Fluorescent asymmetric bis-ureas for pyrophosphate recognition in pure water

Arianna Casula, Carla Bazzicalupi, Alexandre Bettoschi, Enzo Cadoni, Simon J. Coles, Peter N. Horton, Francesco Isaia, Vito Lippolis, Lucy K. Mapp, Giada M. Marini, Riccardo Montis, Mariano A. Scorciapino, and Claudia Caltagirone

General procedures

All reactions were performed in oven-dried glassware under a slight positive pressure of nitrogen. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, 500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 125 \mathrm{MHz}$) spectra were determined on a Varian INOVA-400 spectrometer, and Varian INOVA-500 spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are reported in parts per million (ppm), calibrated to the residual solvent peak set, with coupling constants reported in Hertz (Hz). The following abbreviations are used for spin multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are reported in ppm, relative to the central line of a septet at $\delta=39.52 \mathrm{ppm}$ for deuteriodimethylsulfoxide. Infrared (IR) spectra were recorded on a NICOLET 5700 FT-IR spectrophotometer and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Microanalytical data were obtained using a Fisons EA CHNS-O instrument ($T=1000{ }^{\circ} \mathrm{C}$). Fluorescence spectra were recorded on a Cary Eclypse spectrofluorimeter. All solvents and starting materials were purchased from commercial sources where available. Proton NMR titrations were performed by adding aliquots of the putative anionic guest (as the TBA salt, 0.075 M) in a solution of the receptor $(0.005 \mathrm{M})$ in DMSO- $d_{6} / 0.5 \%$ water to a solution of the receptor $(0.005 \mathrm{M}) .7$-aminoindole ${ }^{1}$ was synthesised following a literature procedure.

Molecular modeling investigations on the adducts formed by the three ligands with HPpi^{3-}, in a 1 : 1 ligand-to-anion molar ratio have been performed by means of an empirical force field method (AMBER3), ${ }^{2}$ evaluating the atomic partial charges at the PM3 semi-empirical level of theory ${ }^{3}$ and using an implicit simulation of the solvent environment $(\varepsilon=4 \mathrm{R})$. The potential energy surface of all the systems has been explored by means of simulated annealing ($T=600 \mathrm{~K}$, equilibration time $=10$ ps , run time $=10 \mathrm{ps}$ and cooling time $=10 \mathrm{ps}$, time step $=1.0 \mathrm{fs}$). For each studied system, 80 conformations have been sampled.

Mass spectra in positive-ion mode were recorded on a triple quadruple QqQ Varian 310-MS mass spectrometer using the atmospheric-pressure ESI technique. The $20 \mu \mathrm{l}$ of sample of binder in DMSO solutions were introduced into the ESI source by a Varian HPLC pump without column, at a flow rate of $250 \mu \mathrm{~L} / \mathrm{min}$ using a $1: 1 / \mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ mixture. A dwell time of 4 s was used, needle voltage of 4000 V , shield voltage of 600 V , housing temperature of $60^{\circ} \mathrm{C}$, drying gas temperature
of $400^{\circ} \mathrm{C}$, nebuliser gas pressure of 46 PSI , drying gas pressure of 35 PSI and a detector voltage of 1490 V were used. Mass spectra were acquired in the $250-500 \mathrm{amu}$ range.
${ }^{1}$ T. Zielinski, P. Dydio, J. Jurczak, Tetrahedron, 2008, 64, 568.
${ }^{2}$ Hyperchem Release 7.51 for Windows MM System, Hypercube, Inc., Gainesville, FL, 2002.
${ }^{3}$ (a) J. J. P. J. Stewart, Comput. Chem., 1989, 10, 209-220; (b) J. J. P. J. Stewart, Comput. Chem., 1989, 10, 221-264.

Synthesis of 1-(1H-indol-7-yl)-3-(2-nitrophenyl)urea (A)

A solution of 1-isocyanate-2-nitrobenzene $(0.3060 \mathrm{~g}, 1.864 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{ml})$ was added dropwise to a solution of 7 -aminoindole $(0.2445 \mathrm{~g}, 1.85 \mathrm{mmol})$ in dichlomethane $(10 \mathrm{ml})$. The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a yellow solid. Yield 92% ($0.5029 \mathrm{~g}, 1.7 \mathrm{mmol}$); M.p.: $114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}\right): \delta \mathrm{H}: 10.68$ (s, 1H); $9,71(\mathrm{~s}, 1 \mathrm{H}) ; 9.56(\mathrm{~s}, 1 \mathrm{H}) ; 8.42$ (d, J= $8.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.12$ (d, J= $8.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.71$ (t, J= 7.5 Hz , 1H); 7.37-7.34(m, 2H); 7.22-7.17 (m, 2H); 6.97 (t, J=7.6 Hz, 1H); 6.46 ($\mathrm{s}, 1 \mathrm{H}$);IR: (KBr, cm-1): v CO: 1540.45 (CO stretching); v NH: 3321.60 (NH urea stretching).

