Anticancer activity of a *cis*-dichloridoplatinum(II) complex of a chelating nitrogen mustard: Insight to unusual guanine binding mode and low deactivation by glutathione

Subhendu Karmakar, Kallol Purkait, Saptarshi Chatterjee and Arindam Mukherjee*†

†Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia-741246, West Bengal, India.

*Corresponding author. Fax: (+91)033-25873118; Tel: (+91)033-25873121; E-mail: a.mukherjee@iiserkol.ac.in

Contents

Table S1 Crystal Data, data Collection and refinement parameters for complex 2	,
Fig. S1 ¹ H NMR of L1 in D ₂ O, 400 MHz	!
Fig. S2 ¹³ C NMR of L1 in D ₂ O, 125 MHz	!
Fig. S3 ¹ H NMR of L2.HCl in D ₂ O, 400 MHz	,
Fig. S4 ¹³ C NMR of L2.HCl in D ₂ O, 125 MHz	,
Fig. S5 ¹ H NMR of 1 in DMSO- <i>d</i> ₆ , 500 MHz)
Fig. S6 ¹³ C NMR of 1 in DMSO- <i>d</i> ₆ , 125 MHz)
Fig. S7 ¹³ C DEPT-135 of 1 in DMSO- <i>d</i> ₆ , 125 MHz)
Fig. S8 HMQC of 1 in DMSO- d_6)
Fig. S9 ¹⁹⁵ Pt NMR of 1 in DMSO- <i>d</i> ₆ , 107.5 MHz	
Fig. S10 ¹ H NMR of 2 in DMSO- <i>d</i> ₆ , 500 MHz	
Fig. S11 ¹³ C NMR of 2 in DMSO- d_6 , 125 MHz	!
Fig. S12 ¹³ C DEPT-135 of 2 in DMSO- <i>d</i> ₆ , 125 MHz12	!
Fig. S13 HMQC of 2 in DMSO- <i>d</i> ₆	,
Fig. S14 ¹⁹⁵ Pt NMR of 2 in DMSO- <i>d</i> ₆ , 107.5 MHz	,
Fig. S15 Stack plot of aromatic region during the stability kinetics study of complex 1 in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture by ¹ H NMR, where $\diamond \& \bullet$ indicate the intact complex 1 & complex 1b and $\blacktriangle \& \checkmark$ indicate the aquated complex 1a & 1c respectively	
Fig. S16 Stack plot of aromatic region during the binding kinetics study of 1 with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹ H NMR, where $\diamond \& \bullet$ indicate the intact complex 1 & complex 1b and $\blacktriangle \& \checkmark$ indicate the aquated complex 1a &	c
1c respectively. ■ indicates the signals of 9-EtG bound complexes 1d & 1e . H8 of free 9- EtG is shifted downfield to H8 [*] & H8 ^{**} of 9-EtG bound complexes 1d & 1e respectively.	ŀ
Fig. S17 Stack plot of binding kinetics study of 1 with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹⁹⁵ Pt NMR. The data taken after 2 h shows no binding of 9-EtG with 1 . After 24 h complex 1 signal at –2135.8 ppm diminished and two poorly resolvable signals of 9-EtG bound complexes 1d & 1e at –2203.0 & –2205.6 ppm respectively appear.	;
Table S2 Species found in ESI-MS during the stability/binding kinetics studies of 1 by ¹ H NMR 15	;

Fig. S18 ESI-MS speciation recorded during monitoring of stability kinetics of the complex 1 by ¹ H NMR after 3 h in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6
mixture
Fig. S19 ESI-MS speciation recorded during monitoring of the 9-EtG binding kinetics with complex 1 by ¹ H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.
Fig. S20 Observed and simulated isotopic pattern of $[1b (Scheme 4) + H^+]$ found in ESI-
MS
Fig. S21 Observed and simulated isotopic pattern of $[1c (Scheme 4) - 2H^{+} + Na^{+} + K^{+}]$ found in ESI-MS. 20
Fig. S22 Observed and simulated isotopic pattern of [1d (Scheme 4)] found in ESI-MS. 21
Fig. S23 Observed and simulated isotopic pattern of [1e (Scheme 4)] found in ESI-MS 22
Fig. S24 Stack plot of aromatic region during the stability kinetics study of complex 2 in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture by ¹ H NMR, where *, # and † indicate the signals of intact complex 2 , hydrolyzed complex 2a and aziridinium ion 2b respectively.
Fig. S25 Stack plot of aromatic region during the stability kinetics study of complex 2 in 20% water – DMSO- d_6 mixture by ¹ H NMR, where where *, # and † indicate the signals of intact complex 2 , hydrolyzed complex 2a and aziridinium ion 2b respectively
Fig. S26 Stack plot of stability kinetics study of complex 2 in DMSO- d_6 by ¹ H NMR 24
Fig. S27 ¹⁹⁵ Pt NMR of complex 2 in DMSO- d_6 after 8 h where peak at -2157.5 and -2973.6 ppm represent the chemical shift of 2 and DMSO bound complex 2 respectively.
Fig. S28 Stack plot of stability kinetics study of 2 (6 mM) in 40% DMEM-DMSO- d_6 by ¹⁹⁵ Pt NMR. The peak at –2159.8 ppm is for intact complex 2 and peak at –2956.9 may signify S– bonded 2 . During experimentation some amount of the native complex precipitated.
Fig. S29 Stack plot of aliphatic region during the binding kinetics study of 2 with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D ₂ O) – DMSO- d_6 by ¹ H NMR, where * and ‡ indicate the signals of intact complex 2 and 9-EtG bound complexes 2d & 2e respectively. NH ₂ of free 9-EtG is shifted upfield to NH ₂ ' & NH ₂ " of 9-EtG bound complexes 2d & 2e respectively. Me of free 9-EtG is shifted downfield to Me' & Me" of 9-EtG bound complexes 2d & 2e respectively. 25
Fig. S30 Stack plot of binding kinetics study of 2 with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹⁹⁵ Pt NMR. The data taken after 2 h shows no binding of 9-EtG with 2 . After 24 h complex 2 signal at –2159.8 ppm diminished and two closely spaced signals of 9-EtG bound complexes 2d & 2e at –2216.0 & –2205.0 ppm respectively appear.
Fig. S31 Stack plot of aliphatic region during the binding kinetics study of 2 with GSH in 20% PBS (pD 7.4, prepared in D ₂ O) – DMSO- d_6 by ¹ H NMR, where *, § and † indicate

the signals of intact complex 2, GSH bound complex 2c and aziridinium ion 2b Fig. S32 Stack plot of aromatic region during the binding kinetics study of 2 with GSH in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 by ¹H NMR, where *, § and † indicate the signals of intact complex 2, GSH bound complex 2c and aziridinium ion 2b respectively.27 Fig. S33 Stack plot of binding kinetics study of 2 with GSH (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 by ¹⁹⁵Pt NMR.. After 6 h complex signal GSH bound complex **2c** at -2910.9 ppm appears along with initial signal of complex **2** at -2164.6 ppm. After a day the ¹⁹⁵Pt signal of 2c vanishes with very small amount of unreacted complex 2 signal. Fig. S34 Stack plot of IR spectra of 2, GSH and yellow ppt found in the reaction of 2 with GSH (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 . A) Sharp band of C–Cl stretching frequency 772 cm^{-1} of **2** vanished in yellow ppt. B) Carbonyl stretching band of GSH and yellow ppt. C) S–H stretching band at 2522 cm⁻¹ in GSH vanished in yellow ppt Table S3 Species found in ESI-MS during the stability/binding kinetics studies of 2 by 1 H Fig. S35 ESI-MS speciation recorded during monitoring of stability kinetics of the complex 2 by ¹H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 Fig. S36 ESI ESI-MS speciation recorded during monitoring of stability kinetics of the Fig. S37 ESI-MS speciation recorded during monitoring of the 9-EtG binding kinetics with complex 2 by ¹H NMR after 2 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 Fig. S38 ESI-MS speciation recorded during monitoring of the GSH binding kinetics with complex 2 by ¹H NMR after 2 h in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 Fig. S39 ESI-MS speciation recorded during monitoring of the GSH binding kinetics with complex 2 by ¹H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 Fig. S40 Observed and simulated isotopic pattern of $[2a (Scheme 5) - 2H^+ + Na^+ + K^+]$ Fig. S41 Observed and simulated isotopic pattern of [2b (Scheme 5)] found in ESI-MS...35 Fig. S42 Observed and simulated isotopic pattern of [2c (Scheme 5)] found in ESI-MS. . 36 Fig. S43 Observed and simulated isotopic pattern of [2d (Scheme 5)] found in ESI-MS...37 Fig. S44 Observed and simulated isotopic pattern of [2e (Scheme 5)] found in ESI-MS. . 38

