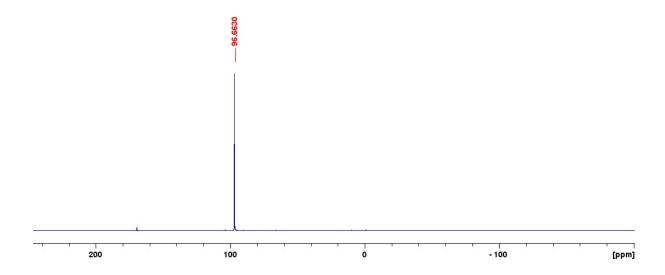
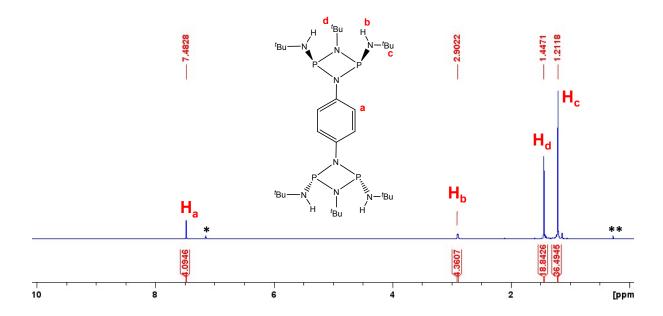
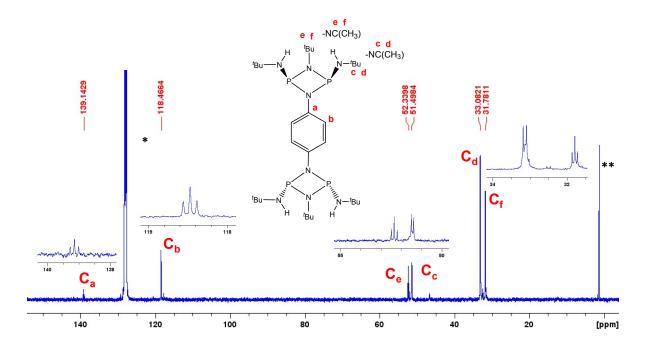
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

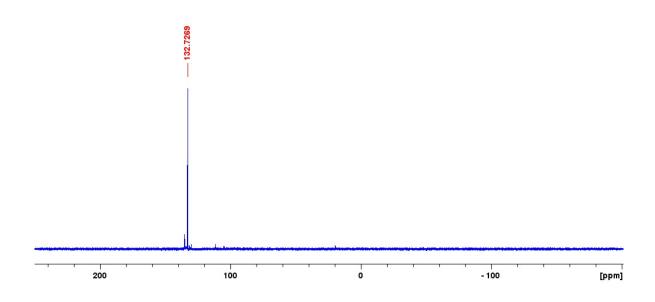

Supporting Information

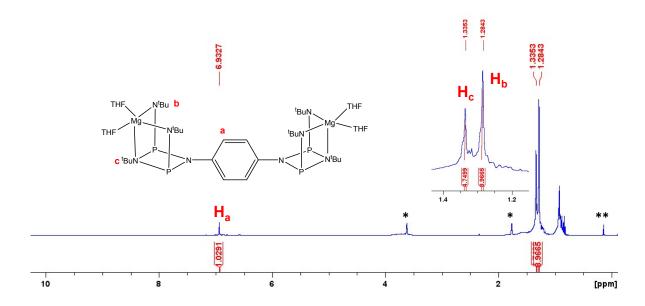
Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ -PNtBu)2NtBu}2] $^{4-}$

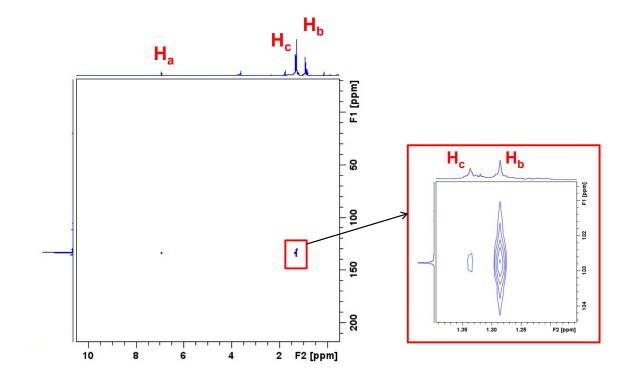

Raquel Sevilla,ª Robert J. Lessª, Raúl García-Rodríguezª, Andrew D. Bondª and Dominic S. Wrightª