Synthesis of 1-(2-aminophenyl)-3-(1H-indol-7-yl)urea (D)

Palladium on activate carbon $10 \%(0.01028 \mathrm{~g})$ was added to a solution of $\mathbf{A}(0.487 \mathrm{~g}, 1.644 \mathrm{mmol})$ in ethanol (150 ml) and then the mixture was stirred for a few minutes under inert atmosphere. Hydrazine ($2,9 \mathrm{ml}$) was then added and the resulting mixture was refluxed for 30 minutes. The solution was filtered with CELITE to remove palladium and the filtrate was concentrated in vacuum to give a beige solid, which was washed in dichloromethane to give the desired compound as a white solid. Yield $79 \%(0.3471 \mathrm{~g}, 1.303 \mathrm{mmol})$; M.p.: $>250^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz ,DMSO-d6, $298 \mathrm{~K}), \delta \mathrm{H}: 10.64(\mathrm{~s}, 1 \mathrm{H}) ; 8.44(\mathrm{~s}, 1 \mathrm{H}) ; 8.39(\mathrm{~s}, 1 \mathrm{H}) ; 7.32(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.29(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7.09(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}) ; 6.81(\mathrm{~s}, 1 \mathrm{H}) ; 6.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.44(\mathrm{t}, \mathrm{J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.22$ (d, J= $9.0 \mathrm{~Hz}, 1 \mathrm{H}$); 4.94 (s, 2H).IR: (KBr, cm-1): v CO: 1566.69 (CO stretching); v NH: 3286.21 (NH urea stretching).

Synthesis of L1

A solution of naphtyl-isocyanate $(0.0973 \mathrm{~g}, 0.575 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$ was added dropwise to a solution of $\mathbf{D}(0.1531 \mathrm{~g}, 0.575 \mathrm{mmol})$, in acetonitrile (20 ml). The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a beige solid. Yield $85 \%(0.2119 \mathrm{~g}, 4,865$ mmol); M.p.: > $211^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, ~ D M S O-d 6,298 \mathrm{~K}), \delta \mathrm{H}: 10.66(\mathrm{~s}, 1 \mathrm{H}) ; 9.12(\mathrm{~s}, 1 \mathrm{H})$; $8.96(\mathrm{~s}, 1 \mathrm{H}) ; 8.56(\mathrm{~s}, 1 \mathrm{H}) ; 8.22(\mathrm{~s}, 1 \mathrm{H}) ; 8.20(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.02(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.93(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.69-7.63(\mathrm{~m}, 3 \mathrm{H}) ; 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}) ; 7.47(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}) ; 7.12$ $(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}) ; 6.93(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO-d6, 298 K$), \delta \mathrm{C}: 131.51$; 129.29; 128.62; 126.03; 125.85; 125.59; 125.05; 124.44; 124.00; 122.98; 119.03; 117.77; 115.65; 113.16; 104.72; 101.47. IR: (KBr, cm^{-1}): v CO: 1565.82 (CO stretching); v NH: 3310.42 (NH urea stretching). LRMS (ES+): m/z: $458.2[\mathrm{M}-\mathrm{Na}]^{+}$

Synthesi of 1-(1H-indol-7-yl)-3-(3-nitrophenyl)urea (B)

A solution of 1-isocyanate-3-nitrobenzene $(0.303 \mathrm{~g}, 1.846 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{ml})$ was added dropwise to a solution of 7 -aminoindole $(0.2445 \mathrm{~g}, 1.85 \mathrm{mmol})$ in dichlomethane $(10 \mathrm{ml})$. The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a yellow solid. Yield 92% ($0.503 \mathrm{~g}, 1.7 \mathrm{mmol}$); M.p.: $114^{\circ} \mathrm{C} ; ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 298 \mathrm{~K}\right): \delta \mathrm{H}: 10.73$ (s, $1 \mathrm{H}) ; 9.3(\mathrm{~s}, 1 \mathrm{H}) ; 8.63(\mathrm{~s}, 1 \mathrm{H}) ; 8.6(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}) ; 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}) ; 7.58(\mathrm{t}$, $\mathrm{J}=7.58,1 \mathrm{H}) ; 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}) ; 7.10(\mathrm{~d}, \mathrm{~J}=7.39,1 \mathrm{H}) ; 6.96(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.46-6.43(\mathrm{~m}, 1 \mathrm{H})$. IR: (KBr, cm-1): v CO: 1540.45 (CO stretching); v NH: 3321.60 (NH urea stretching).

Synthesis of 1-(3-aminophenyl)-3-(1H-indol-7-yl)urea (E)

Palladium on activate carbon $10 \%(0.01028 \mathrm{~g})$ was added to a solution of $\mathbf{B}(0.487 \mathrm{~g}, 1.644 \mathrm{mmol})$ in ethanol (150 ml) and then the mixture was stirred for a few minutes under inert atmosphere. Hydrazine ($2,9 \mathrm{ml}$) was then added and the resulting mixture was refluxed for 30 minutes. The solution was filtered with CELITE to remove palladium and the filtrate was concentrated in vacuum to give a beige solid, which was washed in dichloromethane to give the desired compound as a white solid. Yield 79% ($0.3471 \mathrm{~g}, 1.303 \mathrm{mmol}$); M.p.: $>250^{\circ} \mathrm{C}$; $1 \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$, 298K), $\delta \mathrm{H}: 10.64(\mathrm{~s}, 1 \mathrm{H}) ; 8.44(\mathrm{~s}, 1 \mathrm{H}) ; 8.39(\mathrm{~s}, 1 \mathrm{H}) ; 7.32(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.29(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7.09(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}) ; 6.81(\mathrm{~s}, 1 \mathrm{H}) ; 6.63(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.44(\mathrm{t}, \mathrm{J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.22(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.94(\mathrm{~s}, 2 \mathrm{H})$.IR: ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v CO: 1566.69 (CO stretching); v NH: 3286.21 (NH urea stretching).