Fig. S45 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 1 against A) MCF-7 and B) HeLa WT cell lines after incubation for 48 h determined from MTT assays under normoxic condition. The plots provided are for one independent experiment out of the three independent experiments
Fig. S46 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 2 against A) MCF-7, B) A549, C) HeLa WT, D) MIA PaCa2 and E) HEK293 cell lines after incubation for 48 h determined from MTT assays under normoxic condition. The plots provided are for one independent experiment out of the three independent experiments
Fig. S47 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 2 against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under normoxic condition in presence of 250 μ M and 400 μ M GSH respectively. The plots provided are for one independent experiment out of the three independent experiments
Fig. S48 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 2 against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under hypoxic condition. The plots provided are for one independent experiment out of the three independent experiments
Fig. S49 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 2 against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under hypoxic condition in presence of 250 μ M and 400 μ M GSH respectively. The plots provided are for one independent experiment out of the three independent experiments
Fig. S50 Plots of cell viability (%) <i>vs.</i> log of μ M concentrations of 2 against A) MIA PaCa2 cell line after incubation for 48 h determine from MTT assays under hypoxic condition and B) MIA PaCa2 cell lines after incubation for 48 h under hypoxic condition in presence of 100 μ M GSH determined from MTT assays. The plots provided are for one independent experiment out of the three independent experiments
Fig. S51 Cell cycle arrest of MCF-7 treated with 2 for 24 h. (A) DMSO control, (B) 6 μ M, (C) 8 μ M and D) 10 μ M of 2 treated cells. The figure represents one independent experiment
Fig. S52 Cell cycle arrest of MCF-7 treated with cisplatin for 24 h. (A) DMSO control, (B) 2 μ M, (C) 4 μ M and D) 6 μ M of cisplatin treated cells. The figure represents one independent experiment
Fig. S53 Cell cycle arrest of MIA PaCa2 treated with 2 and cisplatin respectively for 24 h. (A) DMSO control, (B) 2.5 μ M, (C) 3.5 μ M and D) 4.5 μ M of 2 and 15 μ M of cisplatin treated cells. The figure represents one independent experiment
Table S4 Cell cycle analysis of MCF-7 cells treated with 2^a
Table S5 Cell cycle analysis of MCF-7 cells treated with cisplatin ^a 42
Table S6 Cell cycle analysis of MIA PaCa2 cells treated with 2 and cisplatin ^a 42

2	
Empirical formula	$C_{10}H_{14}Cl_4N_2Pt$
Formula weight	499.12
Temperature (K)	100.01(10)
Wavelength (Å)	0.7107
Crystal system,	Monoclinic
space group	$P2_{1}/c$
<i>a</i> (Å)	8.5829(11)
<i>b</i> (Å)	10.4134(11)
<i>c</i> (Å)	15.2859(16)
α (deg.)	90.00
β (deg.)	98.85(10)
γ (deg.)	90.00
Volume (Å ³)	1350.0(3)
Z, Calculated density (mg/mm^3)	4, 2.456
<i>F</i> (000)	936.0
μ/mm^{-1}	11.163
Max. and min. transmission	0.518 and 1.000
Goodness-of-fit on F^2	1.008
Final R indices $[I > 2\sigma(I)]$	${}^{a}R_{1} = 0.0326, {}^{b}wR_{2} = 0.0665$
<i>R</i> indices (all data)	${}^{a}R_{1} = 0.0391, {}^{b}wR_{2} = 0.0712$

 Table S1 Crystal Data, data Collection and refinement parameters for complex 2

^a $R_1 = \Sigma |F_0| - |F_c| |\Sigma |F_0|$. ^b $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$

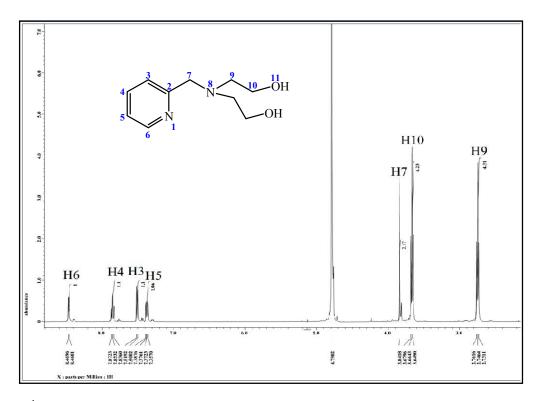
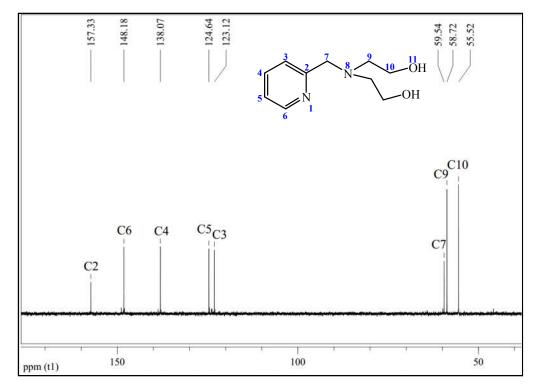



Fig. S1 1 H NMR of L1 in D₂O, 400 MHz.

Fig. S2 13 C NMR of L1 in D₂O, 125 MHz.

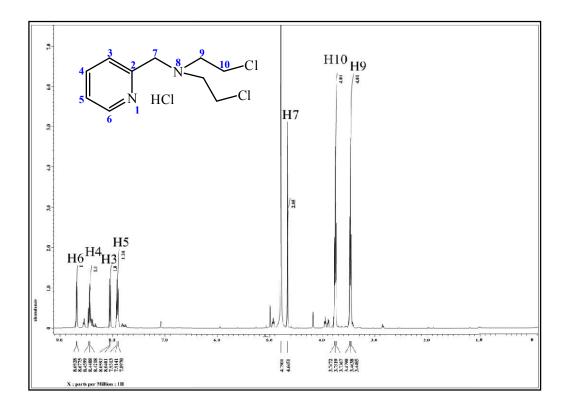
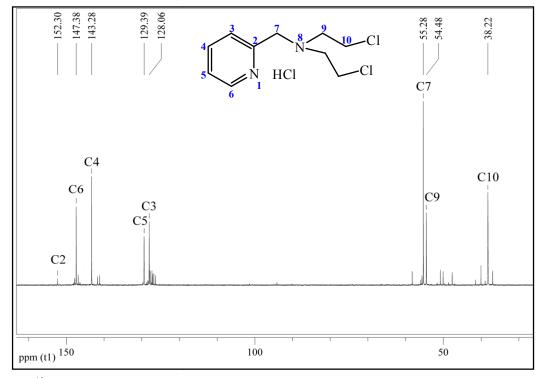
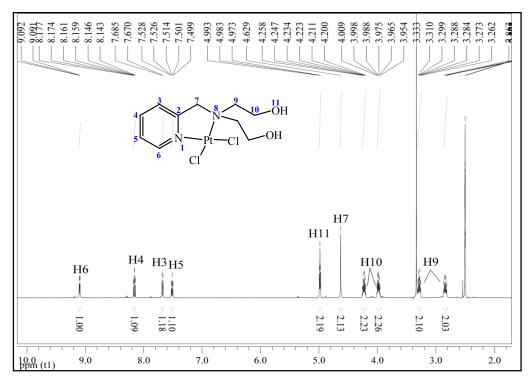
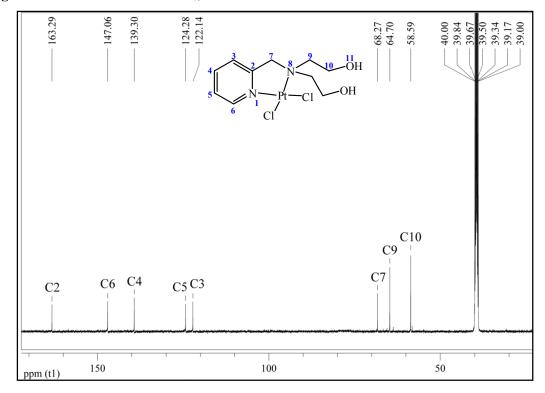


Fig. S3 1 H NMR of L2.HCl in D₂O, 400 MHz.

