Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

G. Rousse, G. Radtke, Y. Klein, H. Ahouari

Long-range antiferromagnetic order in malonate-based compounds Na₂*M*(H₂C₃O₄)₂·2H₂O (*M*=Mn, Fe, Co, Ni)

G. Rousse, a,b,c,* G. Radtke, CY. Klein, and H. Ahouarid,e

^aFRE 3677, Chimie du Solide et de l'Energie, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France

^bRéseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France

^cInstitut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 place Jussieu, F-75005 Paris, France.

^dLaboratoire de Réactivité et Chimie des Solides, UMR CNRS 7314, 33 Rue Saint Leu 80039 Amiens Cedex.

eALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France

*Email: gwenaelle.rousse@college-de-france.fr

SUPPLEMENTARY INFORMATION

Symmetry Analysis for the magnetic structure determination

A symmetry analysis for space group *Pbca* and $\mathbf{k}=(0, 0, 0)$ was performed with the BasIReps program from the FullProf suite,^{39,40} in order to determine all of the possible spin configurations that are compatible with the crystal symmetry of malonate Na₂M(H₂C₃O₄)₂·2H₂O. The magnetic representation associated with the general Wyckoff site 4*b* (0, 0, 1/2) and $\mathbf{k} = (0, 0, 0)$ can be decomposed on four irreducible representations of dimension 1: $\Gamma_{mag} = 3\Gamma_1 + 3\Gamma_3 + 3\Gamma_5 + 3\Gamma_7$. The atomic components of the basis functions Ψ_{α} of these representations are three vectors Ψ_{α}^n ($\alpha = 1, 3, 5, 7$) per atom that are respectively collinear to the *a*, *b* and *c* unit cell vectors. The magnetic moment carried by the atom *j* at the unit cell whose origin is at the vector position \mathbf{R}_l is given in terms of Fourier components \mathbf{S}_{kj} by:

$$m_{l,j} = \sum_{k} S_{kj}(j) exp^{(-2i\pi k \cdot R_l)}$$
Eq. 4

In the present case we have $\mathbf{k} = (0, 0, 0)$, so that the moments coincide with the Fourier components $(\mathbf{m}_{ij} = \mathbf{S}_{kj} = \mathbf{S}_j)$ and the latter can be expressed as a linear combination of the basis vectors:

$$\mathbf{S}_{j} = \sum_{\alpha=1}^{3} u_{\alpha} \boldsymbol{\psi}_{\alpha}^{j} = (u, v, w)_{j}$$
 Eq. 5

Table S1 describes the character of each symmetry operator $g, \chi_j(g)$, for each irreducible representation Γ_n (*n*=1,3,5,7), the basis functions ψ_{α}^j , the Shubnikov (magnetic) group corresponding to each irreducible representation and the Fourier coefficient (magnetic moment) of each atom.

Table S1: Results of the symmetry analysis of the *Pbca* unit cell for the propagation vector $\mathbf{k} = (0, 0, 0)$. The characters (χ) of the representations and the basis vectors Ψ_{α} (α = 1, 2, 3), as well as the Fourier coefficients ($S_k = m$, magnetic moments) of the 4*b* Wyckoff site (x, y, z) are given for each irreducible representation Γ_1 , Γ_3 , Γ_5 and Γ_7 . Note that we have provided the symbol of the Shubnikov group (magnetic space group) corresponding to each irreducible representation. The four M atoms of the unit cell are given in the same order as in the International Tables for Crystallography.⁴⁴

	k = (0, 0, 0)				
		M(1)	M(2)	M(3)	M(4)
		x, y, z	$-x+\frac{1}{2}, -y, z+\frac{1}{2}$	$-x, y+\frac{1}{2}, -z+\frac{1}{2}$	$x+\frac{1}{2}, -y+\frac{1}{2}, -z$
Γ ₁ Pbca	χ	1	1	1	1
	Ψ_1	1, 0, 0	1, 0, 0	1, 0, 0	1, 0, 0
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0
	Ψ ₃	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1
	$\mathbf{S}_{\mathbf{k}}$	<i>u</i> , <i>v</i> , <i>w</i>	- <i>u</i> , - <i>v</i> , <i>w</i>	- <i>u</i> , <i>v</i> ,- <i>w</i>	<i>u</i> , - <i>v</i> , - <i>w</i>
Γ ₃ Pb'c'a	χ	1	1	-1	-1
	Ψ_1	1, 0, 0	1, 0, 0	1, 0, 0	1 , 0, 0
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0
	Ψ3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1
	$\mathbf{S}_{\mathbf{k}}$	<i>u</i> , <i>v</i> , <i>w</i>	-u, -v, w	<i>u</i> , - <i>v</i> , <i>w</i>	- <i>u</i> , <i>v</i> , <i>w</i>
Γ ₅ Pb'ca'	χ	1	-1	1	-1
	Ψ_1	1, 0, 0	1, 0, 0	1, 0, 0	1 , 0, 0
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0
	Ψ3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1
	$\mathbf{S}_{\mathbf{k}}$	<i>u</i> , <i>v</i> , <i>w</i>	<i>u</i> , <i>v</i> , - <i>w</i>	- <i>u</i> , <i>v</i> , - <i>w</i>	- <i>u</i> , <i>v</i> , <i>w</i>
Γ ₇ Pbc'a'	χ	1	-1	-1	1
	Ψ_1	1, 0, 0	1, 0, 0	1, 0, 0	1, 0, 0
	Ψ_2	0, 1, 0	0, 1, 0	0, 1, 0	0, 1, 0
	Ψ3	0, 0, 1	0, 0, 1	0, 0, 1	0, 0, 1
	$\mathbf{S}_{\mathbf{k}}$	<i>u</i> , <i>v</i> , <i>w</i>	<i>u</i> , <i>v</i> , - <i>w</i>	u, -v, w	<i>u</i> ,- <i>v</i> , - <i>w</i>