Synthesis of L2

A solution of naphtyl-isocyanate $(0.2204 \mathrm{~g}, 1.303 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$ was added dropwise to a solution of $\mathbf{E}(0.3470 \mathrm{~g}, 1.303 \mathrm{mmol})$, in acetonitrile $(20 \mathrm{ml})$. The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a beige solid. Yield $84 \%(0.2756 \mathrm{~g}, 2,034$ mmol); M.p.: > $250^{\circ} \mathrm{C}$; 1H-NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6,298 \mathrm{~K}$): $\delta \mathrm{H}: 10.71(\mathrm{~s}, 1 \mathrm{H}) ; 9.10(\mathrm{~s}, 1 \mathrm{H})$; $8.84(\mathrm{~s}, 1 \mathrm{H}) ; 8.72(\mathrm{~s}, 1 \mathrm{H}) ; 8.46(\mathrm{~s}, 1 \mathrm{H}) ; 8.14(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.06(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.93(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.76(\mathrm{~s}, 1 \mathrm{H}) ; 7.62(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}) ; 7.48(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.33-$ $7.29(\mathrm{~m}, 2 \mathrm{H}) ; 7.21(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.1(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.94(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}$ (126 MHz , DMSO-d6, 298 K), $\delta \mathrm{C}: 152.74 ; 134.32$; 133.69; 129.23; 129.11; 128.97; 128.43; $125.86 ; 125.74 ; 125.67 ; 125.15 ; 123.72 ; 122.78 ; 121.18 ; 119.00 ; 117.02 ; 115.77 ; 113.64 ; 111.88$; 111.54; 107.88; 101.49.IR: (KBr, cm-1): v CO: 1557.48 (CO stretching); v NH: 3275.42 (NH urea stretching). LRMS (ES+): m/z: $458.2[\mathrm{M}-\mathrm{Na}]^{+}$

Synthesis of 1-(1H-indol-7-yl)-3-(4-nitrophenyl)urea (C)

A solution of 1-isocyanate-4-nitrobenzene $(0.4300 \mathrm{~g}, 2.618 \mathrm{mmol})$ in dichloromethane (20 ml) was added dropwise to a solution of 7 -aminol-indole $(0.3707 \mathrm{~g}, 2.80 \mathrm{mmol})$ in dichlomethane $(10 \mathrm{ml})$. The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a red solid. Yield $76 \%(0.6294 \mathrm{~g}, 8.028 \mathrm{mmol}) ;$ M.p.: $220^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 298 \mathrm{~K}\right): \delta \mathrm{H}: 10.7$ (s, 1H); 9.69(s, 1H); $9.09(\mathrm{~s}, 1 \mathrm{H}) ; 8.2(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.74(\mathrm{~d}, \mathrm{~J}=9.2,2 \mathrm{H}) ; 7.36(\mathrm{~s}, 1 \mathrm{H}) ; 7.34-$ $7,32(\mathrm{~m}, 1 \mathrm{H}) ; 7.13(\mathrm{~d}, \mathrm{~J}=7.4,1 \mathrm{H}) ; 6.96(\mathrm{t}, \mathrm{J}=7.7,1 \mathrm{H}) ; 6.45-6.43(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{IR}:(\mathrm{KBr}, \mathrm{cm}-1): \mathrm{v} \mathrm{CO}:$ 1302.05 (CO stretching); v NH: 3353.83 (NH urea stretching).

Synthesis of 1-(4-aminophenyl)-3-(1H-indol-7-yl)urea (F)

Palladium on activate carbon $10 \%(0.095 \mathrm{~g})$ was added to a solution of $\mathbf{C}(0.6294 \mathrm{~g}, 2.124 \mathrm{mmol})$ in ethanol $(100 \mathrm{ml})$ and then the mixture was stirred for a few minutes under inert atmosphere. Hydrazine ($1,7 \mathrm{ml}$) was then added and the resulting mixture was refluxed for 30 minutes. The solution was filtred with CELITE to remove palladium and the filtrate was concentrated in vacuum to give a beige solid, which was washed in dichloromethane to give the desired compound as a white solid. Yield $55 \%(0.2138 \mathrm{~g}, 1.303 \mathrm{mmol})$; M.p.: $>250^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$, 298 K), $\delta \mathrm{H}: 10.74$ (s, 1H, NH2 urea); 8.46 (s, $1 \mathrm{H}, \mathrm{NH} 2$ urea); 8.36 (s, $1 \mathrm{H}, \mathrm{NH} 2$ urea); 7.26-7.30 $(\mathrm{m}, 1 \mathrm{H}) ; 7.26(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.12(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 7.06(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, 1H); 6.53 (d, J= $8 \mathrm{~Hz}, 2 \mathrm{H}$); 4.75 (s, 2H).IR: (KBr, cm-1): v CO: 1551.57 (CO stretching); v NH: 3292.99 (NH urea stretching).

