Supplementary Information

Ru(II)-dmso Complexes containing Azole-based Ligands: Synthesis, Linkage Isomerism and Catalytic Behaviour

Íngrid Ferrer, Xavier Fontrodona, Montserrat Rodríguez* and Isabel Romero*

Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain.

Keywords: ruthenium /dmso complexes/ azole-based ligands / linkage isomerism / hydration catalysis.

Table of Contents

Table S1. Crystallographic data for complexes 2-5 and 6'.

Table S2. Formulas used for the calculation of rate (k) and equilibrium (K) constants.

Scheme S1. Ru-dmso complexes gathered in entries 3-6 of Table 2.

Figure S1. NMR spectra of 2, 400 MHz, CD_2Cl_2 : a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC

Figure S2. NMR spectra of **3**, 300 MHz, CD_2Cl_2 : a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC

Figure S3. NMR spectra of **4**, 300 MHz, CD_2Cl_2 : a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC

Figure S4. NMR spectra of **5**, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC, g) ¹H-NMR with presence of the minor isomer.

Figure S5. UV-visible spectra of 2 (blue), 3 (green), 4 (grey) and 5 (red) in CH₂Cl₂

Figure S6. CV of a) 3 (blue), 4 (black) and 5 (orange) in CH₃CN + 0.1 M TBAH.

Figure S7. CV registered in CH₂Cl₂ (TBAH, 0.1M) vs Ag/AgCl starting the scanning potential at $E_{init} = 0.6$ for **2** and 0 V for **6** at scan rates between 0.20 and 8 V/s (equilibration time = 2 s). a) complex **2**, b) complex **6**.

Figure S8. Plot of i_{C1}/i_{C2} vs. 1/v to obtain K^{III}_{O-S} for complex 2.

Figure S9. Plot of i_{C1}/i_{C2} vs. 1/v to obtain K^{III}_{O-S} for complex 6.

Figure S10. Plot of $\upsilon^{1/2}$ vs. i_d/i_k to obtain $k^{III}_{S\to O}$ and $k^{III}_{O\to S}$ for complex 2.

Figure S11. Plot of $\upsilon^{1/2}$ vs. i_d/i_k to obtain $k^{III}_{S\to O}$ and $k^{III}_{O\to S}$ for complex 6.

Figure S12. Plot of $\ln(i_{a1}/\upsilon^{1/2})$ vs. 1/ υ to obtain $k^{II}_{O\rightarrow S}$ for complex **2.**

Figure S13. Plot of $\ln(i_{a1}/\upsilon^{1/2})$ vs. $1/\upsilon$ to obtain $k^{II}_{O\to S}$ for complex 6.

Figure S14. NMR spectra of **2** in CD₃CN after irradiation at t = a) 0, b) 45 and c) 90 minutes.

Figure S15. CV of 2 in CH₃CN + 0.1 M TBAH after irradiation during 90 minutes.

Figure S16. CV of **6'** in CH₂Cl₂ + 0.1 M TBAH.

Figure S17. Successive UV-visible spectra obtained after irradiation of a solution of complex **6** in CHCl₃ during 60 min, to generate complex **6'**.

Figure S18. Successive UV-visible spectra obtained after irradiation of a solution of complex 2 in $CHCl_3$ during 24 h, to generate complex 2".

Figure S19. CV of 2" in $CH_2Cl_2 + 0.1$ M TBAH after irradiation.

Figure S20. UV-vis monitoring of complex **2** in water at 80°C: main figure, spectra registered for 30 minutes; inset, evolution of the band at 516 nm up to 150 minutes.

Figure S21. Red, ¹H-NMR spectrum of complex **2** registered in D₂O. Black, ¹H-NMR spectrum of complex **2** after 150 minutes in water solution at 80°C.

	2	3	4	5	6'
Empirical formula	$\begin{array}{c} C_{10}H_{24}Cl_{2}N_{2}O_{3}\\ RuS_{3} \end{array}$	$\begin{array}{c} C_9H_{21}Cl_2N_3O_5\\ RuS_3 \end{array}$	$\begin{array}{c} C_{10}H_{23}Cl_{2}F_{3}N_{2}O_{4}\\ RuS_{3} \end{array}$	$\begin{array}{c} C_{13}H_{24}BrCl_2N_2O_4\\RuS_3 \end{array}$	C ₁₁ H ₁₅ Cl ₃ N ₃ ORu S
Formula weight	488.46	519.44	560.45	620.40	515.64
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/c	P21/n	P 21/n	P2(1)/c	P21/c
a [Å]	8.8684(17)	8.396(7)	8.739(3)	12.493(6)	9.969(5)
b [Å]	14.240(3)	15.783(13)	23.299(7)	13.943(7)	16.673(8)
c [Á]	15.809(3)	14.403(12)	10.690(3)	16.522(6)	11.326(6)
α [°]	90	90	90	90	90
β [°]	102.331(3)	105.773(13)	93.393(6)	130.27(2)	96.414 (7)
γ [°]	90	90	90	90	90
V [ų]	1950.3(6)	1837(3)	2172.9(12)	2195.9(17)	1870.8(16)
Formula Units/ cell	4	4	4	4	4
Temp. [K]	298(2)	298(2)	298(2)	298(2)	100(2)
$\rho_{calc},[Mg/m^{\text{-}3}]$	1.664	1.878	1.713	1.877	1.831
μ [mm ⁻¹]	1.407	1.509	1.297	3.083	1.665
Final R indices, [I>2σ(I)] R indices [all data]	R1=0.0256 wR2=0.0657 R1=0.0298 wR2=0.0681	R1=0.0237 wR2=0.0608 R1=0.0259 wR2=0.0626	R1=0.0390 wR2=0.1193 R1=0.0447 wR2=0.1229	R1=0.0387 wR2=0.0985 R1=0.0523 wR2=0.1052	R1 = 0.0400 wR2 = 0.1022 R1 = 0.0524 wR2 = 0.1111

Table S1. Crystallographic data for complexes 2-5 and 6'.