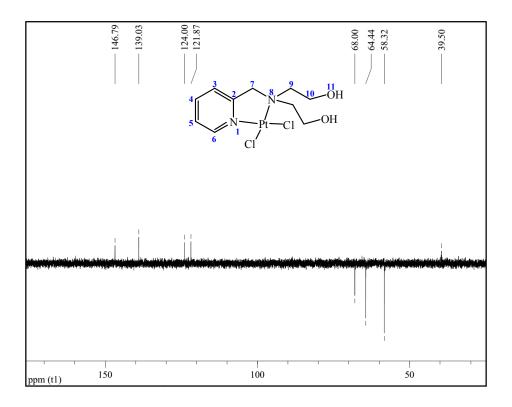
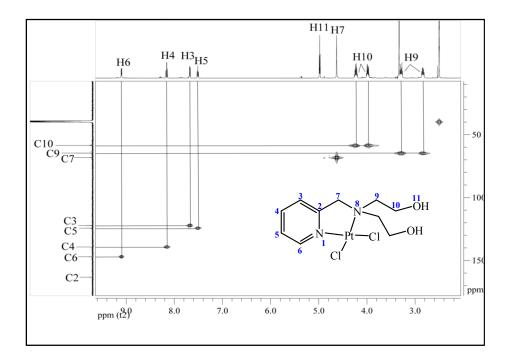
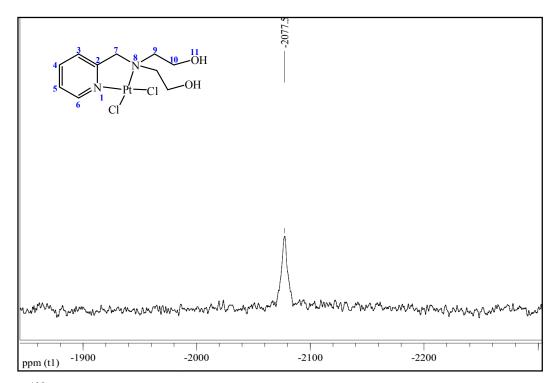
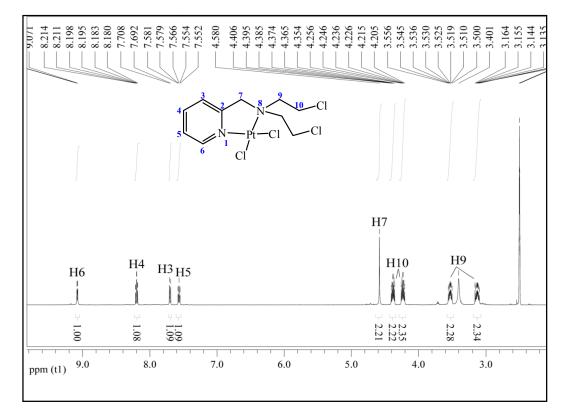
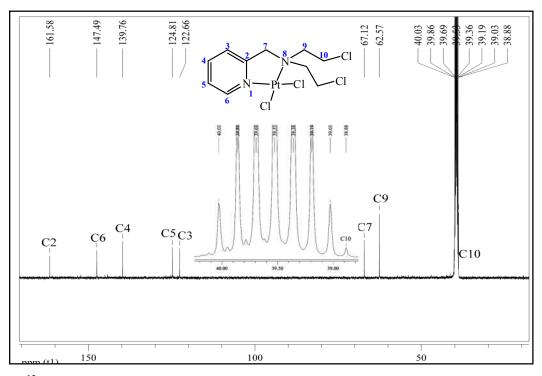

Fig. S4 13 C NMR of L2.HCl in D₂O, 125 MHz.

Fig. S5 ¹H NMR of **1** in DMSO- d_6 , 500 MHz.

Fig. S6 ¹³C NMR of **1** in DMSO-*d*₆, 125 MHz.

Fig. S7 ¹³C DEPT-135 of **1** in DMSO-*d*₆, 125 MHz.


Fig. S8 HMQC of 1 in DMSO- d_{6} .

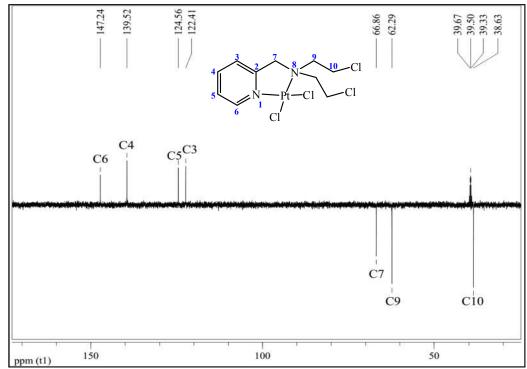

Fig. S9¹⁹⁵Pt NMR of **1** in DMSO-*d*₆, 107.5 MHz.

Fig. S10 ¹H NMR of **2** in DMSO- d_6 , 500 MHz.

Fig. S11 13 C NMR of **2** in DMSO- d_6 , 125 MHz.

Fig. S12 ¹³C DEPT-135 of **2** in DMSO-*d*₆, 125 MHz.

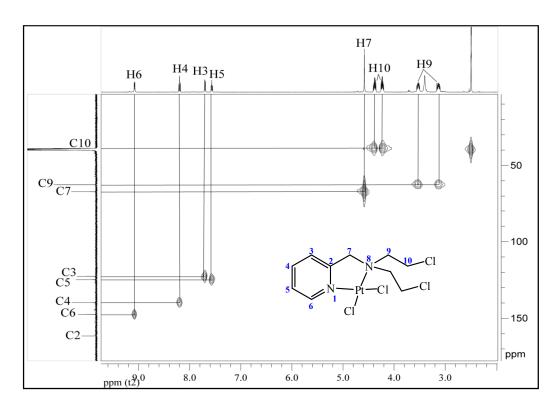
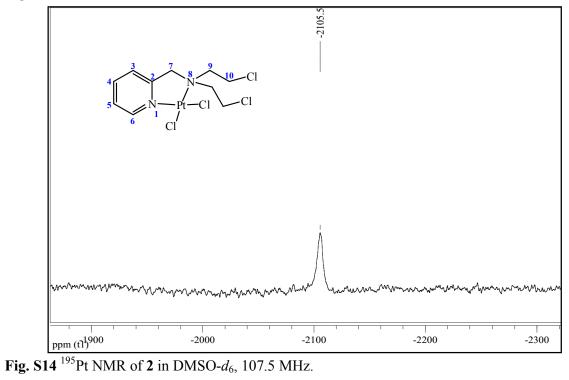



Fig. S13 HMQC of 2 in DMSO- d_6 .

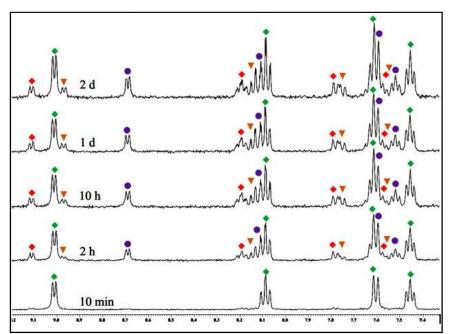
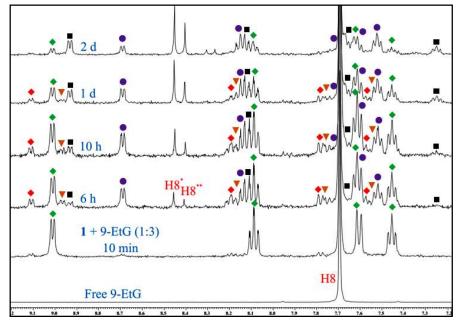
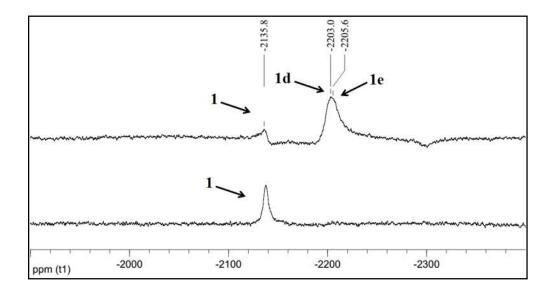




Fig. S15 Stack plot of aromatic region during the stability kinetics study of complex 1 in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture by ¹H NMR, where $\bullet \& \bullet$ indicate the intact complex 1 & complex 1b and $\blacktriangle \& \checkmark$ indicate the aquated complex 1a & 1c respectively.