Synthesis of L3

A solution of naphtyl-isocyanate $(0.2204 \mathrm{~g}, 1.303 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$ was added dropwise to a solution of $\mathbf{F}(0.3470 \mathrm{~g}, 1.303 \mathrm{mmol})$, in acetonitrile $(20 \mathrm{ml})$. The mixture was refluxed for 12 h and then it was filtred to give the desired compound as a beige solid. Yield 80% ($0.2126 \mathrm{~g}, 4.882 \mathrm{mmol}$); M.p.: > $250^{\circ} \mathrm{C}$; 1H-NMR (500 MHz , DMSO-d6, $298 \mathrm{~K} \delta \mathrm{H}: 10.67$ (s, 1H); $8.92(\mathrm{~s}, 1 \mathrm{H}) ; 8.70(\mathrm{~s}, 1 \mathrm{H}) ; 8.64(\mathrm{~s}, 1 \mathrm{H}) ; 8.43(\mathrm{~s}, 1 \mathrm{H}) ; 8.14(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 8.03(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}) ; 7.55(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.49-7.42(\mathrm{~m}, 5 \mathrm{H}) ; 7.33(\mathrm{t}$, $\mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.30(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.09(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.94(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.43(\mathrm{t}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}$). 13C-NMR (100 MHz , DMSO-d6, 298 K), $\delta \mathrm{C}: 212.10$; 153.17; 153.00; 134.46; 134.34; 134.12; 133.73; 129.25; 128.89; 128.44; 125.89; 125.67; 125.17; 123.94; 122.74; 121.28; 119.24; 119.04; 118.87; 117.16; 115.64; 113.50; 101. LRMS (ES+): m/z: $458.2[\mathrm{M}-\mathrm{Na}]^{+}$

Yield= 84\%
Yield= 83\%
Yield= 85\%

Scheme S1. Reaction scheme adopted for the synthesis of L1-L3.

Synthesis of (L2)($\left.\left.\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)_{2}\right)(\text { TBA })_{2}$

A suspension of $\mathbf{L 2}$ in $\mathrm{MeCN} / \mathrm{MeNO}_{2}$ was reacted with an excess of $\mathrm{TBAH}_{2} \mathrm{PO}_{4}$ at room temperature under stirring for 1 h . Crystals suitable of single crystal X-ray diffraction analysis were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapours into the solution of the adduct. Elem. Anal. found (calc. for $\mathrm{C}_{58} \mathrm{H}_{97.5} \mathrm{~N}_{7} \mathrm{O}_{10.25} \mathrm{P}_{2}$): C 62.38 (62.26), H 8.70 (8.78), N 8.74 (8.76).

Synthesis of $(\mathbf{L} 2)\left(\mathbf{H}_{2} \mathbf{P p i}\right)(T B A)_{2}$

A suspension of $\mathbf{L 2}$ in $\mathrm{MeCN} / \mathrm{MeNO}_{2}$ was reacted with an excess of $\mathrm{TBA}_{3} \mathrm{HPPi}$ at room temperature under stirring for 1 h . Crystals suitable of single crystal X-ray diffraction analysis were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapours into the solution of the adduct. Elem. Anal. found (calc. for $\mathrm{C}_{58} \mathrm{H}_{95} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{P}_{2}$): C 63.59 (63.54), H 8.67 (8.73), N 8.81 (8.94).

Figure S1 Stack plot of a DMSO- d_{6} solution $\mathbf{L} 1$ (A), L2 (B) and $\mathbf{L} \mathbf{3}$ (C) (0.005 M) upon addition of $\mathrm{Hppi}^{3-}(0.075 \mathrm{M})$.

Figure S2. Shift of the NH protons upon addition of AcO^{-}to a DMSO- d_{6} solution of $\mathbf{L 1}, \mathbf{L 2}$, and L3.

Figure S3. Shift of the NH protons upon addition of $\mathrm{HCO}_{3}{ }^{-}$to a DMSO- d_{6} solution of $\mathbf{L 2}$ and $\mathbf{L 3}$.

Figure S4. Absorption spectra of $\mathbf{L} 1$ (A), L2 (B), and $\mathbf{L 3}(\mathrm{C})$ in DMSO (conc. $=3.0 \cdot 10^{-5} \mathrm{M}$)

Figure S5. Emission spectra of $\mathbf{L} 1(\mathrm{~A}), \mathbf{L} 2(B)$, and $\mathbf{L} 3(\mathrm{C})$ in DMSO (conc. $=3.0 \cdot 10^{-5} \mathrm{M}$).

Figure S6 Changes in the fluorescence spectra of $\mathbf{L 1}\left(3.0 \cdot 10^{-5} \mathrm{M}\right)$ upon addition of increasing amounts of $\mathrm{AcO}^{-}(\mathrm{A}), \mathrm{HCO}_{3}^{-}(\mathrm{B}), \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{C})$, and $\mathrm{F}^{-}(\mathrm{D})$ in DMSO.

Figure S7 Changes in the fluorescence spectra of $\mathbf{L 2}\left(3.0 \cdot 10^{-5} \mathrm{M}\right)$ upon addition of increasing amounts of $\mathrm{AcO}^{-}(\mathrm{A}), \mathrm{HCO}_{3}^{-}(\mathrm{B}), \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{C})$, and $\mathrm{F}^{-}(\mathrm{D})$ in DMSO.