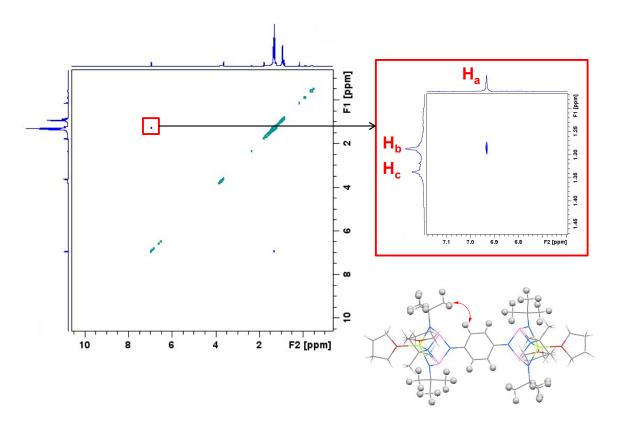
Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.

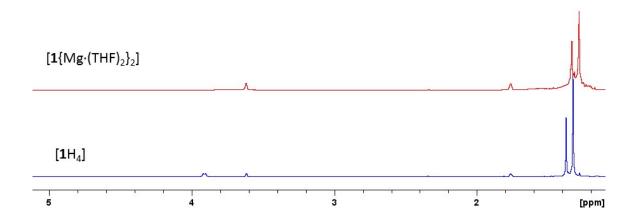

Figure S1. ³¹P NMR (298 K, C_6D_6 , 161.97 MHz) spectrum of $(1,4-C_6H_4)[N(\mu-PNH^tBu)_2N^tBu]_2$ (**1**H₄).

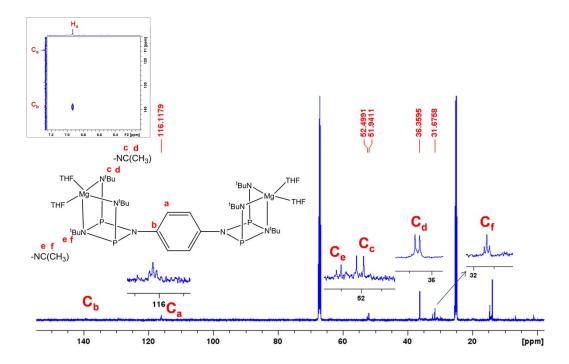

Figure S2. ¹H NMR (298 K, C_6D_6 , 400 MHz) spectrum of $(1,4-C_6H_4)[N(\mu-PNH^tBu)_2N^tBu]_2$ (**1**H₄); (*)residual benzene-d6, (**) silicone grease.


Figure S3. $^{13}\text{C}\{^1\text{H}\}\ \text{NMR}\ (298\ \text{K},\ \text{C}_6\text{D}_6,\ 100.62\ \text{MHz})\ \text{spectrum of}\ (1,4-\text{C}_6\text{H}_4)[\text{N}(\mu-\text{PNH}^\text{t}\text{Bu})_2\text{N}^\text{t}\text{Bu}]_2\ (1\text{H}_4);\ (*)\ \text{residual benzene-d6},\ (**)\ \text{silicone grease}.$


Figure S4. ³¹P NMR (298 K, THF-d8, 202.48 MHz) spectrum of $(1,4-C_6H_4)[N(\mu-(PN^tBu)_2Mg\cdot(THF)_2)N^tBu]_2[1{Mg\cdot(THF)_2}_2]$.


Figure S5. ¹H NMR (298 K, d8-THF, 500 MHz) spectrum of $(1,4-C_6H_4)[N(\mu-(PN^tBu)_2Mg\cdot(THF)_2)N^tBu]_2$ [1{Mg·(THF)₂}₂]; (*)residual d8-THF, (**) silicone grease. Note: a small amount of H-grease and heptane (from the Bu₂Mg solution) was also present (δ 0.85-0.92).


Figure S6. $^{1}\text{H-}^{31}\text{P}$ HMBC (298 K, d8-THF, 500 MHz) spectrum of (1,4-C₆H₄)[N(μ-(PN t Bu)₂Mg·(THF)₂)N t Bu]₂ [1{Mg·(THF)₂}₂].


Figure S7. $^{1}\text{H-}^{1}\text{H}$ NOESY (298 K, d8-THF, 500 MHz, mixing time 600 ms) spectrum of $(1,4\text{-C}_{6}\text{H}_{4})[N(\mu-(PN^{t}\text{Bu})_{2}\text{Mg}\cdot(THF)_{2})N^{t}\text{Bu}]_{2}$ [1{Mg·(THF)₂}₂] showing the crosspeak between H^b and the protons of the aromatic ring arising from intramolecular cross-relaxation of protons that are close to each other in space.