Fig. S16 Stack plot of aromatic region during the binding kinetics study of **1** with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹H NMR, where \bigstar \bigstar indicate the intact complex **1** & complex **1b** and \blacktriangle \bigstar \checkmark indicate the aquated complex **1a** & **1c** respectively. \blacksquare indicates the signals of 9-EtG bound complexes **1d** & **1e**. H8 of free 9-EtG is shifted downfield to H8^{*} & H8^{**} of 9-EtG bound complexes **1d** & **1e** respectively.

Fig. S17 Stack plot of binding kinetics study of **1** with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹⁹⁵Pt NMR. The data taken after 2 h shows no binding of 9-EtG with **1**. After 24 h complex **1** signal at –2135.8 ppm diminished and two poorly resolvable signals of 9-EtG bound complexes **1d** & **1e** at –2203.0 & –2205.6 ppm respectively appear.

Table S2 Species for	ound in ESI-MS a	during the stability/binding	kinetics studies of 1 by ¹ H
NMR			

Species	Drawings	$m/z_{\rm calc}$	Expe	riments
no.			1 in 20% PBS	1 + 9-EtG (1:3)
			(pD 7.4,	in 20% PBS (pD
			prepared in	7.4, prepared in
			$D_2O) - DMSO-$	$D_2O) - DMSO-$
			d_6	d_6
			m	$z_{\rm obs}$
I-a	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	390.0782	390.0811	390.0747
I-b	$\begin{bmatrix} & OH \\ & & \\ &$	427.0539	427.0484	427.0508
				T 11 CO (1

Table S2 contd.

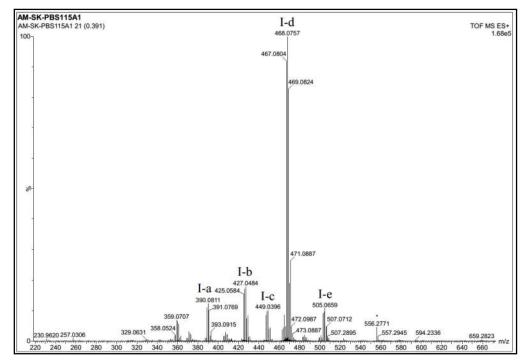
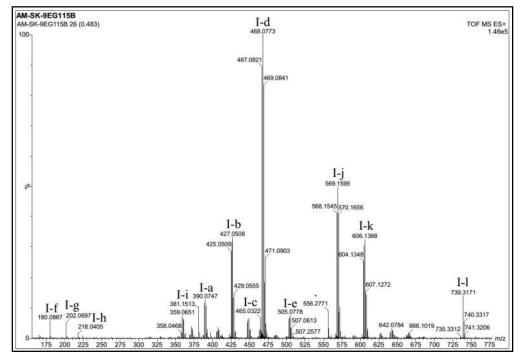

NMR				
Species	Drawings	$m/z_{\rm calc}$	Exper	iments
no.			1 in 20% PBS	1 + 9-EtG (1:3)
			(pD 7.4,	in 20% PBS (pD
			prepared in	7.4, prepared in
			$D_2O) - DMSO-$	$D_2O) - DMSO-$
			d_6	d_6
				Z _{obs}
I-c	ONa ONa	449.0359	449.0396	449.0314
	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $			
I-d	Гок	468.0266	468.0757	468.0773
	$\left[\begin{array}{c} & & \\ & &$			
I-e	Г ок]	505.0022	505.0659	505.0778
	$\begin{bmatrix} N \\ N^{-}Pt \\ Cl \end{bmatrix} + H_2O + Na^+$			
I-f	[o]⊕	180.0885	-	180.0867
	HN N H ₃ N N N			
I-g	[] [⊕]	202.0705	-	202.0697
	H ₃ N N N			
I-h	Г _{ок}]⊕	218.0444	-	218.0405
I-i		381.1512	-	381.1513
	$2 \begin{vmatrix} 0 \\ HN \\ H_2N \\ N \\$			

Table S2 Species found in E	SI-MS during the stability/binding kinetics studies of 1 by ¹ H	
NMR		


Table S2 contd.

Species	Drawings	$m/z_{\rm calc}$	Experiments	
no.			$\frac{1 \text{ in } 20\%}{\text{PBS (pD}}$ $7.4, \text{ prepared}$ $\frac{1}{\text{in } D_2\text{O}} - D\text{MSO-}d_6$	1 + 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D ₂ O) – DMSO- d ₆
I-j	®	569.1589	-	569.1595
	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $			
I-k		606.1349	-	606.1368
I-l	H = N + N + N + N + N + N + N + N + N + N	739.3126	-	739.3171

Table S2 Species found in ESI-MS during the stability/binding kinetics studies of 1 by 1 H NMR

Fig. S18 ESI-MS speciation recorded during monitoring of stability kinetics of the complex 1 by ¹H NMR after 3 h in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.

Fig. S19 ESI-MS speciation recorded during monitoring of the 9-EtG binding kinetics with complex 1 by ¹H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.

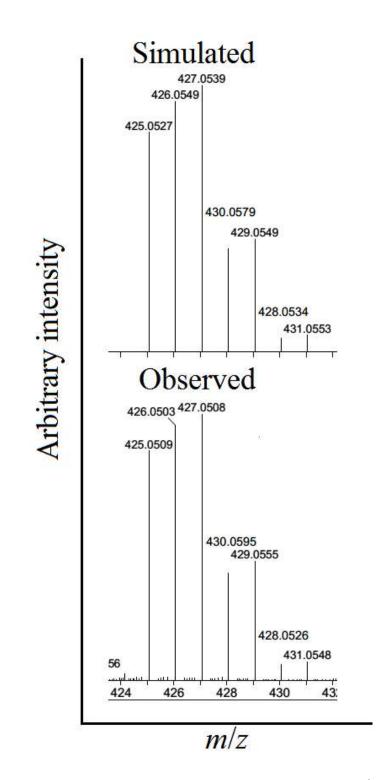
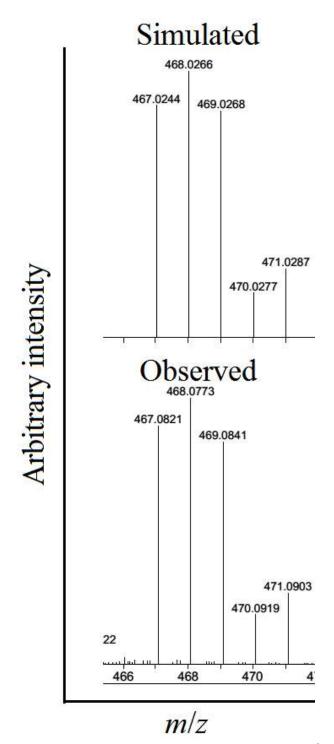



Fig. S20 Observed and simulated isotopic pattern of $[1b (Scheme 4) + H^+]$ found in ESI-MS.

Fig. S21 Observed and simulated isotopic pattern of $[1c (Scheme 4) - 2H^+ + Na^+ + K^+]$ found in ESI-MS.