Figure S8 Plot of I vs anion equivalents at 483 nm for $\mathbf{L 3}$.

Figure S9 Anion competition study for $\mathbf{L 2}\left[3.0 \cdot 10^{-5} \mathrm{M}\right]$ in the presence of 20 equivalents of HPpi^{3-} and 50 equivalents of the other anions in DMSO ($\lambda_{\mathrm{em}}=476 \mathrm{~nm}, \lambda_{\mathrm{exc}}=330 \mathrm{~nm}$).

Figure S10 Anion competition study for $\mathbf{L 3}\left[3.0 \cdot 10^{-5} \mathrm{M}\right]$ in the presence of 20 equivalents of $\mathrm{HPpi}{ }^{3-}$ and 50 equivalents of the other anions in DMSO ($\lambda_{\mathrm{em}}=483 \mathrm{~nm}, \lambda_{\mathrm{exc}}=330 \mathrm{~nm}$).

Table S1 Limit of detection (LOD) for HPpi3 with $\mathbf{L} 1$ (both in DMSO and in $\mathrm{H}_{2} \mathrm{O}$) and $\mathbf{L} 2$ (in DMSO).

Receptor	LOD
L1 $($ DMSO)	$2.0 \cdot 10^{-5} \mathrm{M}$
L1 $\left.\mathrm{H}_{2} \mathrm{O}\right)$	$1.5 \cdot 10^{-4} \mathrm{M}$
L2(DMSO)	$1.0 \cdot 10^{-5} \mathrm{M}$
L3 $($ DMSO	$2.0 \cdot 10^{-5} \mathrm{M}$

Figure S11. Absorption (black) and emission (blue) spectra of $\mathbf{L} \mathbf{1}$ in CTAB micelles.

Figure S12 Emission spectra of $\mathbf{L 1}$ in water at pH 7 with 0.01 M CTAB at different concentrations. Inset: Plot of the $\mathrm{I}_{\text {excimer }} / \mathrm{I}_{\text {monomer }}$ vs concentration.

Figure S13 Changes in the emission spectra of $\mathbf{L} 1$ in water at pH 7 with 0.01 M CTAB upon addition of increasing amounts of HPpi^{3-}.

Figure S14 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L} 1$ in DMSO- d_{6}.

Figure S15 ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{L} 1$ in DMSO- d_{6}.

Figure S16 COSY spectrum of $\mathbf{L 1}$ in DMSO-d ${ }_{6}$.

Figure S 17 TOCSY spectrum of $\mathbf{L} \mathbf{1}$ in DMSO- d_{6}.

Figure S18 TROESY spectrum of $\mathbf{L 1}$ in DMSO-d ${ }_{6}$.

Figure S19 ghsqc spectrum of $\mathbf{L} 1$ in DMSO- d_{6}.

Figure S20 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Figure S21 ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{L} \mathbf{2}$ in DMSO- d_{6}.

Figure S22 COSY spectrum of $\mathbf{L 2}$ in DMSO- d_{6}.

Figure S23 TROESY spectrum of $\mathbf{L 2}$ in DMSO-d ${ }_{6}$.

Figure S 24 ghsqc spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{DMSO}_{-\mathrm{d}_{6}}$.

Figure S25 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L} \mathbf{3}$ in DMSO- d_{6}.

Figure S26 ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{L 3}$ in DMSO- d_{6}.

Figure S27 COSY spectrum of $\mathbf{L 3}$ in DMSO-d ${ }_{6}$.

Figure S28 TOCSY spectrum of $\mathbf{L 3}$ in DMSO- d_{6}.

Figure S29 TROESY spectrum of $\mathbf{L 3}$ in DMSO-d ${ }_{6}$.

Figure S30 ghsqc spectrum of $\mathbf{L} 3$ in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 15:20:17 on $05 / 21 / 2014$

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: $\quad M+L=M L$
FILE: TEST11.FIT
IDEAL DATA: $\mathrm{K} 1=63.091$; DELTA $M=20.0$; DELTA ML $=120.0$ File prepared by M. J. Hynes, October 222000

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$7.43233 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$1.010 \mathrm{E}+03$	$2.593 \mathrm{E}+00$	K1
2	1	$1.06595 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$1.664 \mathrm{E}-02$	$1.230 \mathrm{E}+00$	SHIFT M
3	1	$1.17248 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$6.791 \mathrm{E}-03$	$2.557 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 1.53E-02 MAX ERROR = 3.03E-02 AT OBS.NO. 17
    RESIDUALS SQUARED = 3.29E-03
    RFACTOR = 0.1202 PERCENT
```

Figure S31 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L} 1$ with TBAAcO in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 14:00:08 on 07/18/2014

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: $\quad \mathrm{M}+\mathrm{L}=\mathrm{ML}$
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 222000

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$1.25223 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$3.870 \mathrm{E}+01$	$1.622 \mathrm{E}+00$	K1
2	1	$1.06110 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$1.518 \mathrm{E}-02$	$1.521 \mathrm{E}+00$	SHIFT M
3	1	$1.24161 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$8.525 \mathrm{E}-03$	$1.606 \mathrm{E}+00$	SHIFT ML

0RMS ERROR $=2.15 \mathrm{E}-02$ MAX ERROR $=3.04 \mathrm{E}-02$ AT OBS.NO. 1 RESIDUALS SQUARED $=7.40 \mathrm{E}-03$
RFACTOR $=0.1664$ PERCENT

Figure S32 ${ }^{1} \mathrm{H}$-NMR titration of $\mathbf{L} 2$ with TBAAcO in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 13:30:12 on $07 / 18 / 2014$

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$5.82968 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$8.591 \mathrm{E}+02$	$3.190 \mathrm{E}+00$	K1
2	1	$1.07293 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$1.716 \mathrm{E}-02$	$1.217 \mathrm{E}+00$	SHIFT M
3	1	$1.22204 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$1.223 \mathrm{E}-02$	$3.053 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 2.46E-02 MAX ERROR = 4.02E-02 AT OBS.NO. 5
    RESIDUALS SQUARED = 9.68E-03
    RFACTOR = 0.1902 PERCENT
```