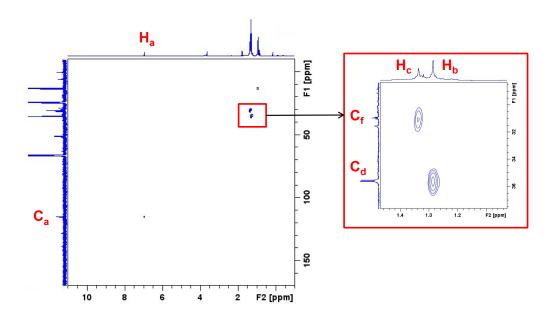

Figure S8. (Bottom, blue) 1 H NMR (298 K, d8-THF, 500 MHz) spectrum of (1,4-C₆H₄)[N(μ-PNH^tBu)₂N^tBu]₂ (**1**H₄); (top, red) 1 H NMR (298 K, d8-THF, 500 MHz) spectrum of (1,4-C₆H₄)[N(μ-(PN^tBu)₂Mg·(THF)₂)N^tBu]₂ [**1**{Mg·(THF)₂}₂]. Complete deprotonation is observed (disappearance of signal corresponding to the N*H* protons at 3.91).

Figure S9. 13 C{ 1 H} NMR (298 K, d8-THF, 100.62 MHz) spectrum of (1,4-C₆H₄)[N(μ-(PN t Bu) $_{2}$ Mg·(THF) $_{2}$)N t Bu] $_{2}$ [1{Mg·(THF) $_{2}$ } $_{2}$]. Although the quarternary carbon C b is easily observed through 1 H- 13 C HMBC experiment (see insert), its direct observation in the 13 C{ 1 H} spectrum was challenging. Note: resonances at 67.21 and 25.10 arise from d $_{8}$ -THF. Note 2: resonance for H-grease and heptane present (observed in the 1 H NMR as well).

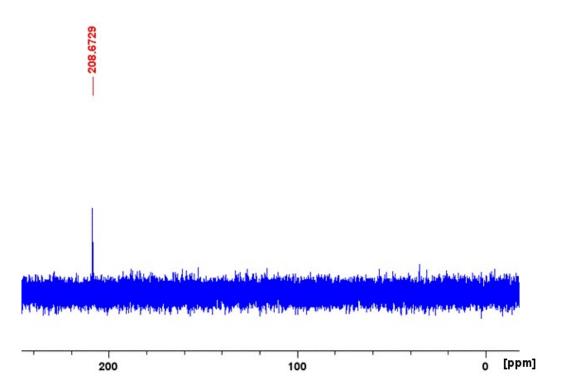


Figure S10. $^{1}\text{H}^{-13}\text{C}$ HMQC (298 K, d8-THF, 500 MHz) spectrum of (1,4-C₆H₄)[N(μ -(PN t Bu)₂Mg·(THF)₂)N t Bu]₂ [1{Mg·(THF)₂}₂].

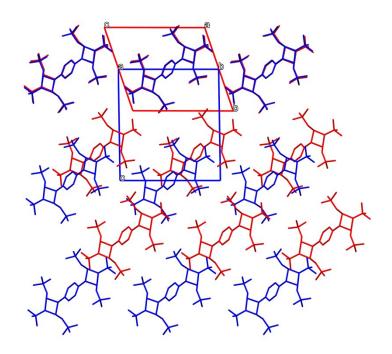
Elemental analysis found for the solid isolated upon removal of the reaction solvent of $[1{Mg\cdot(THF)_2}_2]$: C, 39.19; H, 7.86; N 2.76; P 6.87. Anal. Calcd for $[1{Mg\cdot(THF)_2}_2]$ C, 55.94; H, 8.78; N 11.34; P 12.54. Anal. Calcd for $1{Mg}_2$ (THF-desolvation) C, 51.23; H, 8.31; N 15.93; P 17.61.

Figure S11. *In situ* 31 P NMR (298 K, CDCl₃ capillary, 161.97 MHz) spectrum from reaction of **1**H₄ with 2,6-diisopropylaniline.

X-ray Crystallographic Studies

Table S1. Crystal, measurement and refinement data for the compounds studied by X-ray diffraction.