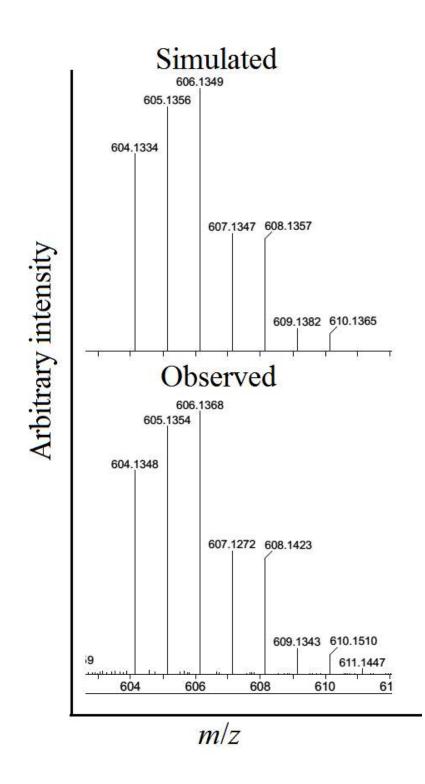
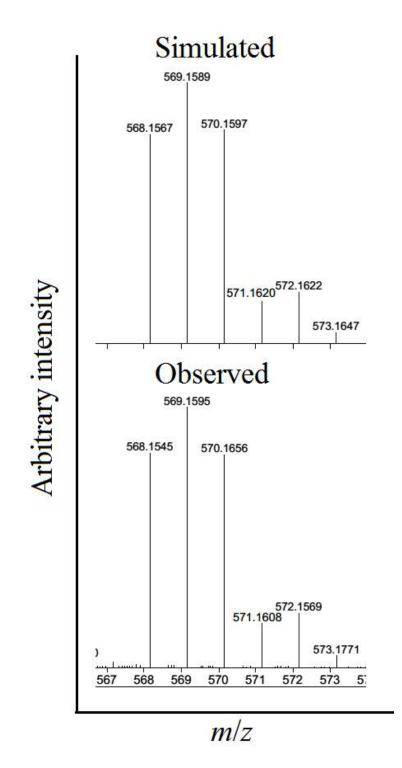
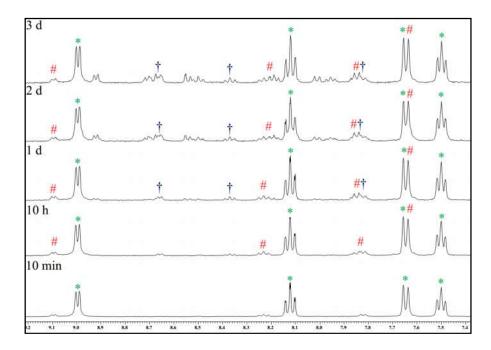
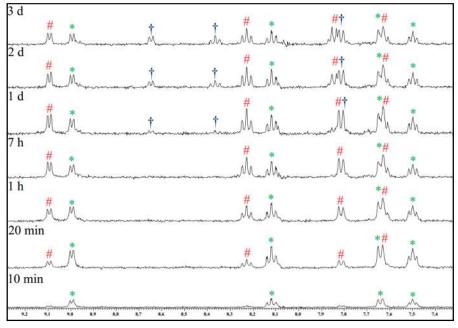
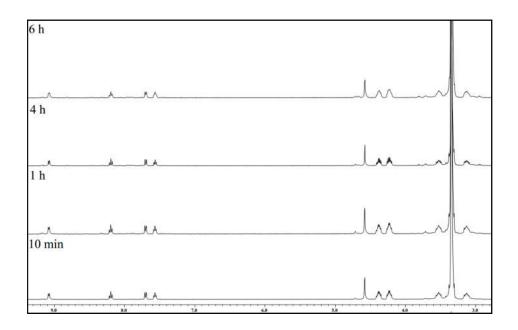
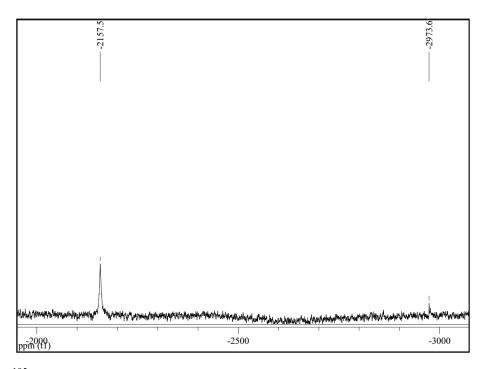
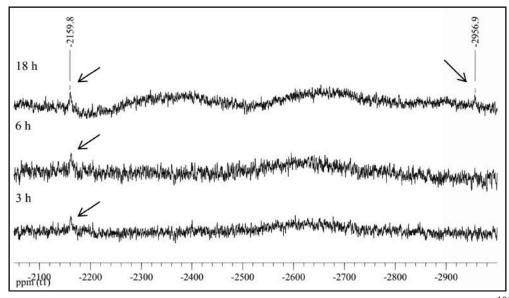


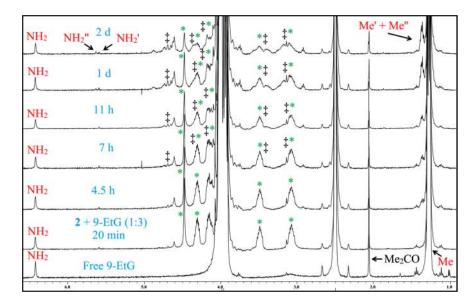
Fig. S22 Observed and simulated isotopic pattern of [1d (Scheme 4)] found in ESI-MS.

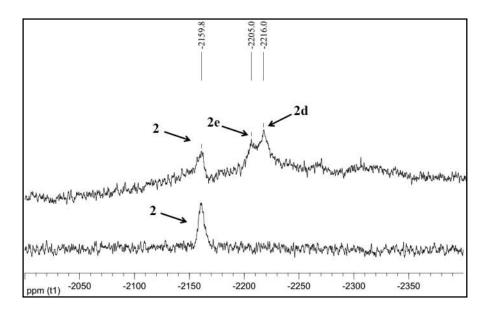




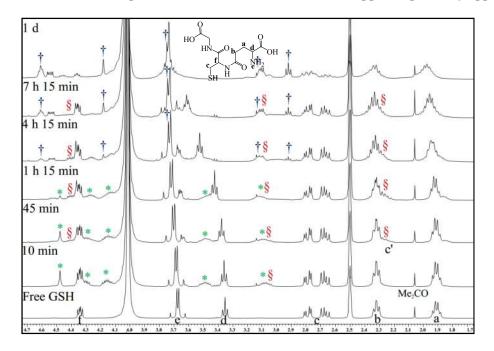

Fig. S23 Observed and simulated isotopic pattern of [1e (Scheme 4)] found in ESI-MS.

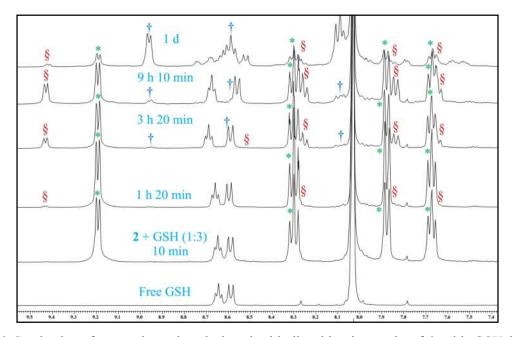

Fig. S24 Stack plot of aromatic region during the stability kinetics study of complex **2** in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture by ¹H NMR, where *, # and † indicate the signals of intact complex **2**, hydrolyzed complex **2a** and aziridinium ion **2b** respectively.

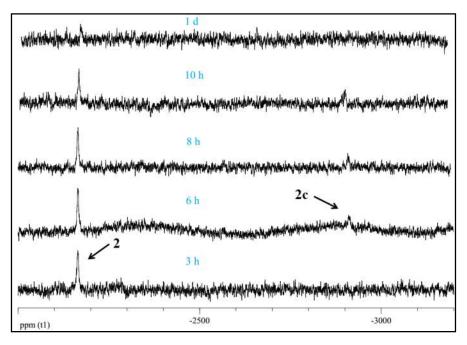

Fig. S25 Stack plot of aromatic region during the stability kinetics study of complex **2** in 20% water – DMSO- d_6 mixture by ¹H NMR, where where *, # and † indicate the signals of intact complex **2**, hydrolyzed complex **2a** and aziridinium ion **2b** respectively.


Fig. S26 Stack plot of stability kinetics study of complex **2** in DMSO- d_6 by ¹H NMR.


Fig. S27 ¹⁹⁵Pt NMR of complex **2** in DMSO- d_6 after 8 h where peak at -2157.5 and -2973.6 ppm represent the chemical shift of **2** and DMSO bound complex **2** respectively.


Fig. S28 Stack plot of stability kinetics study of **2** (6 mM) in 40% DMEM-DMSO- d_6 by ¹⁹⁵Pt NMR. The peak at -2159.8 ppm is for intact complex **2** and peak at -2956.9 may signify S-bonded **2**. During experimentation some amount of the native complex precipitated.


