Electronic supplementary information (ESI)

Metal-assisted templating route (S⁰M⁺I⁻) for fabricating thin-layer

CoO covered on the channel of nanospherical-HMS with

enhanced catalytic properties

Fu Yang, Shijian Zhou, Haiqing Wang, Saifu Long, Xianfeng Liu, Yan Kong*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China

*Corresponding author, E-mail: kongy36@njtech.edu.cn (Y, Kong), Tel: (86)-25-83587860.

Fig. S1. UV-visible absorption spectra of raw micelles, cobalt chloride and metallomicelles solutions, and the digital photos (insert) of DDA micelles (a), metallomicelles (b) and $CoCl_2$ (c) solutions.

Table S1 pH value for metallization of micelle systems

Samples	Co ²⁺ /DDA ^a	pН
Raw micelle	0	11.4
Micelle-1Co	1	10.2
Micelle-2Co	2	9.3
Micelle-3Co	3	8.6
Micelle-4Co	4	8.0

^amolar ratio

Fig. S2. Pore size distribution of pure HMS and series samples of HMS-xCo

Fig. S3 the SEM images of the sample of HMS-3Co

Fig. S4 C/C_0 versus reaction time for the oxidation of phenol at 270 nm using HMS-3Co, HMS-3Co (d) and HMS-3Co (p) for comparison.

Fig. S5 DRUV-vis spectra for the sample of HMS-3Co and HMS-3Co used for three times