 $\mathsf{R}_1 = \Sigma ||\mathsf{F}_0| - |\mathsf{F}_c|| / \Sigma |\mathsf{F}_0|$

 $wR_2 = [\Sigma\{w(F_o^2 - F_c^2)^2\} / \Sigma\{w(F_o^2)^2\}]^{\frac{1}{2}}, \text{ where } w = 1/[\sigma^2(Fo^2) + (0.0042P)^2] \text{ and } P = (F_o^2 + 2F_c^2)$

Equations	Description of parameters		
	$i_{\rm c}$ = cathodic peak intensity (A)		
	a = RT/nF, with:		
	R = Boltzmann constant (J/(K·mol))		
$\frac{i_{c1}}{i} = a \cdot \frac{1}{i} + K_{O-S}^{III}$	T= temperature (K)		
l_{c2} v v v	n = number of exchanged electrons		
(eq. 1)	F = Faraday constant (A·s/mol)		
	υ = scan rate (V/s)		
	K = equilibrium constant		
$1 \frac{i_d}{1} - \frac{1}{1} \frac{i_d}{1} - \frac{1.02}{1}$	$i_{\rm d}$ = diffusional current in the absence		
$\sqrt{v} = \frac{0.471}{\frac{0.471}{2}} \cdot \frac{nFl}{nFl} i_k = \frac{0.471}{\frac{0.471}{2}} \cdot \frac{nFl}{nFl}$	of a chemical reaction (= i_{a1})		
$K_{O-S}^{III} \sqrt{RT} \qquad K_{O-S}^{III} \sqrt{RT}$	I_k = measured peak current (= I_{c1})		
(eq. 2)	$l = \kappa_{O-S} + \kappa_{S-O}$		
$K^{II} = K^{III} + e^{\frac{F}{RT} \cdot \left(E_{Ru-S}^{0} - E_{Ru-O}^{0}\right)}$	E ⁰ = standard potential		
(eq. 3)			
$ln\left(\frac{i_{a1}}{\sqrt{\nu}}\right) = k_O I_{-S} \cdot \frac{1}{\nu} + b$			
(eq. 4)			

Table S2. Formulas used for the calculation of rate (k) and equilibrium (K) constants.

Scheme S1. Ru-dmso complexes gathered in entries 3-6 of Table 2.

cis,cis-[RuCl₂(H3p)(dmso-S)₂]

trans,cis-[RuCl₂(H3p)(dmso-S)₂]

out-[Ru(L²)(trpy)(dmso-S)]⁺

trans, cis-[RuCl₂(bpp)(dmso-S)₂]⁻

Figure S1. NMR spectra of 2, 400 MHz, CD_2Cl_2 : a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC

c)

e)

Figure S2. NMR spectra of **3**, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC a)

c)

Figure S3. NMR spectra of 4, 300 MHz, CD_2Cl_2 : a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC

c)

e)

Figure S4. NMR spectra of **5**, 300 MHz, CD₂Cl₂: a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC, f) ¹H-¹³C HMBC, g) ¹H-NMR with presence of the minor isomer.

a)

c)

e)

Figure S5. UV-visible spectra of 2 (blue), 3 (green), 4 (grey) and 5 (red) in CH₂Cl₂

Figure S6. CV of a) 3 (blue), 4 (black) and 5 (orange) in CH₃CN + 0.1 M TBAH.

a)

E(V)

Figure S8. Plot of i_{C1}/i_{C2} vs. 1/v to obtain K^{III}_{O-S} for complex 2.

Figure S9. Plot of i_{C1}/i_{C2} vs. 1/ υ to obtain K^{III}_{O-S} for complex 6.

Figure S10. Plot of $\upsilon^{1/2}$ vs. i_d/i_k to obtain $k^{III}_{S \to O}$ and $k^{III}_{O \to S}$ for complex 2.

Figure S11. Plot of $\upsilon^{1/2}$ vs. i_d/i_k to obtain $k^{III}_{S \to O}$ and $k^{III}_{O \to S}$ for complex 6.

Figure S12. Plot of $\ln(i_{a1}/\upsilon^{1/2})$ vs. 1/ υ to obtain $k^{\Pi}_{O \to S}$ for complex **2**

Figure S13. Plot of $\ln(i_{a1}/\upsilon^{1/2})$ vs. 1/ υ to obtain $k^{\Pi}_{O\to S}$ for complex 6

Figure S14. NMR spectra of **2** in CH₃CN after irradiation at t = a) 0, b) 45 and c) 90 minutes.

Figure S15. CV of **2** in CH₃CN + 0.1 M TBAH after irradiation during 90 minutes.

Figure S16. CV of **6'** in $CH_2Cl_2 + 0.1$ M TBAH.

Figure S17. Successive UV-visible spectra obtained after irradiation of a solution of complex **6** in CHCl₃ during 60 min, to generate complex **6'**.

Figure S18. Successive UV-visible spectra obtained after irradiation of a solution of complex 2 in CHCl₃ during 24 h, to generate complex 2''.

Figure S19. CV of **2**" in $CH_2Cl_2 + 0.1$ M TBAH after irradiation.

Figure S20. UV-vis monitoring of complex **2** in water at 80°C: main figure, spectra registered for 30 minutes; inset, evolution of the band at 516 nm up to 150 minutes.

Figure S21. Red, ¹H-NMR spectrum of complex 2 registered in D₂O. Black, ¹H-NMR spectrum of complex 2 after 150 minutes in water solution at 80°C.