Fig. S29 Stack plot of aliphatic region during the binding kinetics study of **2** with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹H NMR, where * and ‡ indicate the signals of intact complex **2** and 9-EtG bound complexes **2d & 2e** respectively. NH₂ of free 9-EtG is shifted upfield to NH₂' & NH₂" of 9-EtG bound complexes **2d & 2e** respectively. Me of free 9-EtG is shifted downfield to Me' & Me" of 9-EtG bound complexes **2d & 2e** respectively. Me respectively.


Fig. S30 Stack plot of binding kinetics study of **2** with 9-EtG (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 by ¹⁹⁵Pt NMR. The data taken after 2 h shows no binding of 9-EtG with **2**. After 24 h complex **2** signal at –2159.8 ppm diminished and two closely spaced signals of 9-EtG bound complexes **2d & 2e** at –2216.0 & –2205.0 ppm respectively appear.

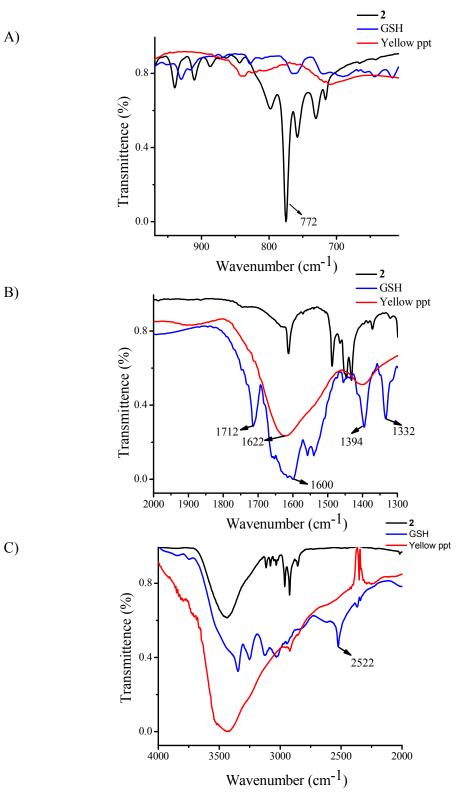
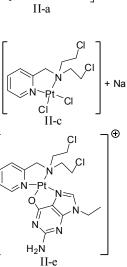
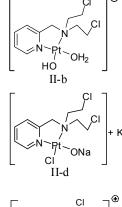
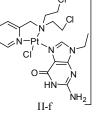
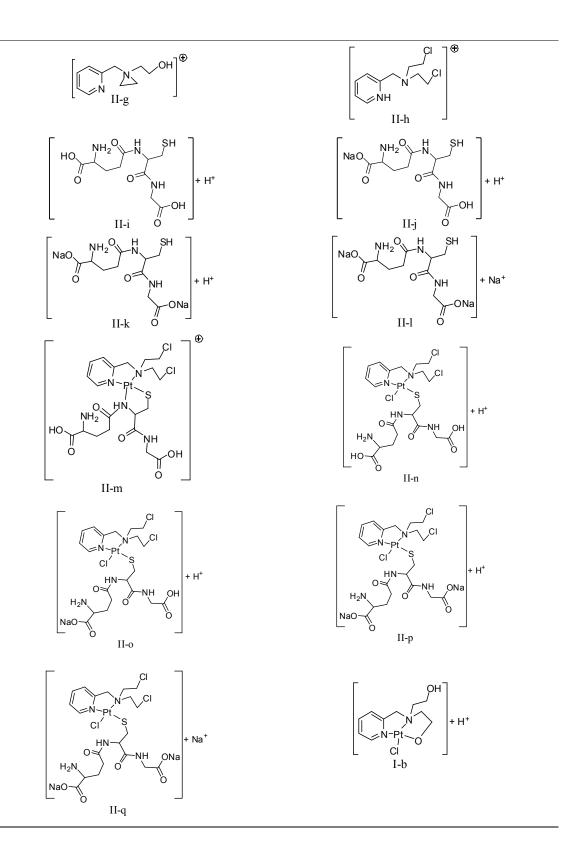

Fig. S31 Stack plot of aliphatic region during the binding kinetics study of **2** with GSH in 20% PBS (pD 7.4, prepared in D₂O) – DMSO- d_6 by ¹H NMR, where *, § and † indicate the signals of intact complex **2**, GSH bound complex **2c** and aziridinium ion **2b** respectively.

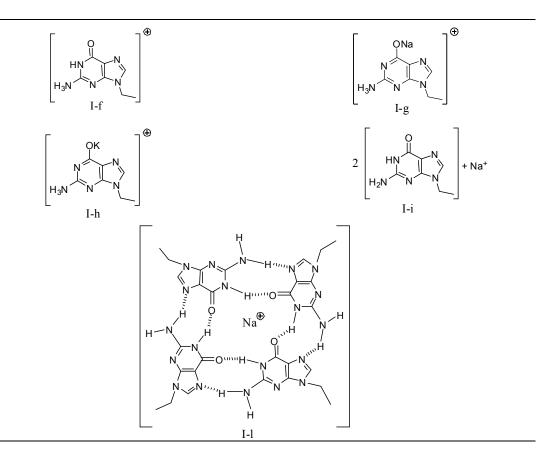
Fig. S32 Stack plot of aromatic region during the binding kinetics study of **2** with GSH in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 by ¹H NMR, where *, § and † indicate the signals of intact complex **2**, GSH bound complex **2c** and aziridinium ion **2b** respectively.

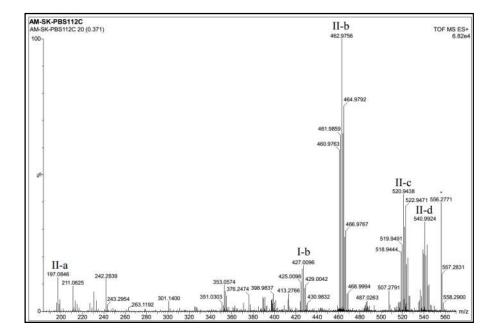

Fig. S33 Stack plot of binding kinetics study of **2** with GSH (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 by ¹⁹⁵Pt NMR.. After 6 h complex signal GSH bound complex **2c** at –2910.9 ppm appears along with initial signal of complex **2** at –2164.6 ppm. After a day the ¹⁹⁵Pt signal of **2c** vanishes with very small amount of unreacted complex **2** signal.

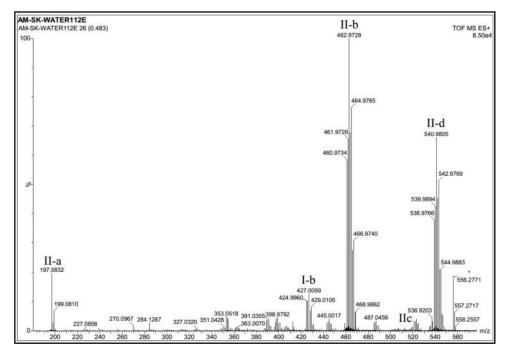


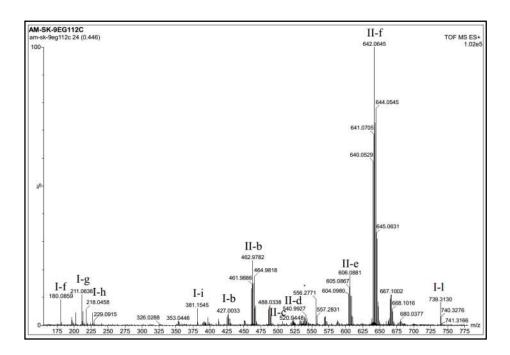

Fig. S34 Stack plot of IR spectra of **2**, GSH and yellow ppt found in the reaction of **2** with GSH (1:3) in 20% PBS (pD 7.4, prepared in D_2O) – DMF- d_7 . A) Sharp band of C–Cl stretching frequency 772 cm⁻¹ of **2** vanished in yellow ppt. B) Carbonyl stretching band of GSH and yellow ppt. C) S–H stretching band at 2522 cm⁻¹ in GSH vanished in yellow ppt and a broad band at 3550–2700 cm⁻¹ for polymeric nature of yellow ppt.