Figure S33 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L 3}$ with TBAAcO in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 13:04:38 on $05 / 22 / 2014$

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$1.44560 \mathrm{E}+04$	$2.000 \mathrm{E}-01$	$2.735 \mathrm{E}+03$	$4.069 \mathrm{E}+00$	K1
2	1	$1.06252 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$1.821 \mathrm{E}-02$	$1.225 \mathrm{E}+00$	SHIFT M
3	1	$1.21546 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$1.174 \mathrm{E}-02$	$4.070 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 1.83E-02 MAX ERROR = 2.96E-02 AT OBS.NO. 10
```

 RESIDUALS SQUARED \(=3.68 \mathrm{E}-03\)
 RFACTOR = 0.1366 PERCENT
 Figure S34 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L} 1$ with $\mathrm{TBAH}_{2} \mathrm{PO}_{4}$ in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 14:13:16 on $07 / 18 / 2014$

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$1.91221 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$1.428 \mathrm{E}+02$	$5.100 \mathrm{E}+00$	K1
2	1	$1.06971 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$1.578 \mathrm{E}-02$	$1.485 \mathrm{E}+00$	SHIFT M
3	1	$1.26723 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$1.361 \mathrm{E}-02$	$4.412 \mathrm{E}+00$	SHIFT ML

0RMS ERROR $=2.16 \mathrm{E}-02$ MAX ERROR $=4.46 \mathrm{E}-02$ AT OBS.NO. 13
RESIDUALS SQUARED $=7.43 \mathrm{E}-03$
RFACTOR = 0.1631 PERCENT

Figure S35 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L} 2$ with $\mathrm{TBAH}_{2} \mathrm{PO}_{4}$ in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:16:03 on $07 / 18 / 2014$

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$9.19353 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$4.203 \mathrm{E}+02$	$2.342 \mathrm{E}+00$	K1
2	1	$1.06469 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$7.317 \mathrm{E}-03$	$1.173 \mathrm{E}+00$	SHIFT M
3	1	$1.29169 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$3.655 \mathrm{E}-03$	$2.222 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 9.17E-03 MAX ERROR = 1.83E-02 AT OBS.NO. 17
    RESIDUALS SQUARED = 1.34E-03
    RFACTOR = 0.0672 PERCENT
```

Figure S36 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L 3}$ with $\mathrm{TBAH}_{2} \mathrm{PO}_{4}$ in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 14:19:37 on 07/18/2014

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$1.90062 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$7.965 \mathrm{E}+01$	$5.211 \mathrm{E}+00$	K1
2	1	$1.06892 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$5.872 \mathrm{E}-03$	$1.523 \mathrm{E}+00$	SHIFT M
3	1	$1.19499 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$4.938 \mathrm{E}-03$	$4.431 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 7.83E-03 MAX ERROR = 1.56E-02 AT OBS.NO. 10
    RESIDUALS SQUARED = 9.82E-04
    RFACTOR = 0.0619 PERCENT
```

Figure S37 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L} 2$ with TEAHCO_{3} in DMSO- d_{6}.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 13:47:18 on $07 / 18 / 2014$

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
    Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000
```

NO.	A	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	$3.59363 \mathrm{E}+03$	$2.000 \mathrm{E}-01$	$2.364 \mathrm{E}+02$	$3.495 \mathrm{E}+00$	K1
2	1	$1.06851 \mathrm{E}+01$	$2.000 \mathrm{E}-01$	$8.936 \mathrm{E}-03$	$1.342 \mathrm{E}+00$	SHIFT M
3	1	$1.19077 \mathrm{E}+01$	$1.000 \mathrm{E}+00$	$4.589 \mathrm{E}-03$	$3.031 \mathrm{E}+00$	SHIFT ML

```
0RMS ERROR = 9.82E-03 MAX ERROR = 2.29E-02 AT OBS.NO. 3
    RESIDUALS SQUARED = 1.54E-03
    RFACTOR = 0.0771 PERCENT
```

Figure S38 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ titration of $\mathbf{L} \mathbf{3}$ with TEAHCO_{3} in DMSO- d_{6}.

Figure S39 Anion competition study for $\mathbf{L 1}\left[3.0 \cdot 10^{-5} \mathrm{M}\right]$ in the presence of 50 equivalents of HPpi^{3-} and 70 equivalents of the other anions in in water at pH 7 with $0.01 \mathrm{M} \mathrm{CTAB}\left(\lambda_{\mathrm{em}}=363 \mathrm{~nm}, \lambda_{\mathrm{exc}}=\right.$ 326 nm).