	$1H_4^a$	1 H₄·cyclohexane <u></u> ^b	$1\{Mg\cdot(THF)_2\}_2$
CCDC number	1435095	1435096	1435098
Chemical formula	$C_{30}H_{62}N_8P_4$	$C_{30}H_{62}N_8P_4\cdot 2(C_6H_{12})$	$C_{46}H_{90}Mg_2N_8O_4P_1$
Formula mass	658.8	827.1	991.8
Crystal system	triclinic		monoclinic
a/Å	6.0734(9)	6.1188(3)	10.4939(4)
b/Å	12.3908(14)	14.0514(6)	17.4459(6)
c/Å	14.032(2)	15.4022(7)	16.1229(7)
α/°	106.920(4)	88.944(3)	90
<i>β</i> /°	98.179(6)	89.034(3)	96.9488(16)
γ/°	100.308(10)	81.094(2)	90
Unit cell volume/ų	972.5(2)	1307.9(1)	2930.0(2)
Temperature/K	180(2)	220(2)	180(2)
Space group	P-1	P-1	P2₁/n
Z	1	1	2
Radiation type	MoKlpha	CuKlpha	MoKlpha
Absorption coefficient, μ/mm ⁻¹	0.224	1.585	0.194
No. of reflections measured	4947	14919	17185
No. of independent reflections	2396	4576	5034
R _{int}	0.054	0.063	0.056
Final R1 values (I > $2\sigma(I)$)	0.083	0.099	0.068
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.188	0.281	0.143
Final R1 values (all data)	0.096	0.140	0.101
Final wR(F2) values (all data)	0.194	0.320	0.160
Goodness of fit on F ²	1.28	1.06	1.07


^a Refined as a non-merohedral twin.

Data were collected for $1H_4$ and $1\{Mg\cdot(THF)_2\}_2$ at 180(2) K on a Nonius KappaCCD diffractometer, using graphite-monochromated MoK α radiation (λ = 0.7107 Å). Data for $1H_4$ -cyclohexane were collected at 220(2) K on a Bruker D8-QUEST diffractometer using an Incoatec I μ S Cu microsource (λ = 1.5418 Å). Structures were solved using SHELXT (Sheldrick, 2015) and refined using SHELXL-2014 (Sheldrick, 2015). Data for $1H_4$ were identified to be subject to non-merohedral twinning corresponding to a 2-fold rotation around the a axis using the TWINROTMAT procedure in PLATON (Spek, 2009). The structure was refined using an HKLF-5 file generated by TWINROTMAT. The structure of $1H_4$ -cyclohexane contains cyclohexane molecules that exhibit rotational disorder. Modelling of these as two molecular components with restrained geometries, a refined site occupancy factor constrained to sum to unity for the two components, and a common isotropic displacement parameter produced the result indicated in Table S1. Confirmation that the relatively high R-factors stem from inadequate modelling of the solvent molecules was provided by application

^b The version of this structure with SQUEEZE applied is deposited as CCDC-1435097.

of the SQUEEZE procedure (Spek, 2015), which produces R1 = 0.071, wR2 = 0.214. The procedure indicates masking of 84 electrons per void, corresponding to one cyclohexane molecule (with two voids per unit cell). The CIF after application of SQUEEZE is provided. For $1H_4$, the H atoms of the NH groups were refined with isotropic displacement parameters and with the N–H bond length restrained to be 0.88(1) Å. For $1H_4$ -cyclohexane, the corresponding atoms were placed geometrically with N–H = 0.87 Å and $U_{iso}(H) = 1.2U_{iso}(N)$. The structures of $1H_4$ and $1H_4$ -cyclohexane contain essentially identical 2-dimensional sections (parallel to the ac planes in $1H_4$ and ab planes in $1H_4$ -cyclohexane; compare the unit-cell parameters in Table S1). Thus, the structure of $1H_4$ -cyclohexane is derived from that of $1H_4$ by insertion of the cyclohexane solvent molecules.

Overlay of the structures of $\mathbf{1}H_4$ (red) and $\mathbf{1}H_4$ -cyclohexane (blue) showing the consistent 2-D sections (horizontal). The upper layer in the diagram is overlaid exactly. The cyclohexane molecules are omitted from $\mathbf{1}H_4$ -cyclohexane.

SHELXT: G. M. Sheldrick, Acta Cryst. Sect. A, 2015, 71, 3–8.

SHELXL: G. M. Sheldrick, Acta Cryst. Sect. C, 2015, 71, 3–8.

PLATON: A. L. Spek, Acta Cryst. Sect. D, 2009, 65, 148–155.

SQUEEZE: A. L. Spek, Acta Cryst. Sect. C, 2015, 71, 9–18.