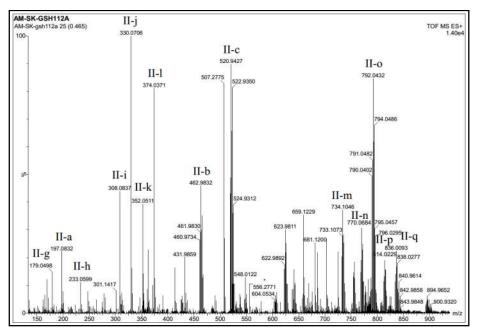

Species no.	$m/z_{\rm calc}$	Experiments				
		2 in 20%	2 in 20%	2 + 9-EtG (1:3) in	2 + GSH	
		PBS in	H ₂ O in	20% PBS in	(1:3) in 20%	
		DMSO- d_6	DMSO- d_6	DMSO- d_6	PBS in	
					DMSO- d_6	
				$m/z_{\rm obs}$		
II-a	197.0845	197.0846	197.0832	-	197.0832	
II-b	463.0297	462.9756	462.9728	462.9782	462.9832	
II-c	520.9429	520.9438	520.9869	520.9448	520.9427	
II-d	540.9330	540.9924	540.9805	540.9927	-	
II-e	606.0896	-	-	606.0881	-	
II-f	642.0657	-	-	642.0645	-	
II-g	179.1184	-	-	-	179.0498	
II-h	233.0612	-	-	-	233.0599	
II-i	308.0916	-	-	-	308.0837	
II-j	330.0736	-	-	-	330.0706	
II-k	352.0555	-	-	-	352.0511	
II-1	374.0375	-	-	-	374.0371	
II-m	734.0927	-	-	-	734.1046	
II-n	770.0688	-	-	-	770.0684	
II-o	792.0508				792.0432	
II-p	814.0327				814.0229	
II-q	836.0146				836.0093	
I-b	427.0539	427.0096	427.0059	427.0033	-	
I-f	180.0885	-	180.0859	180.0859	-	
I-g	202.0705	-	211.0636	211.0636	-	
I-h	218.0444	-	218.0458	218.0458		
I-i	381.1512	-	-	381.1545	-	
I-1	739.3126	-	-	739.3130	-	
			Ì	- ci]⊕		
		Ð, T				
		1				
	N N			N-Pt-OH2		
	II-a		l	_ HO [_] _		
		_		II-b		
				CI		
		CI				
		+ Na ⁺				
				CI		
	II-c	-		II-d		
1	– çı	ך⊕		− ci ⊐®		

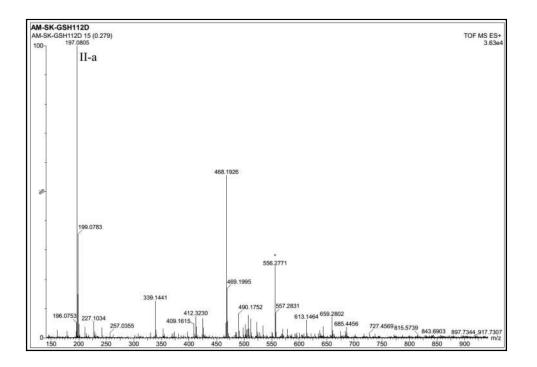

Table S3 Species found in ESI-MS during the stability/binding kinetics studies of **2** by 1 H NMR. The drawings of the respective species are given below the tabulated data








Fig. S35 ESI-MS speciation recorded during monitoring of stability kinetics of the complex 2 by ¹H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.


Fig. S36 ESI ESI-MS speciation recorded during monitoring of stability kinetics of the complex 2 by ¹H NMR after 3 d in 20% water – DMSO- d_6 mixture.

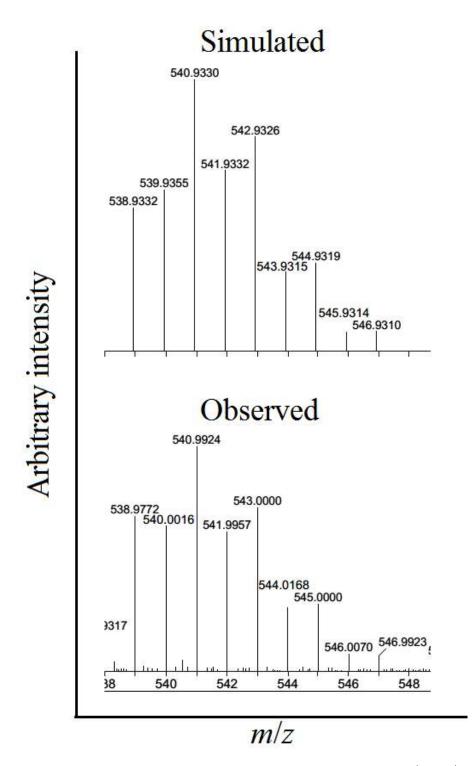

Fig. S37 ESI-MS speciation recorded during monitoring of the 9-EtG binding kinetics with complex **2** by ¹H NMR after 2 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.

Fig. S38 ESI-MS speciation recorded during monitoring of the GSH binding kinetics with complex 2 by ¹H NMR after 2 h in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.

Fig. S39 ESI-MS speciation recorded during monitoring of the GSH binding kinetics with complex 2 by ¹H NMR after 1 d in 20% PBS (pD 7.4, prepared in D_2O) – DMSO- d_6 mixture.

Fig. S40 Observed and simulated isotopic pattern of $[2a (Scheme 5) - 2H^+ + Na^+ + K^+]$ found in ESI-MS.

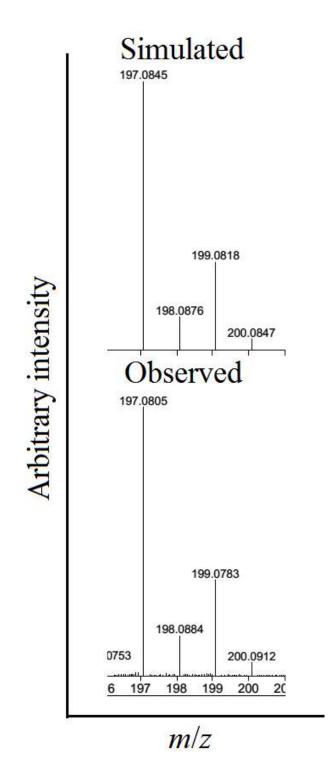


Fig. S41 Observed and simulated isotopic pattern of [2b (Scheme 5)] found in ESI-MS.

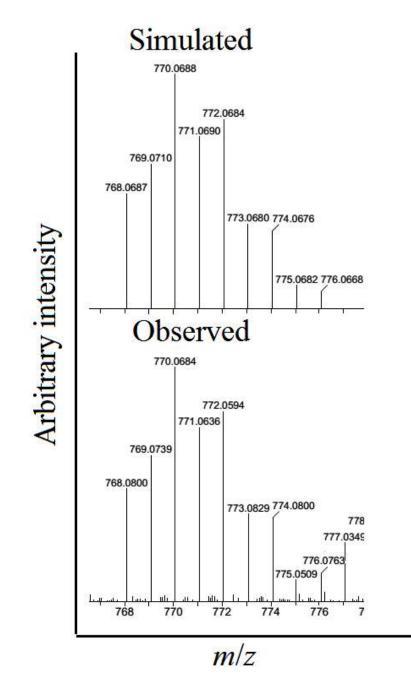


Fig. S42 Observed and simulated isotopic pattern of [2c (Scheme 5)] found in ESI-MS.