Crystallography

CCDC1435845 and 1435846 contains supplementary X-ray crystallographic data for $\mathbf{L 2} \mathbf{-} \mathbf{H}_{\mathbf{2}} \mathbf{P O}_{\mathbf{4}}{ }^{-}$ and $\mathbf{L 2} \mathbf{-} \mathbf{H}_{\mathbf{2}} \mathbf{P P i}^{\mathbf{2 -}}$ respectively. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, Union Road, Cambridge, CB2 1EZ; fax $(+44)$ 1223-336-033 or email: deposit@ccdc.cam.ac.uk.

Table S2. Crystal data and structure refinement details for $\left.\mathbf{(L 2)}\left(\mathbf{H}_{\mathbf{2}} \mathbf{P O}_{4}{ }^{-}\right)_{\mathbf{2}} \mathbf{)} \mathbf{(T B A}\right)_{\mathbf{2}}$

CCDC dep. number	1435845
Empirical formula	$\mathrm{C}_{116} \mathrm{H}_{195} \mathrm{~N}_{14} \mathrm{O}_{20.50} \mathrm{P}_{4}$
Formula weight	2237.73
Temperature	100(2) K
Wavelength	0.71075 A
Crystal system	Orthorhombic
Space group	Pca ${ }_{1}$
Unit cell dimensions	$a=16.1474(7) \AA \quad \alpha=90^{\circ}$
	$b=28.4487(12) \AA \quad \beta=90^{\circ}$
	$c=26.5040(9) \AA \quad \gamma=90^{\circ}$
Volume	12175.2(8) \AA^{3}
Z	4
Density (calculated)	$1.221 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.133 \mathrm{~mm}^{-1}$
$F(000)$	4852
Crystal	Prism; Colourless
Crystal size	$0.24 \times 0.22 \times 0.22 \mathrm{~mm}^{3}$
θ range for data collection	$2.113-27.503^{\circ}$
Index ranges	$-20 \leq h \leq 20,-35 \leq k \leq 36,-31 \leq l \leq 34$
Reflections collected	106562
Independent reflections	27595 [$\left.R_{\text {int }}=0.0402\right]$
Completeness to $\theta=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.688
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	27595/1341/1712
Goodness-of-fit on F^{2}	1.039
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0511, w R 2=0.1288$
R indices (all data)	$R 1=0.0602, w R 2=0.1355$
Absolute structure parameter	0.03(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.733 and $-0.324 \mathrm{e} \AA^{-3}$

Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an $F R-E+$ SuperBright molybdenum rotating anode generator with HF Varimax optics ($100 \mu \mathrm{~m}$ focus). Cell determination and data collection: CrystalClearSM Expert 3.1 b27 (Rigaku, 2013). Data reduction, cell refinement and absorption correction: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). Structure solution: SHELXS-2013 (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Structure refinement: SHELXL-2014 (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: OLEX2 (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Special details:

Whole molecule disorder observed in one ligand molecule but only required to model the pendant side-arms as such. The second ligand molecule also shows some signs of disorder however attempts at modelling this did not improve the model.
A partially occupied water was allowed to refine occupancy and then set to 50%.
There was also disorder for some of the butyl chains of the TBA cations.
Due to the above various geometrical (SAME, SADI, DFIX, BUMP) and displacement (RIGU) restraints were employed.

Table S3. Hydrogen bonds $\left[\AA\right.$ and $\left.{ }^{\circ}\right]$ for ($\mathbf{L 2} \mathbf{)}\left(\mathbf{H}_{\mathbf{2}} \mathbf{P O}_{\mathbf{4}}{ }^{-} \mathbf{O}_{\mathbf{2}}\right)(\mathbf{T B A})_{\mathbf{2}}$

$D-\mathrm{H} \cdots A$	$d(D-\mathrm{H})$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle(D \mathrm{H} A)$
N32-H32A \cdots O42 ${ }^{\text {i }}$	0.88	1.92	2.758(4)	159.4
N33-H33 \cdots O42 ${ }^{\text {i }}$	0.88	2.31	3.070(6)	145.3
N34-H34 ..O55	0.88	1.97	$2.795(4)$	155.7
N35-H35A \cdots O55	0.88	1.93	2.771(4)	158.2
N31-H31…O42 ${ }^{\text {i }}$	0.88	2.23	3.034 (13)	152.3
N31A-H31A \cdots O55	0.88	2.24	3.07(2)	157.3
N1-H1 $\cdots \mathrm{O} 52$	0.88	1.99	2.832(5)	161.1
N2-H2 \cdots O52	0.88	1.91	2.787(4)	175.5
N3-H3 \cdots O52	0.88	2.54	$3.305(5)$	145.2
N4-H4...O45	0.88	1.97	2.779(4)	152.1
N5-H5 ..- 045	0.88	2.01	2.833(4)	154.6
O47-H47 ..051	0.84	1.85	2.624(4)	152.2
O43-H43A $\cdots{ }^{\text {O }} 6^{\text {ii }}$	0.84	1.80	2.605(4)	160.3
O44-H44 ..-046	0.84	1.82	2.643(4)	165.7
O53-H53B \cdots O46	0.84	1.80	2.636(4)	171.2
O54-H54B‥056ii	0.84	1.77	$2.602(4)$	171.4
O57-H57 \ldots O51 ${ }^{\text {i }}$	0.84	1.79	2.615(4)	168.7
O58-H58 \cdots O41 ${ }^{\text {i }}$	0.84	1.81	2.620(4)	162.8
O201-H20J..O42	0.87	2.52	3.316 (10)	153.4
O201-H20J...O44	0.87	2.11	2.840 (10)	141.5
O201-H20K…O48	0.87	2.40	2.974(9)	123.8

