excess cinnamyl alcohol, and d) cinnamyl alcohol. The NMR change is probably due to the Ag...OH(alcohol) interaction.

Fig. S30 a) C_2H_4 sorption isotherms of Ag_4L_2 at 273 and 298 K (filled, adsorption; unfilled, desorption), and b) The isosteric heat of adsorption, Q_{st} of C_2H_4 .