Simulated

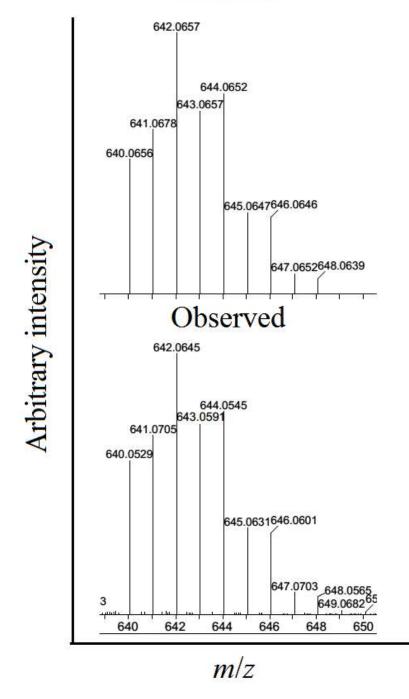
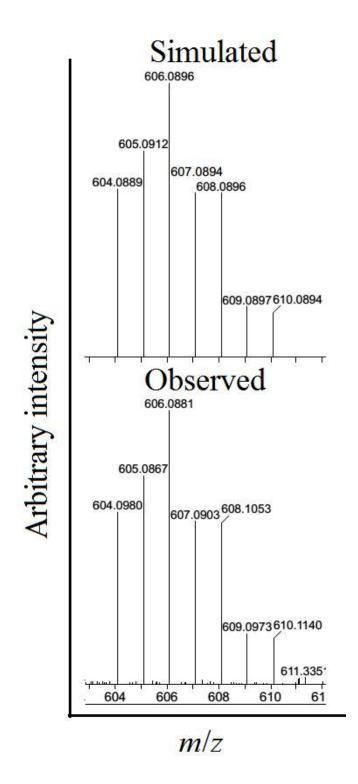
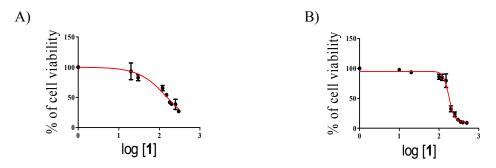
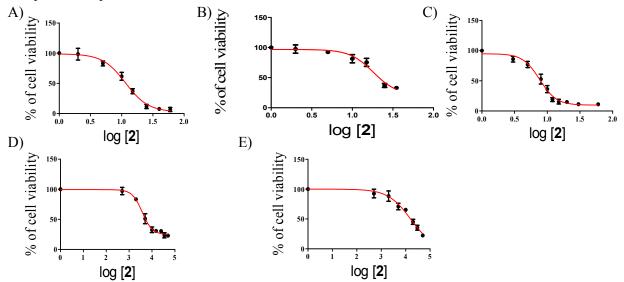
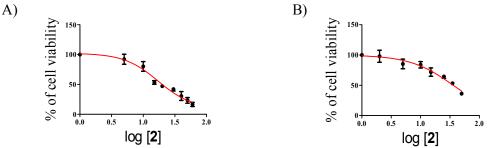
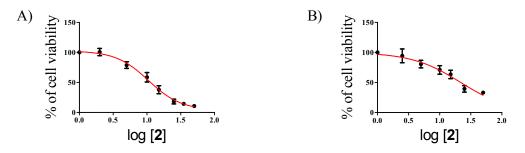


Fig. S43 Observed and simulated isotopic pattern of [2d (Scheme 5)] found in ESI-MS.


Fig. S44 Observed and simulated isotopic pattern of [2e (Scheme 5)] found in ESI-MS.


Fig. S45 Plots of cell viability (%) *vs.* log of μ M concentrations of **1** against A) MCF-7 and B) HeLa WT cell lines after incubation for 48 h determined from MTT assays under normoxic condition. The plots provided are for one independent experiment out of the three independent experiments.

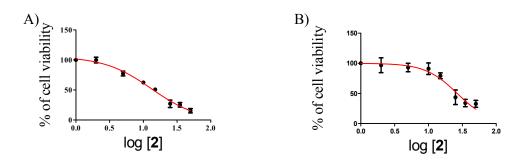
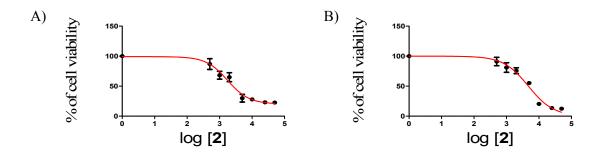
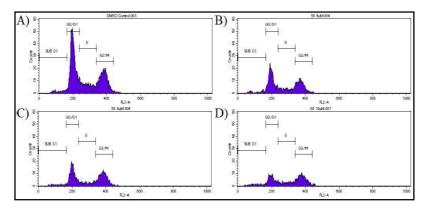
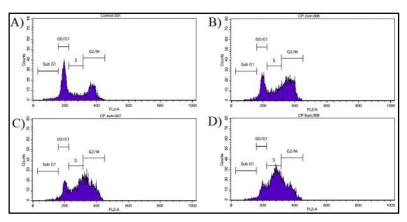

Fig. S46 Plots of cell viability (%) *vs.* log of μ M concentrations of **2** against A) MCF-7, B) A549, C) HeLa WT, D) MIA PaCa2 and E) HEK293 cell lines after incubation for 48 h determined from MTT assays under normoxic condition. The plots provided are for one independent experiment out of the three independent experiments.

Fig. S47 Plots of cell viability (%) *vs.* log of μ M concentrations of **2** against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under normoxic condition in presence of 250 μ M and 400 μ M GSH respectively. The plots provided are for one independent experiment out of the three independent experiments.

Fig. S48 Plots of cell viability (%) *vs.* log of μ M concentrations of **2** against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under hypoxic condition. The plots provided are for one independent experiment out of the three independent experiments.

Fig. S49 Plots of cell viability (%) *vs.* log of μ M concentrations of **2** against A) MCF-7 and B) A549 cell lines after incubation for 48 h determined from MTT assays under hypoxic condition in presence of 250 μ M and 400 μ M GSH respectively. The plots provided are for one independent experiment out of the three independent experiments.

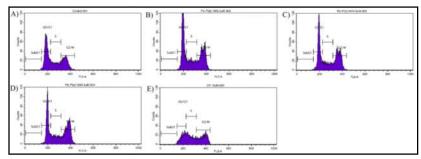

Fig. S50 Plots of cell viability (%) vs. log of μ M concentrations of 2 against A) MIA PaCa2 cell line after incubation for 48 h determine from MTT assays under hypoxic condition and B) MIA PaCa2 cell lines after incubation for 48 h under hypoxic condition in presence of 100 μ M GSH determined from MTT assays. The plots provided are for one independent experiment out of the three independent experiments.

Fig. S51 Cell cycle arrest of MCF-7 treated with **2** for 24 h. (A) DMSO control, (B) 6 μ M, (C) 8 μ M and D) 10 μ M of **2** treated cells. The figure represents one independent experiment.

Fig. S52 Cell cycle arrest of MCF-7 treated with cisplatin for 24 h. (A) DMSO control, (B) 2 μ M, (C) 4 μ M and D) 6 μ M of cisplatin treated cells. The figure represents one independent experiment.

Fig. S53 Cell cycle arrest of MIA PaCa2 treated with **2** and cisplatin respectively for 24 h. (A) DMSO control, (B) 2.5 μ M, (C) 3.5 μ M and D) 4.5 μ M of **2** and 15 μ M of cisplatin treated cells. The figure represents one independent experiment.

-	-			
	Sub G1	G0/G1	S	G2/M
DMSO control ^b	3.9	43.9	22.4	29.8
2 , 6 μ M ^b	5.6	35.4	20.4	38.6
2 , $8 \mu M^{b}$	6.5	30.4	19.3	43.8
2 , 6 μM ^b 2 , 8 μM ^b 2 , 10 μM ^b	8.1	24.7	22.1	45.1

Table S4 Cell cycle analysis of MCF-7 cells treated with 2^a

^aCells were treated with the complex for 24 h. Cell populations were expressed as the percentage of cells in each phase. ^bThe data represents the average of two independent experiments.

Table S5 Cell cycle analysis of MCF-7 cells treated with cisplatin^a

	Sub G1	G0/G1	S	G2/M
DMSO control ^b	1.2	50.9	17.4	30.5
Cisplatin, 2 μ M ^b	1.2	24.5	26.6	47.7
Cisplatin, 4 μ M ^b	1.1	18.9	44.2	35.8
Cisplatin, 6 μ M ^b	1.0	19.2	58.7	21.1
^a Cells were treate	d with the comple	x for 24 h. Cell j	populations were e	expressed as the
percentage of cells				

percentage of cells in each phase.^{1b}The data represents the average of two independent experiments.

	Sub G1	G0/G1	S	G2/M
DMSO control ^b	1.0	47.6	21.8	29.6
2 , 2.5 μ M ^b	1.0	44.3	19.3	35.4
2 , 3.5 μ M ^b	1.0	41.2	18.5	39.3
2 , 4.5 μ M ^b	1.0	35.9	20.0	43.1
Cisplatin, 15 μ M ^b	1.0	27.1	32.9	39.0
a 11	·1 1 C	241 C 11 1 1		11 1

^aCells were treated with the complex for 24 h. Cell populations were expressed as the percentage of cells in each phase. ^bThe data represents the average of two independent experiments.