[^0]$\begin{array}{ll}\text { (i) }-x+1,-y+1, z-1 / 2 & \text { (ii) }-x+1,-y+1, z+1 / 2\end{array}$

Table S4. Crystal data and structure refinement details for (L2)($\left.\mathbf{H}_{\mathbf{2}} \mathbf{P p i}\right)(\mathbf{T B A})_{\mathbf{2}}$

CCDC dep. number
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
$F(000)$
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.027^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

1435846
$\mathrm{C}_{58} \mathrm{H}_{95} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{P}_{2}$
1096.34
100.15 K
0.71075 Å

Orthorhombic
Pban

$a=22.394(12) \AA$	$\alpha=90^{\circ}$
$b=16.369(8) \AA$	$\beta=90^{\circ}$
$c=17.539(10) \AA$	$\gamma=90^{\circ}$

$c=17.539(10) \AA$
$\gamma=90^{\circ}$

4
$1.133 \mathrm{Mg} / \mathrm{m}^{3}$
$0.123 \mathrm{~mm}^{-1}$
2376
Plate; colourless
$0.08 \times 0.08 \times 0.01 \mathrm{~mm}^{3}$
$2.158-25.027^{\circ}$
$0 \leq h \leq 26,0 \leq k \leq 19,0 \leq l \leq 20$
5686
$5685\left[R_{\text {int }}=0.0000\right]$
99.9 \%

Semi-empirical from equivalents
1.000 and 0.534

Full-matrix least-squares on F^{2}
5685 / 1691/878
1.043
$R 1=0.0839, w R 2=0.2651$
$R 1=0.1566, w R 2=0.3026$
n/a
0.360 and $-0.347 \mathrm{e}^{\AA} \AA^{-3}$

Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn $724+$ detector mounted at the window of an $F R-E+$ SuperBright molybdenum rotating anode generator with HF Varimax optics ($100 \mu \mathrm{~m}$ focus). Cell determination and data collection: CrystalClearSM Expert 3.1 b27 (Rigaku, 2013). Data reduction, cell refinement and absorption correction: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). Structure solution: SHELXS-2013 (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Structure refinement: SHELXL-2014 (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: OLEX2 (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Special details:

Electron density from disordered solvent, likely to be comprised of a mixture of $\mathrm{CH} 3 \mathrm{CN} / \mathrm{CH} 3 \mathrm{NO} 2 / \mathrm{DMSO} / \mathrm{Diethyl}$ ether, was eliminated using the SMTBX solvent masking routine within Olex2.
Low angle data only obtained - structure shows connectivity only.
The asymmetric unit actually only comprises of one TBA, along with just half the ligand and PPi moieties each lying over symmetry operators. Both the ligand and PPi show whole molecule disorder. To appropriately model this, two complete moieties of each were required at 25% occupancy.
Due to the above various geometrical (DFIX, SADI, SAME) and displacement (SIMU, RIGU) restraints were employed, along with geometrical constraints on the benzene and naphthalene rings.

Table S5. Hydrogen bonds $\left[\AA \AA^{\circ}\right.$ and ${ }^{\circ}$] for (L2)(HPpi)(TBA) ${ }_{2}$.

$D-\mathrm{H} \cdots A$	$d(D-\mathrm{H})$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 12$	0.88	2.10	$2.90(4)$	150.7
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 11$	0.88	2.06	$2.92(4)$	163.7
N3-H3 $\cdots \mathrm{O} 22$	0.88	2.67	$3.42(4)$	145.0
N4-H4 $\cdots \mathrm{O} 21$	0.88	1.98	$2.85(4)$	172.2
N5-H5 $\cdots \mathrm{O} 11$	0.88	1.84	$2.66(3)$	153.6
O12-H12 $\cdots \mathrm{O} 22$	0.84	1.78	$2.535(16)$	149.3
O16-H16 $\cdots \mathrm{O} 26$	0.84	1.77	$2.567(16)$	158.5
O23-H23A $\cdots \mathrm{O} 17$	0.84	1.80	$2.592(15)$	155.5
O27-H27 $\cdots \mathrm{O} 13$	0.84	1.79	$2.604(16)$	162.5
N51-H51 $\cdots \mathrm{O} 26$	0.88	2.43	$3.26(6)$	157.3
N52-H52 $\cdots \mathrm{O} 25$	0.88	2.06	$2.94(4)$	175.6
N53-H53 $\cdots \mathrm{O} 16$	0.88	2.17	$2.99(5)$	153.8
N54-H54 $\cdots \mathrm{O} 15$	0.88	1.78	$2.53(4)$	141.0
N55-H55 $\cdots \mathrm{O} 25$	0.88	2.05	$2.89(3)$	159.8

Symmetry transformations used to generate equivalent atoms:

[^0]: Symmetry transformations used to generate equivalent atoms:

