Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Raman Spectroscopy of the N–N Bond in Rare Earth Dinitrogen Complexes

Megan E. Fieser, David H. Woen, Jordan F. Corbey, Thomas J. Mueller, Joseph W. Ziller, and

William J. Evans*

Department of Chemistry, University of California, Irvine, California 92697-2025, United States

Email: wevans@uci.edu

*To whom correspondence should be addressed.

Raman Glassware .		p.S3
Crystallographic D	etails	p.S3
Table S1	(1-Lu(A-D))	p.S3
Fig. S1	(1-Lu(A))	. p.S5
Table S2	(1-Lu(A))	. p.S5
Fig. S2	(1-Lu(B))	p.S16
Table S3	(1-Lu(B))	p.S16
Fig. S3	(1-Lu(C))	p.S23
Table S4	(1-Lu(C))	p.S23
Fig. S4	(1-Lu(D))	p.S30
Table S5	(1-Lu(D))	p.S30
Table S6	(1-Gd / 1-Tb)	p.S36
Fig. S5	(1-Gd)	p.S38
Table S7	(1-Gd)	p.S38
Fig. S6	(1-Tb)	p.S44
Table S8	(1-Tb)	p.S44
Table S9	(2-Gd / 2-Dy)	p.S50
Fig. S7	(2-Gd)	p.S52
Table S10	(2-Gd)	p.S52
Fig. S8	(2-Dy)	p.S60
Table S11	(2-Dy)	p.S60
Table S12	(3 - Y / 3 - Dy)	p.S66
Fig. S9	(3- Y)	p.S68
Table S13	(3- Y)	p.S68
Fig. S10	(3-Dy)	p.S74
Table S14	(3-D y)	p.S74
References		p.S79

Table of Contents

Raman Spectroscopy Glassware

	1-Lu(A)	1-Lu(B)	1-Lu(C)	1-Lu(D)
formula	$C_{40}H_{60}Lu_2N_2$	$C_{40}H_{60}Lu_2N_2$	$C_{40}H_{60}Lu_2N_2$	$C_{40}H_{60}Lu_2N_2$
fw	918.84	918.84	918.84	918.84
temp (K)	93(2)	143(2)	88(2)	143(2)
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
cryst syst	Triclinic	Tetragonal	Tetragonal	Tetragonal
space group	$P^{\overline{1}}$	$P^{\overline{4}}2_1c$	$P^{\overline{4}}2_{1}c$	$P^{\overline{4}}2_{1}c$
a (Å)	10.6530(6)	14.4028(16)	14.3199(19)	14.317(3)
b (Å)	10.9963(6)	14.4028(16)	14.3199(19)	14.317(3)
c (Å)	16.6384(9)	19.526(2)	19.597(3)	19.639(5)
Volume (Å ³)	1862.31(18)	4050.4(10)	4018.4(12)	4026(2)
α (deg)	78.1853(6)	90	90	90
β (deg)	78.1059(6)	90	90	90
γ (deg)	83.7548(6)	90	90	90
Ζ	2	4	4	4
$\rho_{calc} (Mg/m^3)$	1.639	1.507	1.519	1.516
μ (mm ⁻¹)	5.298	4.872	4.911	4.902
R1 (I > $2\sigma(I))^{a}$	0.0232	0.0325	0.0254	0.0274
wR2 (all data) ^a	0.0572	0.0911	0.0660	0.0758

 Table S1 X-ray Data Collection Parameters of four crystals of 1-Lu.

^aDefinitions: wR2 = $\left[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]\right]^{1/2}$; R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$.

Crystallographic Details

X-ray Data Collection, Structure Solution and Refinement for 1-Lu(A). A red crystal of approximate dimensions 0.115 x 0.122 x 0.345 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package and the CELL NOW² were used to determine the unit-cell parameters. Data was collected using a 25 sec/frame scan time for a sphere of diffraction data. The raw frame data was processed using SAINT³ and TWINABS⁴ to yield the reflection data file (HKLF5 format)⁴. Subsequent calculations were carried out using the SHELXTL⁵ program. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P^{\overline{1}}$ was assigned and later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The lutetium atoms were disordered and included using multiple components, anisotropic thermal parameters and partial site-occupancy-factors (0.93/0.07). At convergence, wR2 = 0.0572 and Goof = 1.039 for 436 variables refined against 8933 data (0.74Å), R1 = 0.0232 for those 7977 data with I > $2.0\sigma(I)$. The structure was refined as a twocomponent twin (HKLF5 format)⁵.

Fig. S1 Thermal ellipsoid plot of $[(C_5Me_5)_2Lu]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Lu(A)**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Lu(1)-Cnt1	2.335	
Lu(1)-Cnt2	2.334	
Lu(2)-Cnt1	2.332	
Lu(2)-Cnt1	2.320	
Lu(1)-N(1)	2.227(4)	
Lu(1)-N(2)	2.265(4)	
Lu(1)-C(14)	2.593(3)	
Lu(1)-C(1)	2.595(3)	
Lu(1)-C(13)	2.604(3)	
Lu(1)-C(3)	2.614(3)	
Lu(1)-C(2)	2.614(3)	
Lu(1)-C(12)	2.618(3)	
Lu(1)-C(5)	2.655(3)	
Lu(1)-C(15)	2.656(3)	

Table S2Bond lengths [Å] and angles [°] for 1-Lu(A).

Lu(1)-C(11)	2.658(3)
Lu(1)-C(4)	2.661(3)
Lu(2)-N(2)	2.205(4)
Lu(2)-N(1)	2.267(4)
Lu(2)-C(21)	2.582(3)
Lu(2)-C(32)	2.590(3)
Lu(2)-C(33)	2.605(3)
Lu(2)-C(22)	2.611(3)
Lu(2)-C(31)	2.618(3)
Lu(2)-C(35)	2.625(3)
Lu(2)-C(34)	2.634(4)
Lu(2)-C(25)	2.635(3)
Lu(2)-C(23)	2.635(3)
Lu(2)-C(24)	2.662(3)
N(1)-N(2)	1.111(5)
C(1)-C(2)	1.414(5)
C(1)-C(5)	1.423(5)
C(1)-C(6)	1.502(5)
C(2)-C(3)	1.410(5)
C(2)-C(7)	1.511(5)
C(3)-C(4)	1.421(6)
C(3)-C(8)	1.506(5)
C(4)-C(5)	1.426(5)
C(4)-C(9)	1.500(5)
C(5)-C(10)	1.499(5)
C(11)-C(15)	1.406(5)
C(11)-C(12)	1.417(5)
C(11)-C(16)	1.503(5)
C(12)-C(13)	1.415(5)
C(12)-C(17)	1.498(5)
C(13)-C(14)	1.416(5)
C(13)-C(18)	1.503(5)
C(14)-C(15)	1.420(5)
C(14)-C(19)	1.503(5)
C(15)-C(20)	1.503(5)
C(21)-C(22)	1.416(6)

C(21)-C(25)	1.435(6)
C(21)-C(26)	1.488(6)
C(22)-C(23)	1.396(5)
C(22)-C(27)	1.512(6)
C(23)-C(24)	1.419(5)
C(23)-C(28)	1.499(5)
C(24)-C(25)	1.425(5)
C(24)-C(29)	1.504(6)
C(25)-C(30)	1.499(6)
C(31)-C(35)	1.407(5)
C(31)-C(32)	1.423(4)
C(31)-C(36)	1.500(5)
C(32)-C(33)	1.416(5)
C(32)-C(37)	1.492(5)
C(33)-C(34)	1.428(6)
C(33)-C(38)	1.497(5)
C(34)-C(35)	1.412(6)
C(34)-C(39)	1.510(6)
C(35)-C(40)	1.509(5)
Cnt1-Lu(1)-N(1)	123.8
Cnt1-Lu(1)-N(2)	101.9
Cnt2-Lu(1)-N(1)	102.3
Cnt2-Lu(1)-N(2)	124.1
Cnt1-Lu(1)-Cnt2	133.3
Cnt3-Lu(2)-N(1)	119.4
Cnt3-Lu(2)-N(2)	102.8
Cnt4-Lu(2)-N(1)	103.2
Cnt4-Lu(2)-N(2)	119.1
Cnt3-Lu(2)-Cnt4	136.7
N(1)-Lu(1)-N(2)	28.62(13)
N(1)-Lu(1)-C(14)	102.83(12)
N(2)-Lu(1)-C(14)	112.87(12)
N(1)-Lu(1)-C(1)	111.09(12)
N(2)-Lu(1)-C(1)	100.51(12)
C(14)-Lu(1)-C(1)	145.36(10)

N(1)-Lu(1)-C(13)	76.75(13)
N(2)-Lu(1)-C(13)	96.55(13)
C(14)-Lu(1)-C(13)	31.62(11)
C(1)-Lu(1)-C(13)	154.75(11)
N(1)-Lu(1)-C(3)	112.87(13)
N(2)-Lu(1)-C(3)	85.25(14)
C(14)-Lu(1)-C(3)	119.93(12)
C(1)-Lu(1)-C(3)	52.07(11)
C(13)-Lu(1)-C(3)	148.80(11)
N(1)-Lu(1)-C(2)	96.41(13)
N(2)-Lu(1)-C(2)	75.79(13)
C(14)-Lu(1)-C(2)	151.10(11)
C(1)-Lu(1)-C(2)	31.51(11)
C(13)-Lu(1)-C(2)	172.28(10)
C(3)-Lu(1)-C(2)	31.30(11)
N(1)-Lu(1)-C(12)	84.17(13)
N(2)-Lu(1)-C(12)	111.59(14)
C(14)-Lu(1)-C(12)	52.19(11)
C(1)-Lu(1)-C(12)	123.58(11)
C(13)-Lu(1)-C(12)	31.45(11)
C(3)-Lu(1)-C(12)	162.95(11)
C(2)-Lu(1)-C(12)	152.78(11)
N(1)-Lu(1)-C(5)	142.50(12)
N(2)-Lu(1)-C(5)	127.42(13)
C(14)-Lu(1)-C(5)	114.40(11)
C(1)-Lu(1)-C(5)	31.41(11)
C(13)-Lu(1)-C(5)	136.03(11)
C(3)-Lu(1)-C(5)	51.60(11)
C(2)-Lu(1)-C(5)	51.65(11)
C(12)-Lu(1)-C(5)	114.88(11)
N(1)-Lu(1)-C(15)	128.20(12)
N(2)-Lu(1)-C(15)	144.12(12)
C(14)-Lu(1)-C(15)	31.37(11)
C(1)-Lu(1)-C(15)	115.19(11)
C(13)-Lu(1)-C(15)	51.51(11)
C(3)-Lu(1)-C(15)	113.29(11)

C(2)-Lu(1)-C(15)	135.37(11)
C(12)-Lu(1)-C(15)	51.28(10)
C(5)-Lu(1)-C(15)	86.19(10)
N(1)-Lu(1)-C(11)	115.01(13)
N(2)-Lu(1)-C(11)	142.73(13)
C(14)-Lu(1)-C(11)	51.77(10)
C(1)-Lu(1)-C(11)	105.18(11)
C(13)-Lu(1)-C(11)	51.60(11)
C(3)-Lu(1)-C(11)	131.94(11)
C(2)-Lu(1)-C(11)	135.86(11)
C(12)-Lu(1)-C(11)	31.15(11)
C(5)-Lu(1)-C(11)	86.43(10)
C(15)-Lu(1)-C(11)	30.67(10)
N(1)-Lu(1)-C(4)	144.02(13)
N(2)-Lu(1)-C(4)	116.38(14)
C(14)-Lu(1)-C(4)	102.41(11)
C(1)-Lu(1)-C(4)	51.93(11)
C(13)-Lu(1)-C(4)	133.50(11)
C(3)-Lu(1)-C(4)	31.23(12)
C(2)-Lu(1)-C(4)	51.65(11)
C(12)-Lu(1)-C(4)	131.76(11)
C(5)-Lu(1)-C(4)	31.11(10)
C(15)-Lu(1)-C(4)	85.15(11)
C(11)-Lu(1)-C(4)	100.73(10)
N(2)-Lu(2)-N(1)	28.73(14)
N(2)-Lu(2)-C(21)	85.02(15)
N(1)-Lu(2)-C(21)	110.05(14)
N(2)-Lu(2)-C(32)	106.73(14)
N(1)-Lu(2)-C(32)	82.78(13)
C(21)-Lu(2)-C(32)	166.94(13)
N(2)-Lu(2)-C(33)	138.37(13)
N(1)-Lu(2)-C(33)	113.28(14)
C(21)-Lu(2)-C(33)	136.26(13)
C(32)-Lu(2)-C(33)	31.64(12)
N(2)-Lu(2)-C(22)	77.05(13)
N(1)-Lu(2)-C(22)	92.17(13)

C(21)-Lu(2)-C(22)	31.64(13)
C(32)-Lu(2)-C(22)	155.34(12)
C(33)-Lu(2)-C(22)	139.13(12)
N(2)-Lu(2)-C(31)	91.72(13)
N(1)-Lu(2)-C(31)	79.01(12)
C(21)-Lu(2)-C(31)	145.70(12)
C(32)-Lu(2)-C(31)	31.71(10)
C(33)-Lu(2)-C(31)	52.41(11)
C(22)-Lu(2)-C(31)	168.34(11)
N(2)-Lu(2)-C(35)	109.10(13)
N(1)-Lu(2)-C(35)	106.45(13)
C(21)-Lu(2)-C(35)	119.40(13)
C(32)-Lu(2)-C(35)	51.95(11)
C(33)-Lu(2)-C(35)	52.24(12)
C(22)-Lu(2)-C(35)	150.99(12)
C(31)-Lu(2)-C(35)	31.12(11)
N(2)-Lu(2)-C(34)	139.99(13)
N(1)-Lu(2)-C(34)	129.99(12)
C(21)-Lu(2)-C(34)	115.33(13)
C(32)-Lu(2)-C(34)	51.86(11)
C(33)-Lu(2)-C(34)	31.62(12)
C(22)-Lu(2)-C(34)	137.83(11)
C(31)-Lu(2)-C(34)	51.61(11)
C(35)-Lu(2)-C(34)	31.15(12)
N(2)-Lu(2)-C(25)	116.72(14)
N(1)-Lu(2)-C(25)	141.52(13)
C(21)-Lu(2)-C(25)	31.90(13)
C(32)-Lu(2)-C(25)	135.57(12)
C(33)-Lu(2)-C(25)	104.35(12)
C(22)-Lu(2)-C(25)	52.12(12)
C(31)-Lu(2)-C(25)	133.65(12)
C(35)-Lu(2)-C(25)	102.60(12)
C(34)-Lu(2)-C(25)	87.00(12)
N(2)-Lu(2)-C(23)	102.01(13)
N(1)-Lu(2)-C(23)	106.12(12)
C(21)-Lu(2)-C(23)	51.94(13)

C(32)-Lu(2)-C(23)	128.25(11)
C(33)-Lu(2)-C(23)	108.69(11)
C(22)-Lu(2)-C(23)	30.87(12)
C(31)-Lu(2)-C(23)	159.63(12)
C(35)-Lu(2)-C(23)	146.99(11)
C(34)-Lu(2)-C(23)	117.75(12)
C(25)-Lu(2)-C(23)	51.86(12)
N(2)-Lu(2)-C(24)	128.35(13)
N(1)-Lu(2)-C(24)	137.19(12)
C(21)-Lu(2)-C(24)	51.91(12)
C(32)-Lu(2)-C(24)	120.12(11)
C(33)-Lu(2)-C(24)	90.61(11)
C(22)-Lu(2)-C(24)	51.29(12)
C(31)-Lu(2)-C(24)	139.82(11)
C(35)-Lu(2)-C(24)	116.14(12)
C(34)-Lu(2)-C(24)	88.99(11)
C(25)-Lu(2)-C(24)	31.21(12)
C(23)-Lu(2)-C(24)	31.08(11)
N(2)-N(1)-Lu(1)	77.6(4)
N(2)-N(1)-Lu(2)	72.5(3)
Lu(1)-N(1)-Lu(2)	150.0(2)
N(1)-N(2)-Lu(2)	78.7(4)
N(1)-N(2)-Lu(1)	73.8(3)
Lu(2)-N(2)-Lu(1)	152.4(2)
C(2)-C(1)-C(5)	108.0(3)
C(2)-C(1)-C(6)	126.6(3)
C(5)-C(1)-C(6)	125.2(3)
C(2)-C(1)-Lu(1)	74.97(18)
C(5)-C(1)-Lu(1)	76.61(18)
C(6)-C(1)-Lu(1)	118.5(2)
C(3)-C(2)-C(1)	108.1(3)
C(3)-C(2)-C(7)	125.4(3)
C(1)-C(2)-C(7)	126.3(3)
C(3)-C(2)-Lu(1)	74.34(17)
C(1)-C(2)-Lu(1)	73.52(18)
C(7)-C(2)-Lu(1)	121.8(2)

C(2)-C(3)-C(4)	108.6(3)
C(2)-C(3)-C(8)	127.1(4)
C(4)-C(3)-C(8)	123.8(4)
C(2)-C(3)-Lu(1)	74.36(18)
C(4)-C(3)-Lu(1)	76.24(19)
C(8)-C(3)-Lu(1)	122.2(2)
C(3)-C(4)-C(5)	107.4(3)
C(3)-C(4)-C(9)	124.2(3)
C(5)-C(4)-C(9)	127.6(4)
C(3)-C(4)-Lu(1)	72.53(19)
C(5)-C(4)-Lu(1)	74.19(19)
C(9)-C(4)-Lu(1)	126.8(2)
C(1)-C(5)-C(4)	107.9(3)
C(1)-C(5)-C(10)	123.8(3)
C(4)-C(5)-C(10)	127.1(4)
C(1)-C(5)-Lu(1)	71.98(19)
C(4)-C(5)-Lu(1)	74.70(19)
C(10)-C(5)-Lu(1)	128.7(2)
C(15)-C(11)-C(12)	107.9(3)
C(15)-C(11)-C(16)	128.0(3)
C(12)-C(11)-C(16)	123.3(3)
C(15)-C(11)-Lu(1)	74.60(19)
C(12)-C(11)-Lu(1)	72.88(18)
C(16)-C(11)-Lu(1)	126.3(2)
C(13)-C(12)-C(11)	108.0(3)
C(13)-C(12)-C(17)	127.5(3)
C(11)-C(12)-C(17)	124.2(3)
C(13)-C(12)-Lu(1)	73.71(18)
C(11)-C(12)-Lu(1)	75.98(18)
C(17)-C(12)-Lu(1)	121.8(2)
C(12)-C(13)-C(14)	108.1(3)
C(12)-C(13)-C(18)	126.1(3)
C(14)-C(13)-C(18)	125.6(3)
C(12)-C(13)-Lu(1)	74.85(18)
C(14)-C(13)-Lu(1)	73.76(18)
C(18)-C(13)-Lu(1)	121.2(2)

C(13)-C(14)-C(15)	107.4(3)
C(13)-C(14)-C(19)	127.3(3)
C(15)-C(14)-C(19)	125.0(3)
C(13)-C(14)-Lu(1)	74.62(18)
C(15)-C(14)-Lu(1)	76.79(18)
C(19)-C(14)-Lu(1)	119.8(2)
C(11)-C(15)-C(14)	108.5(3)
C(11)-C(15)-C(20)	126.3(3)
C(14)-C(15)-C(20)	123.8(3)
C(11)-C(15)-Lu(1)	74.73(18)
C(14)-C(15)-Lu(1)	71.84(18)
C(20)-C(15)-Lu(1)	130.1(2)
C(22)-C(21)-C(25)	107.9(4)
C(22)-C(21)-C(26)	127.1(4)
C(25)-C(21)-C(26)	124.9(4)
C(22)-C(21)-Lu(2)	75.30(19)
C(25)-C(21)-Lu(2)	76.07(19)
C(26)-C(21)-Lu(2)	116.9(3)
C(23)-C(22)-C(21)	108.7(3)
C(23)-C(22)-C(27)	126.2(4)
C(21)-C(22)-C(27)	125.1(4)
C(23)-C(22)-Lu(2)	75.52(18)
C(21)-C(22)-Lu(2)	73.06(19)
C(27)-C(22)-Lu(2)	120.2(2)
C(22)-C(23)-C(24)	108.3(3)
C(22)-C(23)-C(28)	127.2(4)
C(24)-C(23)-C(28)	124.1(4)
C(22)-C(23)-Lu(2)	73.61(19)
C(24)-C(23)-Lu(2)	75.52(19)
C(28)-C(23)-Lu(2)	122.4(2)
C(23)-C(24)-C(25)	108.2(3)
C(23)-C(24)-C(29)	124.4(4)
C(25)-C(24)-C(29)	126.0(4)
C(23)-C(24)-Lu(2)	73.40(19)
C(25)-C(24)-Lu(2)	73.3(2)
C(29)-C(24)-Lu(2)	129.7(2)

C(24)-C(25)-C(21)	106.8(3)
C(24)-C(25)-C(30)	126.4(4)
C(21)-C(25)-C(30)	126.1(4)
C(24)-C(25)-Lu(2)	75.5(2)
C(21)-C(25)-Lu(2)	72.03(19)
C(30)-C(25)-Lu(2)	125.3(3)
C(35)-C(31)-C(32)	107.6(3)
C(35)-C(31)-C(36)	127.5(3)
C(32)-C(31)-C(36)	124.7(3)
C(35)-C(31)-Lu(2)	74.70(18)
C(32)-C(31)-Lu(2)	73.04(17)
C(36)-C(31)-Lu(2)	121.3(2)
C(33)-C(32)-C(31)	108.6(3)
C(33)-C(32)-C(37)	126.8(3)
C(31)-C(32)-C(37)	124.5(3)
C(33)-C(32)-Lu(2)	74.76(19)
C(31)-C(32)-Lu(2)	75.25(18)
C(37)-C(32)-Lu(2)	119.2(2)
C(32)-C(33)-C(34)	106.9(3)
C(32)-C(33)-C(38)	125.1(4)
C(34)-C(33)-C(38)	127.7(4)
C(32)-C(33)-Lu(2)	73.60(19)
C(34)-C(33)-Lu(2)	75.3(2)
C(38)-C(33)-Lu(2)	122.0(2)
C(35)-C(34)-C(33)	108.4(3)
C(35)-C(34)-C(39)	125.3(4)
C(33)-C(34)-C(39)	124.9(4)
C(35)-C(34)-Lu(2)	74.1(2)
C(33)-C(34)-Lu(2)	73.1(2)
C(39)-C(34)-Lu(2)	129.8(3)
C(31)-C(35)-C(34)	108.4(3)
C(31)-C(35)-C(40)	125.6(4)
C(34)-C(35)-C(40)	125.8(4)
C(31)-C(35)-Lu(2)	74.18(19)
C(34)-C(35)-Lu(2)	74.78(19)
C(40)-C(35)-Lu(2)	120.6(3)

X-ray Data Collection, Structure Solution and Refinement for 1-Lu(B). A red crystal of approximate dimensions 0.107 x 0.111 x 0.390 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2⁷ program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS⁹ to vield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 4/mmm and the systematic absences were consistent with the tetragonal space group $P^{-1}2_1c$ that was later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. The lutetium atom was disordered approximately 84% (Lu1), 16% (Lu2). Metric data involving the lutetium atom was referenced to the major component Lu(1). Carbon atoms C(16)-C(20) were disordered and included using multiple components, partial site-occupancy-factors and isotropic thermal parameters. At convergence, wR2 = 0.0911 and Goof = 1.145 for 219 variables refined against 4478 data (0.80Å), R1 = 0.0325 for those 3999 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.¹⁰

Fig. S2 Thermal ellipsoid plot of $[(C_5Me_5)_2Lu]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Lu(B)**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Lu(1)-Cnt1	2.352	
Lu(1)-Cnt2	2.349	
Lu(1)-N(1)#1	2.271(9)	
Lu(1)-N(1)	2.286(9)	
Lu(1)-C(11)	2.587(9)	
Lu(1)-C(12)	2.593(9)	
Lu(1)-C(5)	2.607(9)	
Lu(1)-C(4)	2.611(9)	
Lu(1)-C(3)	2.612(9)	
Lu(1)-C(15)	2.636(9)	
Lu(1)-C(13)	2.675(10)	
Lu(1)-C(14)	2.684(9)	
Lu(1)-C(1)	2.684(10)	

Table S3	Bond lengths [A	A] and angles [[°] for 1-Lu(B) .
----------	-----------------	-----------------	--------------------------

2.693(10)
1.190(16)
2.271(9)
1.390(13)
1.423(13)
1.501(14)
1.402(15)
1.518(14)
1.414(14)
1.518(14)
1.439(14)
1.466(15)
1.511(13)
1.405(16)
1.420(14)
1.45(2)
1.54(3)
1.396(16)
1.48(3)
1.61(3)
1.410(15)
1.51(3)
1.61(3)
1.383(15)
1.55(2)
1.56(2)
1.51(3)
1.54(3)
104.9
123.4
122.5
102.7
132.1
30.3(4)
77.0(3)

N(1)-Lu(1)-C(11)	95.2(3)
N(1)#1-Lu(1)-C(12)	84.9(3)
N(1)-Lu(1)-C(12)	112.6(3)
C(11)-Lu(1)-C(12)	31.5(4)
N(1)#1-Lu(1)-C(5)	113.6(3)
N(1)-Lu(1)-C(5)	86.8(3)
C(11)-Lu(1)-C(5)	154.0(3)
C(12)-Lu(1)-C(5)	160.6(4)
N(1)#1-Lu(1)-C(4)	95.7(3)
N(1)-Lu(1)-C(4)	79.3(3)
C(11)-Lu(1)-C(4)	172.4(3)
C(12)-Lu(1)-C(4)	146.7(3)
C(5)-Lu(1)-C(4)	32.0(3)
N(1)#1-Lu(1)-C(3)	110.3(3)
N(1)-Lu(1)-C(3)	105.4(3)
C(11)-Lu(1)-C(3)	149.2(3)
C(12)-Lu(1)-C(3)	117.9(4)
C(5)-Lu(1)-C(3)	52.0(3)
C(4)-Lu(1)-C(3)	31.4(3)
N(1)#1-Lu(1)-C(15)	103.0(3)
N(1)-Lu(1)-C(15)	109.9(3)
C(11)-Lu(1)-C(15)	31.5(3)
C(12)-Lu(1)-C(15)	51.8(3)
C(5)-Lu(1)-C(15)	124.2(3)
C(4)-Lu(1)-C(15)	155.7(3)
C(3)-Lu(1)-C(15)	144.2(4)
N(1)#1-Lu(1)-C(13)	115.4(3)
N(1)-Lu(1)-C(13)	143.0(3)
C(11)-Lu(1)-C(13)	51.0(3)
C(12)-Lu(1)-C(13)	30.7(3)
C(5)-Lu(1)-C(13)	130.1(4)
C(4)-Lu(1)-C(13)	132.4(4)
C(3)-Lu(1)-C(13)	101.5(4)
C(15)-Lu(1)-C(13)	50.7(4)
N(1)#1-Lu(1)-C(14)	127.7(3)
N(1)-Lu(1)-C(14)	140.1(3)

C(11)-Lu(1)-C(14)	50.7(3)
C(12)-Lu(1)-C(14)	50.8(3)
C(5)-Lu(1)-C(14)	114.7(3)
C(4)-Lu(1)-C(14)	136.4(3)
C(3)-Lu(1)-C(14)	114.4(4)
C(15)-Lu(1)-C(14)	30.1(3)
C(13)-Lu(1)-C(14)	30.5(3)
N(1)#1-Lu(1)-C(1)	143.8(3)
N(1)-Lu(1)-C(1)	116.9(3)
C(11)-Lu(1)-C(1)	136.3(3)
C(12)-Lu(1)-C(1)	130.4(3)
C(5)-Lu(1)-C(1)	30.4(3)
C(4)-Lu(1)-C(1)	51.3(3)
C(3)-Lu(1)-C(1)	51.0(3)
C(15)-Lu(1)-C(1)	105.9(3)
C(13)-Lu(1)-C(1)	99.8(3)
C(14)-Lu(1)-C(1)	87.2(3)
N(1)#1-Lu(1)-C(2)	140.9(3)
N(1)-Lu(1)-C(2)	130.5(3)
C(11)-Lu(1)-C(2)	134.3(3)
C(12)-Lu(1)-C(2)	111.1(3)
C(5)-Lu(1)-C(2)	51.0(3)
C(4)-Lu(1)-C(2)	51.2(3)
C(3)-Lu(1)-C(2)	30.6(3)
C(15)-Lu(1)-C(2)	115.0(3)
C(13)-Lu(1)-C(2)	84.2(3)
C(14)-Lu(1)-C(2)	86.8(3)
C(1)-Lu(1)-C(2)	30.7(3)
N(1)#1-N(1)-Lu(1)#1	75.6(8)
N(1)#1-N(1)-Lu(1)	74.2(7)
Lu(1)#1-N(1)-Lu(1)	149.6(4)
C(5)-C(1)-C(2)	108.4(8)
C(5)-C(1)-C(6)	123.4(9)
C(2)-C(1)-C(6)	127.9(9)
C(5)-C(1)-Lu(1)	71.7(5)
C(2)-C(1)-Lu(1)	75.0(5)

C(6)-C(1)-Lu(1)	124.5(6)
C(3)-C(2)-C(1)	107.6(9)
C(3)-C(2)-C(7)	124.0(9)
C(1)-C(2)-C(7)	127.0(10)
C(3)-C(2)-Lu(1)	71.5(6)
C(1)-C(2)-Lu(1)	74.3(5)
C(7)-C(2)-Lu(1)	130.0(7)
C(2)-C(3)-C(4)	108.9(9)
C(2)-C(3)-C(8)	124.4(10)
C(4)-C(3)-C(8)	126.5(11)
C(2)-C(3)-Lu(1)	77.9(5)
C(4)-C(3)-Lu(1)	74.3(5)
C(8)-C(3)-Lu(1)	118.3(8)
C(3)-C(4)-C(5)	106.6(8)
C(3)-C(4)-C(9)	128.3(10)
C(5)-C(4)-C(9)	124.7(10)
C(3)-C(4)-Lu(1)	74.3(5)
C(5)-C(4)-Lu(1)	73.8(5)
C(9)-C(4)-Lu(1)	122.7(7)
C(1)-C(5)-C(4)	108.3(8)
C(1)-C(5)-C(10)	126.1(10)
C(4)-C(5)-C(10)	125.3(9)
C(1)-C(5)-Lu(1)	77.9(5)
C(4)-C(5)-Lu(1)	74.2(5)
C(10)-C(5)-Lu(1)	119.4(6)
C(12)-C(11)-C(15)	108.0(9)
C(12)-C(11)-C(16)	112.2(14)
C(15)-C(11)-C(16)	139.6(15)
C(12)-C(11)-C(16B)	134.2(13)
C(15)-C(11)-C(16B)	117.4(14)
C(12)-C(11)-Lu(1)	74.5(5)
C(15)-C(11)-Lu(1)	76.1(5)
C(16)-C(11)-Lu(1)	117.9(11)
C(16B)-C(11)-Lu(1)	120.9(10)
C(13)-C(12)-C(11)	108.0(9)
C(13)-C(12)-C(17B)	133.6(15)

C(11)-C(12)-C(17B)	118.2(14)
C(13)-C(12)-C(17)	113.1(14)
C(11)-C(12)-C(17)	138.7(13)
C(13)-C(12)-Lu(1)	77.9(6)
C(11)-C(12)-Lu(1)	74.0(5)
C(17B)-C(12)-Lu(1)	118.1(11)
C(17)-C(12)-Lu(1)	111.1(11)
C(12)-C(13)-C(14)	107.7(10)
C(12)-C(13)-C(18B)	129.3(14)
C(14)-C(13)-C(18B)	121.8(14)
C(12)-C(13)-C(18)	111.4(14)
C(14)-C(13)-C(18)	141.0(15)
C(12)-C(13)-Lu(1)	71.4(5)
C(14)-C(13)-Lu(1)	75.1(5)
C(18B)-C(13)-Lu(1)	129.0(11)
C(18)-C(13)-Lu(1)	118.0(12)
C(15)-C(14)-C(13)	109.0(9)
C(15)-C(14)-C(19)	136.4(13)
C(13)-C(14)-C(19)	113.1(12)
C(15)-C(14)-C(19B)	115.9(12)
C(13)-C(14)-C(19B)	134.2(12)
C(15)-C(14)-Lu(1)	73.0(5)
C(13)-C(14)-Lu(1)	74.4(5)
C(19)-C(14)-Lu(1)	128.6(10)
C(19B)-C(14)-Lu(1)	126.7(10)
C(14)-C(15)-C(11)	107.3(9)
C(14)-C(15)-C(20B)	134.4(15)
C(11)-C(15)-C(20B)	117.4(15)
C(14)-C(15)-C(20)	115.8(13)
C(11)-C(15)-C(20)	136.1(14)
C(14)-C(15)-Lu(1)	76.9(6)
C(11)-C(15)-Lu(1)	72.3(5)
C(20B)-C(15)-Lu(1)	123.7(11)
C(20)-C(15)-Lu(1)	124.1(10)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,z

X-ray Data Collection, Structure Solution and Refinement for 1-Lu(C). A red crystal of approximate dimensions 0.083 x 0.096 x 0.230 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2⁷ program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS⁹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 4/mmm and the systematic absences were consistent with the tetragonal space group $P^{-1}2_1c$ that was later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. The lutetium atom was disordered approximately 92% (Lu1), 8% (Lu2). Metric data involving the lutetium atom was referenced to the major component Lu(1). Carbon atoms C(16)-C(20) were disordered and included using multiple components, partial site-occupancy-factors and isotropic thermal parameters. At convergence, wR2 = 0.0660 and Goof = 1.082 for 218 variables refined against 5242 data (0.73Å), R1 = 0.0254 for those 4919 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.¹⁰

Fig. S3 Thermal ellipsoid plot of $[(C_5Me_5)_2Lu]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Lu(C)**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Lu(1)-Cnt1	2.336
Lu(1)-Cnt2	2.351
Lu(1)-N(1)	2.267(5)
Lu(1)-N(1)#1	2.279(5)
Lu(1)-C(12)	2.589(6)
Lu(1)-C(3)	2.604(6)
Lu(1)-C(5)	2.610(5)
Lu(1)-C(11)	2.614(6)
Lu(1)-C(4)	2.615(6)
Lu(1)-C(15)	2.636(7)
Lu(1)-C(13)	2.653(6)
Lu(1)-C(1)	2.654(6)
Lu(1)-C(2)	2.660(6)

Table S4	Bond lengths [Å] and angles [°] for 1-Lu(C).
----------	-----------------	----------------	-----------------

Lu(1)-C(14)	2.679(6)
N(1)-N(1)#1	1.233(10)
N(1)-Lu(1)#1	2.279(5)
C(1)-C(5)	1.401(8)
C(1)-C(2)	1.427(9)
C(1)-C(6)	1.500(8)
C(2)-C(3)	1.408(9)
C(2)-C(7)	1.524(9)
C(3)-C(4)	1.426(10)
C(3)-C(8)	1.514(9)
C(4)-C(5)	1.421(9)
C(4)-C(9)	1.479(9)
C(5)-C(10)	1.512(8)
C(11)-C(12)	1.394(11)
C(11)-C(15)	1.441(10)
C(11)-C(16)	1.464(15)
C(11)-C(16B)	1.589(16)
C(12)-C(13)	1.390(11)
C(12)-C(17B)	1.482(18)
C(12)-C(17)	1.614(16)
C(13)-C(14)	1.385(11)
C(13)-C(18B)	1.514(17)
C(13)-C(18)	1.66(2)
C(14)-C(15)	1.380(11)
C(14)-C(19)	1.530(15)
C(14)-C(19B)	1.533(16)
C(15)-C(20B)	1.48(2)
C(15)-C(20)	1.516(16)
Cnt1-Lu(1)-N(1)	104.2
Cnt1-Lu(1)-N(1)#1	123.3
Cnt2-Lu(1)-N(1)	122.0
Cnt2-Lu(1)-N(1)#1	101.8
Cnt1-Lu(1)-Cnt2	133.1
N(1)-Lu(1)-N(1)#1	31.5(2)
N(1)-Lu(1)-C(12)	112.8(2)

N(1)#1-Lu(1)-C(12)	84.3(2)
N(1)-Lu(1)-C(3)	104.8(2)
N(1)#1-Lu(1)-C(3)	109.7(2)
C(12)-Lu(1)-C(3)	118.5(2)
N(1)-Lu(1)-C(5)	86.04(18)
N(1)#1-Lu(1)-C(5)	113.83(18)
C(12)-Lu(1)-C(5)	161.1(2)
C(3)-Lu(1)-C(5)	52.2(2)
N(1)-Lu(1)-C(11)	94.9(2)
N(1)#1-Lu(1)-C(11)	76.1(2)
C(12)-Lu(1)-C(11)	31.1(2)
C(3)-Lu(1)-C(11)	149.6(2)
C(5)-Lu(1)-C(11)	154.3(2)
N(1)-Lu(1)-C(4)	78.69(19)
N(1)#1-Lu(1)-C(4)	95.86(19)
C(12)-Lu(1)-C(4)	147.9(2)
C(3)-Lu(1)-C(4)	31.7(2)
C(5)-Lu(1)-C(4)	31.6(2)
C(11)-Lu(1)-C(4)	171.8(2)
N(1)-Lu(1)-C(15)	108.9(2)
N(1)#1-Lu(1)-C(15)	102.2(2)
C(12)-Lu(1)-C(15)	51.8(2)
C(3)-Lu(1)-C(15)	145.8(2)
C(5)-Lu(1)-C(15)	124.2(2)
C(11)-Lu(1)-C(15)	31.9(2)
C(4)-Lu(1)-C(15)	155.5(2)
N(1)-Lu(1)-C(13)	143.0(2)
N(1)#1-Lu(1)-C(13)	114.9(2)
C(12)-Lu(1)-C(13)	30.7(2)
C(3)-Lu(1)-C(13)	103.2(2)
C(5)-Lu(1)-C(13)	130.6(2)
C(11)-Lu(1)-C(13)	50.5(2)
C(4)-Lu(1)-C(13)	134.2(2)
C(15)-Lu(1)-C(13)	50.2(3)
N(1)-Lu(1)-C(1)	116.49(18)
N(1)#1-Lu(1)-C(1)	144.43(19)

C(12)-Lu(1)-C(1)	130.5(2)
C(3)-Lu(1)-C(1)	51.79(19)
C(5)-Lu(1)-C(1)	30.86(18)
C(11)-Lu(1)-C(1)	136.6(2)
C(4)-Lu(1)-C(1)	51.61(19)
C(15)-Lu(1)-C(1)	106.0(2)
C(13)-Lu(1)-C(1)	99.8(2)
N(1)-Lu(1)-C(2)	130.15(19)
N(1)#1-Lu(1)-C(2)	140.7(2)
C(12)-Lu(1)-C(2)	111.4(2)
C(3)-Lu(1)-C(2)	31.0(2)
C(5)-Lu(1)-C(2)	51.36(18)
C(11)-Lu(1)-C(2)	134.9(2)
C(4)-Lu(1)-C(2)	51.50(19)
C(15)-Lu(1)-C(2)	116.0(2)
C(13)-Lu(1)-C(2)	85.0(2)
C(1)-Lu(1)-C(2)	31.16(19)
N(1)-Lu(1)-C(14)	139.0(2)
N(1)#1-Lu(1)-C(14)	126.9(2)
C(12)-Lu(1)-C(14)	50.9(2)
C(3)-Lu(1)-C(14)	115.9(2)
C(5)-Lu(1)-C(14)	115.0(2)
C(11)-Lu(1)-C(14)	50.8(2)
C(4)-Lu(1)-C(14)	137.2(2)
C(15)-Lu(1)-C(14)	30.1(2)
C(13)-Lu(1)-C(14)	30.1(2)
C(1)-Lu(1)-C(14)	87.19(19)
C(2)-Lu(1)-C(14)	87.8(2)
N(1)#1-N(1)-Lu(1)	74.8(4)
N(1)#1-N(1)-Lu(1)#1	73.7(4)
Lu(1)-N(1)-Lu(1)#1	148.5(2)
C(5)-C(1)-C(2)	107.7(5)
C(5)-C(1)-C(6)	124.5(6)
C(2)-C(1)-C(6)	127.0(6)
C(5)-C(1)-Lu(1)	72.9(3)
C(2)-C(1)-Lu(1)	74.7(3)

C(6)-C(1)-Lu(1)	125.9(4)
C(3)-C(2)-C(1)	108.2(6)
C(3)-C(2)-C(7)	124.2(6)
C(1)-C(2)-C(7)	126.0(6)
C(3)-C(2)-Lu(1)	72.3(3)
C(1)-C(2)-Lu(1)	74.2(3)
C(7)-C(2)-Lu(1)	130.7(4)
C(2)-C(3)-C(4)	107.9(6)
C(2)-C(3)-C(8)	124.6(7)
C(4)-C(3)-C(8)	127.3(7)
C(2)-C(3)-Lu(1)	76.7(3)
C(4)-C(3)-Lu(1)	74.6(3)
C(8)-C(3)-Lu(1)	119.0(5)
C(5)-C(4)-C(3)	107.3(5)
C(5)-C(4)-C(9)	124.9(6)
C(3)-C(4)-C(9)	127.5(7)
C(5)-C(4)-Lu(1)	74.0(3)
C(3)-C(4)-Lu(1)	73.7(3)
C(9)-C(4)-Lu(1)	122.7(4)
C(1)-C(5)-C(4)	108.7(5)
C(1)-C(5)-C(10)	125.6(6)
C(4)-C(5)-C(10)	125.5(6)
C(1)-C(5)-Lu(1)	76.3(3)
C(4)-C(5)-Lu(1)	74.4(3)
C(10)-C(5)-Lu(1)	119.5(4)
C(12)-C(11)-C(15)	107.3(6)
C(12)-C(11)-C(16)	113.3(9)
C(15)-C(11)-C(16)	139.4(9)
C(12)-C(11)-C(16B)	139.5(8)
C(15)-C(11)-C(16B)	112.9(8)
C(12)-C(11)-Lu(1)	73.5(4)
C(15)-C(11)-Lu(1)	74.9(4)
C(16)-C(11)-Lu(1)	118.6(6)
C(16B)-C(11)-Lu(1)	121.9(6)
C(13)-C(12)-C(11)	107.5(6)
C(13)-C(12)-C(17B)	140.5(10)

C(11)-C(12)-C(17B)	111.5(10)
C(13)-C(12)-C(17)	115.1(9)
C(11)-C(12)-C(17)	137.4(8)
C(13)-C(12)-Lu(1)	77.2(4)
C(11)-C(12)-Lu(1)	75.4(3)
C(17B)-C(12)-Lu(1)	118.2(8)
C(17)-C(12)-Lu(1)	112.5(7)
C(14)-C(13)-C(12)	109.4(7)
C(14)-C(13)-C(18B)	122.0(10)
C(12)-C(13)-C(18B)	127.6(10)
C(14)-C(13)-C(18)	141.3(10)
C(12)-C(13)-C(18)	109.2(10)
C(14)-C(13)-Lu(1)	76.0(4)
C(12)-C(13)-Lu(1)	72.1(4)
C(18B)-C(13)-Lu(1)	127.6(8)
C(18)-C(13)-Lu(1)	115.1(8)
C(15)-C(14)-C(13)	108.4(6)
C(15)-C(14)-C(19)	136.7(9)
C(13)-C(14)-C(19)	113.7(8)
C(15)-C(14)-C(19B)	115.1(8)
C(13)-C(14)-C(19B)	135.3(9)
C(15)-C(14)-Lu(1)	73.2(4)
C(13)-C(14)-Lu(1)	73.9(4)
C(19)-C(14)-Lu(1)	127.5(6)
C(19B)-C(14)-Lu(1)	127.4(7)
C(14)-C(15)-C(11)	107.2(7)
C(14)-C(15)-C(20B)	141.6(11)
C(11)-C(15)-C(20B)	109.5(11)
C(14)-C(15)-C(20)	116.8(8)
C(11)-C(15)-C(20)	134.9(9)
C(14)-C(15)-Lu(1)	76.7(4)
C(11)-C(15)-Lu(1)	73.2(4)
C(20B)-C(15)-Lu(1)	124.7(8)
C(20)-C(15)-Lu(1)	124.7(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,z

X-ray Data Collection, Structure Solution and Refinement for 1-Lu(D). A red crystal of approximate dimensions 0.109 x 0.129 x 0.229 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2⁷ program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS¹¹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 4/mmm and the systematic absences were consistent with the tetragonal space group $P^{4}2_{1}c$ which was later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. The lutetium atom was disordered approximately 96% (Lu1), 4% (Lu2). Metric data involving the lutetium atom was referenced to the major component Lu(1). Carbon atoms C(16)-C(20) were disordered and included using multiple components with partial site-occupancyfactors and isotropic thermal parameters. At convergence, wR2 = 0.0758 and Goof = 1.096 for 213 variables refined against 4430 data (0.78Å), R1 = 0.0274 for those 4204 data with I > 2.0 σ (I). The absolute structure was assigned by refinement of the Flack parameter¹⁰. Solvent accessible voids were examined with the PLATON program SQUEEZE¹². A model based on the application of the SQUEEZE routine was not deemed appropriate as no solvent molecules were observed.

Fig. S4 Thermal ellipsoid plot of $[(C_5Me_5)_2Lu]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Lu(D)**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Lu(1)-Cnt1	2.330
Lu(1)-Cnt1	2.338
Lu(1)-N(1)#1	2.272(6)
Lu(1)-N(1)	2.279(6)
Lu(1)-C(12)	2.579(8)
Lu(1)-C(3)	2.593(7)
Lu(1)-C(5)	2.605(7)
Lu(1)-C(4)	2.612(7)
Lu(1)-C(11)	2.613(8)
Lu(1)-C(15)	2.637(9)
Lu(1)-C(13)	2.642(8)

Table S5Bond lengths [Å] and angles [°] for 1-Lu(D).

Lu(1)-C(1)	2.649(8)
Lu(1)-C(2)	2.655(7)
Lu(1)-C(14)	2.658(8)
N(1)-N(1)#1	1.239(12)
N(1)-Lu(1)#1	2.272(6)
C(1)-C(5)	1.391(11)
C(1)-C(2)	1.430(11)
C(1)-C(6)	1.508(10)
C(2)-C(3)	1.404(11)
C(2)-C(7)	1.505(11)
C(3)-C(4)	1.432(12)
C(3)-C(8)	1.523(12)
C(4)-C(5)	1.423(11)
C(4)-C(9)	1.482(12)
C(5)-C(10)	1.515(11)
C(11)-C(12)	1.397(13)
C(11)-C(15)	1.443(13)
C(11)-C(16)	1.46(2)
C(11)-C(16A)	1.55(2)
C(12)-C(13)	1.399(13)
C(12)-C(17A)	1.50(2)
C(12)-C(17)	1.61(2)
C(13)-C(14)	1.395(14)
C(13)-C(18A)	1.492(19)
C(13)-C(18)	1.68(2)
C(14)-C(15)	1.391(13)
C(14)-C(19)	1.54(2)
C(14)-C(19A)	1.56(2)
C(15)-C(20A)	1.44(3)
C(15)-C(20)	1.53(2)
Cnt1-Lu(1)-N(1)	104.2
Cnt1#1-Lu(1)-N(1)	123.3
Cnt2-Lu(1)-N(1)	121.6
Cnt2#1-Lu(1)-N(1)	101.3
Cnt1-Lu(1)-Cnt2	133.6

N(1)#1-Lu(1)-N(1)	31.6(3)
N(1)#1-Lu(1)-C(12)	83.6(3)
N(1)-Lu(1)-C(12)	112.2(3)
N(1)#1-Lu(1)-C(3)	109.8(3)
N(1)-Lu(1)-C(3)	104.9(3)
C(12)-Lu(1)-C(3)	118.8(3)
N(1)#1-Lu(1)-C(5)	113.8(2)
N(1)-Lu(1)-C(5)	85.9(2)
C(12)-Lu(1)-C(5)	161.9(3)
C(3)-Lu(1)-C(5)	52.4(3)
N(1)#1-Lu(1)-C(4)	95.9(2)
N(1)-Lu(1)-C(4)	78.6(2)
C(12)-Lu(1)-C(4)	148.1(3)
C(3)-Lu(1)-C(4)	31.9(3)
C(5)-Lu(1)-C(4)	31.7(3)
N(1)#1-Lu(1)-C(11)	75.6(2)
N(1)-Lu(1)-C(11)	94.4(3)
C(12)-Lu(1)-C(11)	31.2(3)
C(3)-Lu(1)-C(11)	149.9(3)
C(5)-Lu(1)-C(11)	154.0(3)
C(4)-Lu(1)-C(11)	171.3(3)
N(1)#1-Lu(1)-C(15)	101.9(3)
N(1)-Lu(1)-C(15)	108.6(3)
C(12)-Lu(1)-C(15)	52.0(3)
C(3)-Lu(1)-C(15)	145.9(3)
C(5)-Lu(1)-C(15)	124.2(3)
C(4)-Lu(1)-C(15)	155.6(3)
C(11)-Lu(1)-C(15)	31.9(3)
N(1)#1-Lu(1)-C(13)	114.5(3)
N(1)-Lu(1)-C(13)	142.8(3)
C(12)-Lu(1)-C(13)	31.1(3)
C(3)-Lu(1)-C(13)	102.9(3)
C(5)-Lu(1)-C(13)	131.0(3)
C(4)-Lu(1)-C(13)	134.1(3)
C(11)-Lu(1)-C(13)	51.1(3)
C(15)-Lu(1)-C(13)	50.9(3)

N(1)#1-Lu(1)-C(1)	144.2(2)
N(1)-Lu(1)-C(1)	116.2(2)
C(12)-Lu(1)-C(1)	131.4(3)
C(3)-Lu(1)-C(1)	51.5(3)
C(5)-Lu(1)-C(1)	30.7(2)
C(4)-Lu(1)-C(1)	51.4(2)
C(11)-Lu(1)-C(1)	137.3(3)
C(15)-Lu(1)-C(1)	106.4(3)
C(13)-Lu(1)-C(1)	100.4(3)
N(1)#1-Lu(1)-C(2)	140.8(2)
N(1)-Lu(1)-C(2)	130.3(2)
C(12)-Lu(1)-C(2)	111.8(3)
C(3)-Lu(1)-C(2)	31.0(2)
C(5)-Lu(1)-C(2)	51.8(2)
C(4)-Lu(1)-C(2)	51.8(2)
C(11)-Lu(1)-C(2)	135.2(2)
C(15)-Lu(1)-C(2)	116.1(3)
C(13)-Lu(1)-C(2)	84.8(3)
C(1)-Lu(1)-C(2)	31.3(2)
N(1)#1-Lu(1)-C(14)	126.8(3)
N(1)-Lu(1)-C(14)	139.1(3)
C(12)-Lu(1)-C(14)	51.3(3)
C(3)-Lu(1)-C(14)	115.7(3)
C(5)-Lu(1)-C(14)	115.2(3)
C(4)-Lu(1)-C(14)	137.3(3)
C(11)-Lu(1)-C(14)	51.2(3)
C(15)-Lu(1)-C(14)	30.5(3)
C(13)-Lu(1)-C(14)	30.5(3)
C(1)-Lu(1)-C(14)	87.6(2)
C(2)-Lu(1)-C(14)	87.6(3)
N(1)#1-N(1)-Lu(1)#1	74.5(5)
N(1)#1-N(1)-Lu(1)	73.9(5)
Lu(1)#1-N(1)-Lu(1)	148.4(3)
C(5)-C(1)-C(2)	109.0(7)
C(5)-C(1)-C(6)	124.0(8)
C(2)-C(1)-C(6)	126.6(7)

C(5)-C(1)-Lu(1)	72.9(4)
C(2)-C(1)-Lu(1)	74.6(4)
C(6)-C(1)-Lu(1)	124.6(5)
C(3)-C(2)-C(1)	107.1(7)
C(3)-C(2)-C(7)	124.6(8)
C(1)-C(2)-C(7)	126.4(7)
C(3)-C(2)-Lu(1)	72.1(4)
C(1)-C(2)-Lu(1)	74.2(4)
C(7)-C(2)-Lu(1)	131.4(6)
C(2)-C(3)-C(4)	108.5(7)
C(2)-C(3)-C(8)	125.1(9)
C(4)-C(3)-C(8)	126.1(8)
C(2)-C(3)-Lu(1)	76.9(4)
C(4)-C(3)-Lu(1)	74.8(4)
C(8)-C(3)-Lu(1)	119.8(6)
C(5)-C(4)-C(3)	107.0(7)
C(5)-C(4)-C(9)	125.7(8)
C(3)-C(4)-C(9)	126.9(8)
C(5)-C(4)-Lu(1)	73.9(4)
C(3)-C(4)-Lu(1)	73.3(4)
C(9)-C(4)-Lu(1)	122.9(5)
C(1)-C(5)-C(4)	108.2(7)
C(1)-C(5)-C(10)	126.1(8)
C(4)-C(5)-C(10)	125.4(8)
C(1)-C(5)-Lu(1)	76.4(4)
C(4)-C(5)-Lu(1)	74.4(4)
C(10)-C(5)-Lu(1)	120.1(5)
C(12)-C(11)-C(15)	107.3(8)
C(12)-C(11)-C(16)	113.7(11)
C(15)-C(11)-C(16)	138.8(12)
C(12)-C(11)-C(16A)	138.4(11)
C(15)-C(11)-C(16A)	113.8(11)
C(12)-C(11)-Lu(1)	73.0(5)
C(15)-C(11)-Lu(1)	75.0(5)
C(16)-C(11)-Lu(1)	119.7(8)
C(11)-C(12)-C(13)	108.3(8)

C(11)-C(12)-C(17A)	116.1(12)
C(13)-C(12)-C(17A)	135.3(12)
C(11)-C(12)-C(17)	139.0(11)
C(13)-C(12)-C(17)	112.7(11)
C(11)-C(12)-Lu(1)	75.7(4)
C(13)-C(12)-Lu(1)	77.0(5)
C(17)-C(12)-Lu(1)	112.2(9)
C(14)-C(13)-C(12)	108.4(8)
C(14)-C(13)-C(18A)	123.0(11)
C(12)-C(13)-C(18A)	127.5(11)
C(14)-C(13)-C(18)	140.7(12)
C(12)-C(13)-C(18)	110.8(12)
C(14)-C(13)-Lu(1)	75.4(4)
C(12)-C(13)-Lu(1)	72.0(4)
C(18)-C(13)-Lu(1)	114.5(10)
C(15)-C(14)-C(13)	108.9(8)
C(15)-C(14)-C(19)	136.4(12)
C(13)-C(14)-C(19)	113.6(11)
C(15)-C(14)-C(19A)	115.5(10)
C(13)-C(14)-C(19A)	134.2(11)
C(15)-C(14)-Lu(1)	74.0(5)
C(13)-C(14)-Lu(1)	74.1(5)
C(19)-C(14)-Lu(1)	126.8(9)
C(14)-C(15)-C(11)	107.0(8)
C(14)-C(15)-C(20A)	137.3(15)
C(11)-C(15)-C(20A)	114.4(14)
C(14)-C(15)-C(20)	116.4(10)
C(11)-C(15)-C(20)	135.8(11)
C(14)-C(15)-Lu(1)	75.6(5)
C(11)-C(15)-Lu(1)	73.1(5)
C(20)-C(15)-Lu(1)	124.3(8)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,z

	1-Gd	1-Tb
formula	$C_{40}H_{60}Gd_2N_2$	$C_{40}H_{60}Tb_2N_2$
fw	883.40	886.74
temp (K)	88(2)	88(2)
Wavelength	0.71073 Å	0.71073 Å
cryst syst	Tetragonal	Tetragonal
space group	$P^{\overline{4}}2_1c$	$P^{\overline{4}}2_1c$
a (Å)	14.4239(19)	14.4075(15)
b (Å)	14.4239(19)	14.4075(15)
c (Å)	19.665(3)	19.627(2)
Volume (Å ³)	4091.3(12)	4074.0(10)
α (deg)	90	90
β (deg)	90	90
γ (deg)	90	90
Ζ	4	4
$\rho_{calc}~(Mg/m^3)$	1.434	1.446
μ (mm ⁻¹)	3.240	3.469
R1 ($I > 2\sigma(I)$) ^a	0.0169	0.0159
wR2 (all data) ^a	0.0424	0.0377

 Table S6
 X-ray Data Collection Parameters of 1-Gd and 1-Tb.

^aDefinitions: wR2 = $\left[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]\right]^{1/2}$; R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$.

X-ray Data Collection, Structure Solution and Refinement for 1-Gd. A red crystal of approximate dimensions 0.248 x 0.296 x 0.618 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹³ program package was used to
determine the unit-cell parameters and for data collection (5 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS⁹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 4/mmm and the systematic absences were consistent with the tetragonal space group $P^{4}2_{1}c$ that was later determined to be correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. At convergence, wR2 = 0.0424 and Goof = 1.052 for 209 variables refined against 5262 data (0.73Å), R1 = 0.0169 for those 5068 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.¹⁰ There were high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that benzene or methylcyclohexane solvent was present. The SQUEEZE routine in the PLATON^{12,14} program package was used to account for the electrons in the solvent accessible voids.

Fig. S5 Thermal ellipsoid plot of $[(C_5Me_5)_2Gd]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Gd**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S7	Bond lengths [A] and angles	[°] for 1-Gd .

Gd(1)-Cnt1	2.409	
Gd(1)-Cnt2	2.429	
Gd(1)-N(1)#1	2.363(2)	
Gd(1)-N(1)	2.370(2)	
Gd(1)-C(14)	2.670(3)	
Gd(1)-C(4)	2.679(3)	
Gd(1)-C(1)	2.685(3)	
Gd(1)-C(5)	2.695(3)	
Gd(1)-C(15)	2.698(3)	
Gd(1)-C(2)	2.707(3)	
Gd(1)-C(3)	2.709(3)	
Gd(1)-C(13)	2.717(3)	
Gd(1)-C(11)	2.724(3)	
Gd(1)-C(12)	2.735(3)	
N(1)-N(1)#1	1.236(5)	
N(1)-Gd(1)#1	2.363(2)	

C(1)-C(2)	1.416(5)
C(1)-C(5)	1.420(5)
C(1)-C(6)	1.502(5)
C(2)-C(3)	1.415(5)
C(2)-C(7)	1.500(4)
C(3)-C(4)	1.423(5)
C(3)-C(8)	1.499(5)
C(4)-C(5)	1.424(5)
C(4)-C(9)	1.512(5)
C(5)-C(10)	1.510(5)
C(11)-C(12)	1.410(5)
C(11)-C(15)	1.420(5)
C(11)-C(16)	1.488(6)
C(12)-C(13)	1.410(5)
C(12)-C(17)	1.504(5)
C(13)-C(14)	1.400(5)
C(13)-C(18)	1.522(5)
C(14)-C(15)	1.412(6)
C(14)-C(19)	1.514(6)
C(15)-C(20)	1.504(5)
Cnt1-Gd(1)-N(1)	103.1
Cnt1-Gd(1)-N(1)#1	120.6
Cnt2-Gd(1)-N(1)	121.3
Cnt2-Gd(1)-N(1)#1	101.6
Cnt1-Gd(1)-Cnt2	135.4
N(1)#1-Gd(1)-N(1)	30.28(11)
N(1)#1-Gd(1)-C(14)	84.31(10)
N(1)-Gd(1)-C(14)	111.58(11)
N(1)#1-Gd(1)-C(4)	107.31(10)
N(1)-Gd(1)-C(4)	102.99(10)
C(14)-Gd(1)-C(4)	119.53(12)
N(1)#1-Gd(1)-C(1)	111.93(9)
N(1)-Gd(1)-C(1)	85.82(9)
C(14)-Gd(1)-C(1)	162.44(11)
C(4)-Gd(1)-C(1)	50.72(10)

N(1)#1-Gd(1)-C(5)	94.03(10)
N(1)-Gd(1)-C(5)	78.07(10)
C(14)-Gd(1)-C(5)	147.55(12)
C(4)-Gd(1)-C(5)	30.73(10)
C(1)-Gd(1)-C(5)	30.61(10)
N(1)#1-Gd(1)-C(15)	76.98(10)
N(1)-Gd(1)-C(15)	94.84(10)
C(14)-Gd(1)-C(15)	30.51(12)
C(4)-Gd(1)-C(15)	150.04(11)
C(1)-Gd(1)-C(15)	156.24(12)
C(5)-Gd(1)-C(15)	170.68(11)
N(1)#1-Gd(1)-C(2)	141.88(9)
N(1)-Gd(1)-C(2)	116.03(9)
C(14)-Gd(1)-C(2)	132.37(11)
C(4)-Gd(1)-C(2)	50.38(10)
C(1)-Gd(1)-C(2)	30.45(10)
C(5)-Gd(1)-C(2)	50.26(10)
C(15)-Gd(1)-C(2)	139.05(10)
N(1)#1-Gd(1)-C(3)	137.92(10)
N(1)-Gd(1)-C(3)	128.50(9)
C(14)-Gd(1)-C(3)	113.06(12)
C(4)-Gd(1)-C(3)	30.62(10)
C(1)-Gd(1)-C(3)	50.41(9)
C(5)-Gd(1)-C(3)	50.44(10)
C(15)-Gd(1)-C(3)	136.39(10)
C(2)-Gd(1)-C(3)	30.29(10)
N(1)#1-Gd(1)-C(13)	114.17(10)
N(1)-Gd(1)-C(13)	141.41(10)
C(14)-Gd(1)-C(13)	30.10(11)
C(4)-Gd(1)-C(13)	104.52(11)
C(1)-Gd(1)-C(13)	132.72(11)
C(5)-Gd(1)-C(13)	134.72(11)
C(15)-Gd(1)-C(13)	49.81(11)
C(2)-Gd(1)-C(13)	102.34(10)
C(3)-Gd(1)-C(13)	87.17(11)
N(1)#1-Gd(1)-C(11)	102.16(10)

N(1)-Gd(1)-C(11)	109.27(10)
C(14)-Gd(1)-C(11)	50.15(11)
C(4)-Gd(1)-C(11)	147.59(11)
C(1)-Gd(1)-C(11)	127.85(11)
C(5)-Gd(1)-C(11)	158.24(11)
C(15)-Gd(1)-C(11)	30.36(11)
C(2)-Gd(1)-C(11)	109.86(11)
C(3)-Gd(1)-C(11)	118.57(10)
C(13)-Gd(1)-C(11)	49.67(11)
N(1)#1-Gd(1)-C(12)	126.64(10)
N(1)-Gd(1)-C(12)	139.19(10)
C(14)-Gd(1)-C(12)	49.76(11)
C(4)-Gd(1)-C(12)	117.79(11)
C(1)-Gd(1)-C(12)	118.15(10)
C(5)-Gd(1)-C(12)	139.11(10)
C(15)-Gd(1)-C(12)	49.69(10)
C(2)-Gd(1)-C(12)	90.65(10)
C(3)-Gd(1)-C(12)	90.31(10)
C(13)-Gd(1)-C(12)	29.99(11)
C(11)-Gd(1)-C(12)	29.93(11)
N(1)#1-N(1)-Gd(1)#1	75.2(2)
N(1)#1-N(1)-Gd(1)	74.5(2)
Gd(1)#1-N(1)-Gd(1)	149.42(11)
C(2)-C(1)-C(5)	108.0(3)
C(2)-C(1)-C(6)	126.5(3)
C(5)-C(1)-C(6)	125.4(3)
C(2)-C(1)-Gd(1)	75.66(17)
C(5)-C(1)-Gd(1)	75.09(18)
C(6)-C(1)-Gd(1)	117.8(2)
C(3)-C(2)-C(1)	108.4(3)
C(3)-C(2)-C(7)	126.3(3)
C(1)-C(2)-C(7)	124.9(3)
C(3)-C(2)-Gd(1)	74.92(17)
C(1)-C(2)-Gd(1)	73.90(17)
C(7)-C(2)-Gd(1)	122.7(2)
C(2)-C(3)-C(4)	107.8(3)

C(2)-C(3)-C(8)	125.9(3)
C(4)-C(3)-C(8)	125.1(3)
C(2)-C(3)-Gd(1)	74.79(17)
C(4)-C(3)-Gd(1)	73.55(17)
C(8)-C(3)-Gd(1)	127.3(2)
C(3)-C(4)-C(5)	107.9(3)
C(3)-C(4)-C(9)	125.1(3)
C(5)-C(4)-C(9)	126.9(3)
C(3)-C(4)-Gd(1)	75.83(17)
C(5)-C(4)-Gd(1)	75.23(18)
C(9)-C(4)-Gd(1)	117.9(2)
C(1)-C(5)-C(4)	107.8(3)
C(1)-C(5)-C(10)	124.9(3)
C(4)-C(5)-C(10)	127.1(3)
C(1)-C(5)-Gd(1)	74.30(18)
C(4)-C(5)-Gd(1)	74.04(18)
C(10)-C(5)-Gd(1)	121.7(2)
C(12)-C(11)-C(15)	107.6(3)
C(12)-C(11)-C(16)	124.6(4)
C(15)-C(11)-C(16)	127.3(4)
C(12)-C(11)-Gd(1)	75.45(19)
C(15)-C(11)-Gd(1)	73.8(2)
C(16)-C(11)-Gd(1)	123.5(3)
C(11)-C(12)-C(13)	108.3(3)
C(11)-C(12)-C(17)	125.1(4)
C(13)-C(12)-C(17)	125.6(4)
C(11)-C(12)-Gd(1)	74.63(19)
C(13)-C(12)-Gd(1)	74.32(19)
C(17)-C(12)-Gd(1)	126.3(2)
C(14)-C(13)-C(12)	108.1(3)
C(14)-C(13)-C(18)	124.9(4)
C(12)-C(13)-C(18)	126.4(4)
C(14)-C(13)-Gd(1)	73.08(19)
C(12)-C(13)-Gd(1)	75.69(18)
C(18)-C(13)-Gd(1)	124.2(3)
C(13)-C(14)-C(15)	108.4(3)

C(13)-C(14)-C(19)	125.3(5)
C(15)-C(14)-C(19)	126.3(4)
C(13)-C(14)-Gd(1)	76.82(19)
C(15)-C(14)-Gd(1)	75.82(19)
C(19)-C(14)-Gd(1)	115.6(3)
C(14)-C(15)-C(11)	107.7(3)
C(14)-C(15)-C(20)	124.6(5)
C(11)-C(15)-C(20)	127.6(5)
C(14)-C(15)-Gd(1)	73.67(19)
C(11)-C(15)-Gd(1)	75.9(2)
C(20)-C(15)-Gd(1)	120.1(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,z

X-ray Data Collection, Structure Solution and Refinement for 1-Tb. A purple crystal of approximate dimensions 0.095 x 0.109 x 0.264 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹³ program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS⁹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 4/*mmm* and the systematic absences were consistent with the tetragonal space group $P^{-1} 2_1$ c that was later determined to be correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. At convergence, wR2 = 0.0377 and Goof = 1.028 for 209 variables refined against 5254 data (0.73Å), R1 = 0.0159 for those 5092 data with I > 2.0 σ (I). The absolute structure was

assigned by refinement of the Flack parameter.¹⁰ There were high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that benzene or methylcyclohexane solvent was present. The SQUEEZE routine in the PLATON^{12,14} program package was used to account for the electrons in the solvent accessible voids.

Fig. S6 Thermal ellipsoid plot of $[(C_5Me_5)_2Tb]_2(\mu-\eta^2:\eta^2-N_2)$, **1-Tb**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S8 E	Bond lengths	[Å] and angles	3 [°]	for 1-Tb .
------------	--------------	----------------	-------	-------------------

Tb(1)-Cnt1	2.392	
Tb(1)-Cnt2	2.412	
Tb(1)-N(1)#1	2.347(2)	
Tb(1)-N(1)	2.350(2)	
Tb(1)-C(14)	2.656(3)	
Tb(1)-C(4)	2.663(3)	
Tb(1)-C(1)	2.669(3)	
Tb(1)-C(5)	2.673(3)	

Tb(1)-C(15)	2.679(3)
Tb(1)-C(2)	2.693(3)
Tb(1)-C(3)	2.695(3)
Tb(1)-C(13)	2.705(3)
Tb(1)-C(11)	2.708(3)
Tb(1)-C(12)	2.718(3)
N(1)-N(1)#1	1.238(4)
N(1)-Tb(1)#1	2.347(2)
C(1)-C(5)	1.414(4)
C(1)-C(2)	1.420(4)
C(1)-C(6)	1.502(4)
C(2)-C(3)	1.414(4)
C(2)-C(7)	1.503(4)
C(3)-C(4)	1.418(4)
C(3)-C(8)	1.508(4)
C(4)-C(5)	1.421(5)
C(4)-C(9)	1.512(4)
C(5)-C(10)	1.512(4)
C(11)-C(12)	1.402(5)
C(11)-C(15)	1.415(5)
C(11)-C(16)	1.496(6)
C(12)-C(13)	1.420(5)
C(12)-C(17)	1.506(5)
C(13)-C(14)	1.402(5)
C(13)-C(18)	1.520(5)
C(14)-C(15)	1.404(5)
C(14)-C(19)	1.516(5)
C(15)-C(20)	1.504(5)
Cnt1-Tb(1)-N(1)	103.2
Cnt1-Tb(1)-N(1)#1	121.3
Cnt2-Tb(1)-N(1)	121.4
Cnt2-Tb(1)-N(1)#1	101.5
Cnt1-Tb(1)-Cnt2	135.1
N(1)#1-Tb(1)-N(1)	30.55(11)
N(1)#1-Tb(1)-C(14)	84.13(10)

N(1)-Tb(1)-C(14)	111.71(10)
N(1)#1-Tb(1)-C(4)	108.17(9)
N(1)-Tb(1)-C(4)	103.47(9)
C(14)-Tb(1)-C(4)	119.62(11)
N(1)#1-Tb(1)-C(1)	112.12(9)
N(1)-Tb(1)-C(1)	85.54(8)
C(14)-Tb(1)-C(1)	162.64(10)
C(4)-Tb(1)-C(1)	50.95(9)
N(1)#1-Tb(1)-C(5)	94.57(9)
N(1)-Tb(1)-C(5)	78.21(9)
C(14)-Tb(1)-C(5)	147.78(11)
C(4)-Tb(1)-C(5)	30.88(10)
C(1)-Tb(1)-C(5)	30.69(9)
N(1)#1-Tb(1)-C(15)	76.74(9)
N(1)-Tb(1)-C(15)	94.90(9)
C(14)-Tb(1)-C(15)	30.52(11)
C(4)-Tb(1)-C(15)	150.13(11)
C(1)-Tb(1)-C(15)	155.75(11)
C(5)-Tb(1)-C(15)	171.03(10)
N(1)#1-Tb(1)-C(2)	142.43(9)
N(1)-Tb(1)-C(2)	115.94(9)
C(14)-Tb(1)-C(2)	132.29(10)
C(4)-Tb(1)-C(2)	50.62(9)
C(1)-Tb(1)-C(2)	30.70(9)
C(5)-Tb(1)-C(2)	50.54(9)
C(15)-Tb(1)-C(2)	138.43(9)
N(1)#1-Tb(1)-C(3)	138.86(9)
N(1)-Tb(1)-C(3)	128.84(9)
C(14)-Tb(1)-C(3)	113.06(11)
C(4)-Tb(1)-C(3)	30.70(9)
C(1)-Tb(1)-C(3)	50.68(9)
C(5)-Tb(1)-C(3)	50.65(9)
C(15)-Tb(1)-C(3)	136.09(9)
C(2)-Tb(1)-C(3)	30.44(9)
N(1)#1-Tb(1)-C(13)	114.19(9)
N(1)-Tb(1)-C(13)	141.75(9)

C(14)-Tb(1)-C(13)	30.30(11)
C(4)-Tb(1)-C(13)	104.11(10)
C(1)-Tb(1)-C(13)	132.64(10)
C(5)-Tb(1)-C(13)	134.48(10)
C(15)-Tb(1)-C(13)	50.03(10)
C(2)-Tb(1)-C(13)	102.02(10)
C(3)-Tb(1)-C(13)	86.75(10)
N(1)#1-Tb(1)-C(11)	101.94(10)
N(1)-Tb(1)-C(11)	109.19(10)
C(14)-Tb(1)-C(11)	50.30(10)
C(4)-Tb(1)-C(11)	147.12(10)
C(1)-Tb(1)-C(11)	127.32(10)
C(5)-Tb(1)-C(11)	157.76(10)
C(15)-Tb(1)-C(11)	30.46(10)
C(2)-Tb(1)-C(11)	109.07(10)
C(3)-Tb(1)-C(11)	117.96(10)
C(13)-Tb(1)-C(11)	49.93(11)
N(1)#1-Tb(1)-C(12)	126.61(9)
N(1)-Tb(1)-C(12)	139.13(9)
C(14)-Tb(1)-C(12)	50.12(10)
C(4)-Tb(1)-C(12)	117.32(10)
C(1)-Tb(1)-C(12)	117.67(9)
C(5)-Tb(1)-C(12)	138.65(10)
C(15)-Tb(1)-C(12)	49.89(9)
C(2)-Tb(1)-C(12)	89.90(9)
C(3)-Tb(1)-C(12)	89.69(10)
C(13)-Tb(1)-C(12)	30.35(10)
C(11)-Tb(1)-C(12)	29.95(10)
N(1)#1-N(1)-Tb(1)#1	74.9(2)
N(1)#1-N(1)-Tb(1)	74.6(2)
Tb(1)#1-N(1)-Tb(1)	149.24(11)
C(5)-C(1)-C(2)	107.9(3)
C(5)-C(1)-C(6)	126.0(3)
C(2)-C(1)-C(6)	126.1(3)
C(5)-C(1)-Tb(1)	74.81(16)
C(2)-C(1)-Tb(1)	75.59(16)

C(6)-C(1)-Tb(1)	118.2(2)
C(3)-C(2)-C(1)	108.2(3)
C(3)-C(2)-C(7)	126.3(3)
C(1)-C(2)-C(7)	125.0(3)
C(3)-C(2)-Tb(1)	74.84(16)
C(1)-C(2)-Tb(1)	73.71(16)
C(7)-C(2)-Tb(1)	123.8(2)
C(2)-C(3)-C(4)	107.9(3)
C(2)-C(3)-C(8)	125.7(3)
C(4)-C(3)-C(8)	125.2(3)
C(2)-C(3)-Tb(1)	74.72(15)
C(4)-C(3)-Tb(1)	73.41(16)
C(8)-C(3)-Tb(1)	127.6(2)
C(3)-C(4)-C(5)	108.0(3)
C(3)-C(4)-C(9)	125.2(3)
C(5)-C(4)-C(9)	126.7(3)
C(3)-C(4)-Tb(1)	75.90(16)
C(5)-C(4)-Tb(1)	74.95(16)
C(9)-C(4)-Tb(1)	118.1(2)
C(1)-C(5)-C(4)	108.0(3)
C(1)-C(5)-C(10)	124.7(3)
C(4)-C(5)-C(10)	127.0(3)
C(1)-C(5)-Tb(1)	74.50(16)
C(4)-C(5)-Tb(1)	74.17(17)
C(10)-C(5)-Tb(1)	121.7(2)
C(12)-C(11)-C(15)	107.8(3)
C(12)-C(11)-C(16)	124.3(4)
C(15)-C(11)-C(16)	127.3(4)
C(12)-C(11)-Tb(1)	75.45(18)
C(15)-C(11)-Tb(1)	73.64(18)
C(16)-C(11)-Tb(1)	123.6(2)
C(11)-C(12)-C(13)	108.1(3)
C(11)-C(12)-C(17)	125.4(4)
C(13)-C(12)-C(17)	125.3(3)
C(11)-C(12)-Tb(1)	74.60(17)
C(13)-C(12)-Tb(1)	74.29(17)

C(17)-C(12)-Tb(1)	126.9(2)
C(14)-C(13)-C(12)	107.6(3)
C(14)-C(13)-C(18)	125.0(4)
C(12)-C(13)-C(18)	126.7(4)
C(14)-C(13)-Tb(1)	72.92(18)
C(12)-C(13)-Tb(1)	75.36(17)
C(18)-C(13)-Tb(1)	124.3(3)
C(13)-C(14)-C(15)	108.4(3)
C(13)-C(14)-C(19)	124.5(4)
C(15)-C(14)-C(19)	127.0(4)
C(13)-C(14)-Tb(1)	76.77(18)
C(15)-C(14)-Tb(1)	75.64(17)
C(19)-C(14)-Tb(1)	115.8(3)
C(14)-C(15)-C(11)	108.0(3)
C(14)-C(15)-C(20)	124.8(4)
C(11)-C(15)-C(20)	127.0(4)
C(14)-C(15)-Tb(1)	73.85(18)
C(11)-C(15)-Tb(1)	75.91(18)
C(20)-C(15)-Tb(1)	120.4(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,z

	2-Gd	2-Dy
formula	$C_{44}H_{68}Gd_2N_2O_2$ •2(C ₇ H ₈)	$C_{44}H_{68}Dy_2N_2O_2$
fw	1155.77	982.00
temp (K)	88(2)	133(2)
Wavelength	0.71073 Å	0.71073 Å
cryst syst	Monoclinic	Monoclinic
space group	<i>C</i> 2/ <i>c</i>	<i>C</i> 2/ <i>c</i>
a (Å)	15.2453(7)	15.7376(15)
b (Å)	13.9938(6)	14.1959(14)
c (Å)	25.6281(11)	18.9717(18)
Volume (Å ³)	5286.7(4)	4157.5(7)
α (deg)	90	90
β (deg)	104.7734(4)	101.2185(11)
γ (deg)	90	90
Ζ	4	4
$ ho_{calc} \left(Mg/m^3 \right)$	1.452	1.569
μ (mm ⁻¹)	2.529	3.603
R1 (I > $2\sigma(I)$) ^a	0.0190	0.0316
wR2 (all data) ^a	0.0449	0.0790

 Table S9 X-ray Data Collection Parameters of 2-Gd and 2-Dy.

^aDefinitions: wR2 = [$\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$; R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$.

X-ray Data Collection, Structure Solution and Refinement for 2-Gd. A green crystal of approximate dimensions 0.237 x 0.280 x 0.374 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹³ program package was

used to determine the unit-cell parameters and for data collection (10 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS⁹ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space groups Cc and C2/c. It was later determined that space group C2/c was correct. The structure was solved by direct methods and refined on F² by full-matrix leastsquares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atom H(28) was located from a difference-Fourier map and refined (x,y,z and U_{iso}). The remaining hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. A methyl carbon atom on one tetramethylcyclopentadienyl ligand was disordered over two positions (C(16) / C(19)) and included using multiple components with partial site-occupancy factors. The hydrogen atom associated with the disordered tetramethylcyclopentadienyl ligand was not included in the refinement. There was a molecule of toluene solvent present (two per dimeric formula-unit). The solvent was disordered. Carbon atoms C(24)-C(27) were included as above. At convergence, wR2 = 0.0449 and Goof = 1.071 for 350 variables refined against 6785 data (0.73 Å), R1 = 0.0190 for those 6008 data with I > 2.0 σ (I).

Fig. S7 Thermal ellipsoid plot of $[(C_5Me_4H)_2Gd(THF)](\mu-\eta^2:\eta^2-N_2)$, **2-Gd**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Gd(1)-Cnt1	2.448
Gd(1)-Cnt2	2.459
Gd(1)-N(1)	2.3703(16)
Gd(1)-N(1)#1	2.4057(15)
Gd(1)-O(1)	2.4870(13)
Gd(1)-C(10)	2.6840(19)
Gd(1)-C(5)	2.6917(18)
Gd(1)-C(11)	2.7048(18)
Gd(1)-C(1)	2.7070(18)
Gd(1)-C(4)	2.7338(18)
Gd(1)-C(14)	2.7428(19)
Gd(1)-C(2)	2.7516(18)

Table S10	Bond lengths	[Å]	and angles [°] for 2-Gd .

Gd(1)-C(3)	2.7596(18)
Gd(1)-C(12)	2.7695(18)
Gd(1)-C(13)	2.7910(18)
O(1)-C(20)	1.453(2)
O(1)-C(23)	1.456(2)
N(1)-N(1)#1	1.247(3)
N(1)-Gd(1)#1	2.4057(15)
C(1)-C(2)	1.408(3)
C(1)-C(5)	1.423(3)
C(1)-C(6)	1.503(3)
C(2)-C(3)	1.422(3)
C(2)-C(7)	1.512(3)
C(3)-C(4)	1.419(3)
C(3)-C(8)	1.507(3)
C(4)-C(5)	1.415(3)
C(4)-C(9)	1.501(3)
C(10)-C(14)	1.407(3)
C(10)-C(11)	1.421(3)
C(10)-C(15)	1.508(3)
C(11)-C(16)	1.391(4)
C(11)-C(12)	1.415(3)
C(12)-C(13)	1.416(3)
C(12)-C(17)	1.511(3)
C(13)-C(14)	1.424(3)
C(13)-C(18)	1.507(3)
C(14)-C(19)	1.445(4)
C(20)-C(21)	1.516(3)
C(21)-C(22)	1.524(3)
C(22)-C(23)	1.518(3)
C(24)-C(25)	1.401(17)
C(24)-C(29)	1.463(5)
C(25)-C(26)	1.382(13)
C(26)-C(27)	1.383(6)
C(27)-C(28)	1.470(6)
C(24B)-C(25B)	1.399(10)
C(24B)-C(29)	1.433(6)

C(25B)-C(26B)	1.373(19)
C(26B)-C(27B)	1.369(17)
C(27B)-C(28)	1.396(7)
C(28)-C(29)	1.360(4)
C(29)-C(30)	1.491(4)
Cnt1-Gd(1)-O(1)	103.9
Cnt1-Gd(1)-N(1)	103.3
Cnt1-Gd(1)-N(1)#1	108.7
Cnt2-Gd(1)-O(1)	102.3
Cnt2-Gd(1)-N(1)	104.6
Cnt2-Gd(1)-N(1)#1	116.2
Cnt1-Gd(1)-Cnt2	130.1
N(1)-Gd(1)-N(1)#1	30.25(7)
N(1)-Gd(1)-O(1)	112.65(5)
N(1)#1-Gd(1)-O(1)	82.61(5)
N(1)-Gd(1)-C(10)	89.00(6)
N(1)#1-Gd(1)-C(10)	111.56(6)
O(1)-Gd(1)-C(10)	128.90(5)
N(1)-Gd(1)-C(5)	82.92(5)
N(1)#1-Gd(1)-C(5)	82.57(5)
O(1)-Gd(1)-C(5)	96.84(5)
C(10)-Gd(1)-C(5)	132.62(6)
N(1)-Gd(1)-C(11)	79.24(6)
N(1)#1-Gd(1)-C(11)	90.57(5)
O(1)-Gd(1)-C(11)	106.14(5)
C(10)-Gd(1)-C(11)	30.59(6)
C(5)-Gd(1)-C(11)	154.99(6)
N(1)-Gd(1)-C(1)	80.58(5)
N(1)#1-Gd(1)-C(1)	95.35(6)
O(1)-Gd(1)-C(1)	126.07(5)
C(10)-Gd(1)-C(1)	102.07(6)
C(5)-Gd(1)-C(1)	30.56(6)
C(11)- $Gd(1)$ - $C(1)$	127.79(6)
N(1)-Gd(1)-C(4)	111.81(5)
N(1)#1-Gd(1)-C(4)	103.08(5)

O(1)-Gd(1)-C(4)	77.80(5)
C(10)- $Gd(1)$ - $C(4)$	137.77(6)
C(5)-Gd(1)-C(4)	30.22(6)
C(11)- $Gd(1)$ - $C(4)$	166.23(6)
C(1)- $Gd(1)$ - $C(4)$	50.03(6)
N(1)-Gd(1)-C(14)	119.01(6)
N(1)#1-Gd(1)-C(14)	139.42(6)
O(1)-Gd(1)-C(14)	111.65(5)
C(10)-Gd(1)-C(14)	30.03(7)
C(5)-Gd(1)-C(14)	129.83(6)
C(11)- $Gd(1)$ - $C(14)$	49.41(6)
C(1)- $Gd(1)$ - $C(14)$	104.30(6)
C(4)-Gd(1)-C(14)	116.83(6)
N(1)-Gd(1)-C(2)	107.68(6)
N(1)#1-Gd(1)-C(2)	125.22(5)
O(1)-Gd(1)-C(2)	122.45(5)
C(10)-Gd(1)-C(2)	89.98(6)
C(5)-Gd(1)-C(2)	49.61(6)
C(11)- $Gd(1)$ - $C(2)$	120.55(6)
C(1)-Gd(1)-C(2)	29.88(6)
C(4)-Gd(1)-C(2)	49.44(5)
C(14)-Gd(1)-C(2)	80.23(6)
N(1)-Gd(1)-C(3)	129.16(5)
N(1)#1-Gd(1)-C(3)	131.25(5)
O(1)-Gd(1)-C(3)	92.78(5)
C(10)-Gd(1)-C(3)	108.76(6)
C(5)-Gd(1)-C(3)	49.67(6)
C(11)- $Gd(1)$ - $C(3)$	136.44(6)
C(1)-Gd(1)-C(3)	49.69(6)
C(4)-Gd(1)-C(3)	29.95(5)
C(14)-Gd(1)-C(3)	87.27(6)
C(2)-Gd(1)-C(3)	29.90(6)
N(1)-Gd(1)-C(12)	102.20(6)
N(1)#1-Gd(1)-C(12)	100.98(5)
O(1)-Gd(1)-C(12)	79.71(5)
C(10)-Gd(1)-C(12)	49.92(6)

C(5)-Gd(1)-C(12)	174.61(6)
C(11)-Gd(1)-C(12)	29.92(6)
C(1)-Gd(1)-C(12)	151.30(6)
C(4)-Gd(1)-C(12)	144.39(6)
C(14)-Gd(1)-C(12)	49.05(6)
C(2)-Gd(1)-C(12)	129.02(6)
C(3)-Gd(1)-C(12)	126.00(6)
N(1)-Gd(1)-C(13)	128.29(6)
N(1)#1-Gd(1)-C(13)	130.29(5)
O(1)-Gd(1)-C(13)	82.98(5)
C(10)-Gd(1)-C(13)	49.70(6)
C(5)-Gd(1)-C(13)	146.40(6)
C(11)-Gd(1)-C(13)	49.19(6)
C(1)-Gd(1)-C(13)	130.80(6)
C(4)-Gd(1)-C(13)	119.73(6)
C(14)-Gd(1)-C(13)	29.80(6)
C(2)-Gd(1)-C(13)	102.48(6)
C(3)-Gd(1)-C(13)	96.73(6)
C(12)-Gd(1)-C(13)	29.49(6)
C(20)-O(1)-C(23)	108.99(15)
C(20)-O(1)-Gd(1)	125.61(11)
C(23)-O(1)-Gd(1)	125.39(11)
N(1)#1-N(1)-Gd(1)	76.45(14)
N(1)#1-N(1)-Gd(1)#1	73.31(13)
Gd(1)-N(1)-Gd(1)#1	149.66(7)
C(2)-C(1)-C(5)	107.60(17)
C(2)-C(1)-C(6)	126.4(2)
C(5)-C(1)-C(6)	125.7(2)
C(2)-C(1)-Gd(1)	76.81(10)
C(5)-C(1)-Gd(1)	74.13(10)
C(6)-C(1)-Gd(1)	119.63(13)
C(1)-C(2)-C(3)	108.54(17)
C(1)-C(2)-C(7)	125.2(2)
C(3)-C(2)-C(7)	125.1(2)
C(1)-C(2)-Gd(1)	73.30(10)
C(3)-C(2)-Gd(1)	75.36(10)

C(7)-C(2)-Gd(1)	127.13(13)
C(4)-C(3)-C(2)	107.68(17)
C(4)-C(3)-C(8)	125.97(18)
C(2)-C(3)-C(8)	125.97(17)
C(4)-C(3)-Gd(1)	74.02(10)
C(2)-C(3)-Gd(1)	74.74(10)
C(8)-C(3)-Gd(1)	122.65(12)
C(5)-C(4)-C(3)	107.82(17)
C(5)-C(4)-C(9)	125.08(17)
C(3)-C(4)-C(9)	126.77(18)
C(5)-C(4)-Gd(1)	73.24(10)
C(3)-C(4)-Gd(1)	76.03(10)
C(9)-C(4)-Gd(1)	121.81(12)
C(4)-C(5)-C(1)	108.36(17)
C(4)-C(5)-Gd(1)	76.54(10)
C(1)-C(5)-Gd(1)	75.32(10)
C(14)-C(10)-C(11)	107.22(18)
C(14)-C(10)-C(15)	126.84(18)
C(11)-C(10)-C(15)	125.7(2)
C(14)-C(10)-Gd(1)	77.30(11)
C(11)-C(10)-Gd(1)	75.51(10)
C(15)-C(10)-Gd(1)	117.56(13)
C(16)-C(11)-C(12)	125.8(2)
C(16)-C(11)-C(10)	124.6(2)
C(12)-C(11)-C(10)	108.56(18)
C(16)-C(11)-Gd(1)	123.92(19)
C(12)-C(11)-Gd(1)	77.57(11)
C(10)-C(11)-Gd(1)	73.90(11)
C(11)-C(12)-C(13)	107.93(17)
C(11)-C(12)-C(17)	125.77(19)
C(13)-C(12)-C(17)	126.10(19)
C(11)-C(12)-Gd(1)	72.50(10)
C(13)-C(12)-Gd(1)	76.10(10)
C(17)-C(12)-Gd(1)	121.34(13)
C(12)-C(13)-C(14)	107.41(19)
C(12)-C(13)-C(18)	127.12(18)

C(14)-C(13)-C(18)	124.30(18)
C(12)-C(13)-Gd(1)	74.41(11)
C(14)-C(13)-Gd(1)	73.22(11)
C(18)-C(13)-Gd(1)	127.63(14)
C(10)-C(14)-C(13)	108.88(18)
C(10)-C(14)-C(19)	120.0(2)
C(13)-C(14)-C(19)	127.9(2)
C(10)-C(14)-Gd(1)	72.67(10)
C(13)-C(14)-Gd(1)	76.98(11)
C(19)-C(14)-Gd(1)	132.7(2)
O(1)-C(20)-C(21)	105.43(17)
C(20)-C(21)-C(22)	101.42(19)
C(23)-C(22)-C(21)	102.75(17)
O(1)-C(23)-C(22)	105.95(16)
C(25)-C(24)-C(29)	126.9(6)
C(26)-C(25)-C(24)	119.8(10)
C(25)-C(26)-C(27)	120.1(8)
C(26)-C(27)-C(28)	114.3(4)
C(25B)-C(24B)-C(29)	108.1(6)
C(26B)-C(25B)-C(24B)	121.1(9)
C(27B)-C(26B)-C(25B)	120.6(14)
C(26B)-C(27B)-C(28)	127.4(10)
C(29)-C(28)-C(27B)	103.1(5)
C(29)-C(28)-C(27)	131.7(3)
C(28)-C(29)-C(24B)	137.7(4)
C(28)-C(29)-C(24)	105.9(3)
C(28)-C(29)-C(30)	120.8(2)
C(24B)-C(29)-C(30)	101.0(4)
C(24)-C(29)-C(30)	133.1(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2

X-ray Data Collection, Structure Solution and Refinement for 2-Dy. A green crystal of approximate dimensions 0.137 x 0.176 x 0.307 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹³ program package and the CELL NOW¹⁵ program were used to determine the unit-cell parameters. Data was collected using a 15 sec/frame scan time for a sphere of diffraction data. The raw frame data was processed using SAINT⁴⁰ and TWINABS¹⁶ to yield the reflection data file (HKLF 5 format).¹⁶ Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space groups Cc and C2/c. It was later determined that space group C2/c was correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about a two-fold rotation axis. At convergence, wR2 = 0.0790 and Goof = 1.078 for 235 variables refined against 4928 data (0.75Å), R1 = 0.0316 for those 4482 with I > $2.0\sigma(I)$. The structure was refined as a twocomponent twin, $BASF^5 = 0.1165$.

Fig. S8 Thermal ellipsoid plot of $[(C_5Me_4H)_2Dy(THF)](\mu-\eta^2:\eta^2-N_2)$, **2-Dy**, drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Dy(1)-Cnt1	2.421
Dy(1)-Cnt2	2.412
Dy(1)-N(1)	2.335(3)
Dy(1)-N(1)#1	2.366(3)
Dy(1)-O(1)	2.486(3)
Dy(1)-C(1)	2.657(4)
Dy(1)-C(5)	2.659(4)
Dy(1)-C(14)	2.660(4)
Dy(1)-C(10)	2.690(4)
Dy(1)-C(13)	2.692(4)
Dy(1)-C(11)	2.706(4)
Dy(1)-C(2)	2.716(4)

Table S11	Bond leng	gths [Å] an	nd angles [°	for 2-Dy
-----------	-----------	-------------	--------------	-----------------

Dy(1)-C(4)	2.728(4)
Dy(1)-C(12)	2.730(4)
Dy(1)-C(3)	2.763(4)
O(1)-C(19)	1.448(5)
O(1)-C(22)	1.454(5)
N(1)-N(1)#1	1.243(7)
N(1)-Dy(1)#1	2.366(3)
C(1)-C(5)	1.417(6)
C(1)-C(2)	1.422(6)
C(1)-C(6)	1.496(6)
C(2)-C(3)	1.422(6)
C(2)-C(7)	1.502(5)
C(3)-C(4)	1.422(6)
C(3)-C(8)	1.503(6)
C(4)-C(5)	1.412(6)
C(4)-C(9)	1.514(6)
C(10)-C(14)	1.412(6)
C(10)-C(11)	1.418(6)
C(10)-C(15)	1.506(6)
C(11)-C(12)	1.411(6)
C(11)-C(16)	1.505(6)
C(12)-C(13)	1.410(6)
C(12)-C(17)	1.509(6)
C(13)-C(14)	1.429(6)
C(13)-C(18)	1.512(6)
C(19)-C(20)	1.502(7)
C(20)-C(21)	1.516(7)
C(21)-C(22)	1.511(6)
Cnt1-Dy(1)-O(1)	102.9
Cnt1-Dy(1)-N(1)	105.8
Cnt1-Dy(1)-N(1)#1	118.7
Cnt2-Dy(1)-O(1)	105.2
Cnt2-Dy(1)-N(1)	104.4
Cnt2-Dy(1)-N(1)#1	109.5
Cnt1-Dy(1)-Cnt2	127.0

N(1)-Dy(1)-N(1)#1	30.66(16)
N(1)-Dy(1)-O(1)	111.38(11)
N(1)#1-Dy(1)-O(1)	81.05(11)
N(1)-Dy(1)-C(1)	89.81(12)
N(1)#1-Dy(1)-C(1)	113.62(12)
O(1)-Dy(1)-C(1)	129.89(11)
N(1)-Dy(1)-C(5)	120.68(13)
N(1)#1-Dy(1)-C(5)	142.64(12)
O(1)-Dy(1)-C(5)	112.56(12)
C(1)-Dy(1)-C(5)	30.93(13)
N(1)-Dy(1)-C(14)	84.00(11)
N(1)#1-Dy(1)-C(14)	83.06(11)
O(1)-Dy(1)-C(14)	97.19(12)
C(1)-Dy(1)-C(14)	130.88(13)
C(5)-Dy(1)-C(14)	126.48(13)
N(1)-Dy(1)-C(10)	113.33(12)
N(1)#1-Dy(1)-C(10)	103.87(12)
O(1)-Dy(1)-C(10)	78.62(11)
C(1)-Dy(1)-C(10)	134.92(13)
C(5)-Dy(1)-C(10)	112.75(13)
C(14)-Dy(1)-C(10)	30.60(12)
N(1)-Dy(1)-C(13)	81.18(11)
N(1)#1-Dy(1)-C(13)	95.83(12)
O(1)-Dy(1)-C(13)	127.10(11)
C(1)-Dy(1)-C(13)	99.93(13)
C(5)-Dy(1)-C(13)	101.47(13)
C(14)-Dy(1)-C(13)	30.97(12)
C(10)-Dy(1)-C(13)	50.67(13)
N(1)-Dy(1)-C(11)	130.55(12)
N(1)#1-Dy(1)-C(11)	132.53(12)
O(1)-Dy(1)-C(11)	94.46(12)
C(1)-Dy(1)-C(11)	105.31(13)
C(5)-Dy(1)-C(11)	82.69(13)
C(14)-Dy(1)-C(11)	50.40(12)
C(10)-Dy(1)-C(11)	30.47(12)
C(13)-Dy(1)-C(11)	50.25(13)

N(1)-Dy(1)-C(2)	80.42(11)
N(1)#1-Dy(1)-C(2)	93.04(11)
O(1)-Dy(1)-C(2)	106.50(11)
C(1)-Dy(1)-C(2)	30.68(12)
C(5)-Dy(1)-C(2)	50.22(13)
C(14)-Dy(1)-C(2)	155.12(13)
C(10)-Dy(1)-C(2)	162.96(13)
C(13)-Dy(1)-C(2)	126.39(13)
C(11)-Dy(1)-C(2)	132.69(13)
N(1)-Dy(1)-C(4)	130.21(12)
N(1)#1-Dy(1)-C(4)	132.78(12)
O(1)-Dy(1)-C(4)	83.34(12)
C(1)-Dy(1)-C(4)	50.74(13)
C(5)-Dy(1)-C(4)	30.35(13)
C(14)-Dy(1)-C(4)	143.22(13)
C(10)-Dy(1)-C(4)	116.21(13)
C(13)-Dy(1)-C(4)	128.44(13)
C(11)-Dy(1)-C(4)	92.82(14)
C(2)-Dy(1)-C(4)	49.96(13)
N(1)-Dy(1)-C(12)	108.25(12)
N(1)#1-Dy(1)-C(12)	125.96(12)
O(1)-Dy(1)-C(12)	124.22(11)
C(1)-Dy(1)-C(12)	86.90(13)
C(5)-Dy(1)-C(12)	76.43(13)
C(14)-Dy(1)-C(12)	50.15(12)
C(10)-Dy(1)-C(12)	49.97(12)
C(13)-Dy(1)-C(12)	30.14(12)
C(11)-Dy(1)-C(12)	30.08(13)
C(2)-Dy(1)- $C(12)$	117.57(12)
C(4)-Dy(1)-C(12)	99.51(13)
N(1)-Dy(1)-C(3)	103.33(11)
N(1)#1-Dy(1)-C(3)	103.14(12)
O(1)-Dy(1)-C(3)	80.14(11)
C(1)-Dy(1)-C(3)	50.34(13)
C(5)-Dy(1)-C(3)	49.78(13)
C(14)-Dy(1)-C(3)	172.67(12)

C(10)-Dy(1)-C(3)	142.28(13)
C(13)-Dy(1)-C(3)	149.30(13)
C(11)-Dy(1)-C(3)	122.75(12)
C(2)-Dy(1)-C(3)	30.06(12)
C(4)-Dy(1)-C(3)	30.01(12)
C(12)-Dy(1)-C(3)	126.04(12)
C(19)-O(1)-C(22)	108.3(3)
C(19)-O(1)-Dy(1)	124.0(3)
C(22)-O(1)-Dy(1)	127.7(2)
N(1)#1-N(1)-Dy(1)	76.0(3)
N(1)#1-N(1)-Dy(1)#1	73.3(3)
Dy(1)-N(1)-Dy(1)#1	149.15(16)
C(5)-C(1)-C(2)	106.9(4)
C(5)-C(1)-C(6)	127.1(4)
C(2)-C(1)-C(6)	125.8(4)
C(5)-C(1)-Dy(1)	74.6(2)
C(2)-C(1)-Dy(1)	77.0(2)
C(6)-C(1)-Dy(1)	118.2(3)
C(3)-C(2)-C(1)	108.4(4)
C(3)-C(2)-C(7)	127.3(4)
C(1)-C(2)-C(7)	124.0(4)
C(3)-C(2)-Dy(1)	76.8(2)
C(1)-C(2)-Dy(1)	72.4(2)
C(7)-C(2)-Dy(1)	121.9(3)
C(2)-C(3)-C(4)	107.9(4)
C(2)-C(3)-C(8)	126.4(4)
C(4)-C(3)-C(8)	125.3(4)
C(2)-C(3)-Dy(1)	73.1(2)
C(4)-C(3)-Dy(1)	73.6(2)
C(8)-C(3)-Dy(1)	124.9(3)
C(5)-C(4)-C(3)	107.4(4)
C(5)-C(4)-C(9)	124.4(4)
C(3)-C(4)-C(9)	127.0(4)
C(5)-C(4)-Dy(1)	72.2(2)
C(3)-C(4)-Dy(1)	76.4(2)
C(9)-C(4)-Dy(1)	126.3(3)

C(4)-C(5)-C(1)	109.3(4)
C(4)-C(5)-Dy(1)	77.5(2)
C(1)-C(5)-Dy(1)	74.4(2)
C(14)-C(10)-C(11)	107.7(4)
C(14)-C(10)-C(15)	125.1(4)
C(11)-C(10)-C(15)	126.8(4)
C(14)-C(10)-Dy(1)	73.5(2)
C(11)-C(10)-Dy(1)	75.4(2)
C(15)-C(10)-Dy(1)	122.7(3)
C(12)-C(11)-C(10)	108.1(4)
C(12)-C(11)-C(16)	124.7(4)
C(10)-C(11)-C(16)	126.5(4)
C(12)-C(11)-Dy(1)	75.9(2)
C(10)-C(11)-Dy(1)	74.2(2)
C(16)-C(11)-Dy(1)	123.5(3)
C(13)-C(12)-C(11)	108.7(4)
C(13)-C(12)-C(17)	125.6(4)
C(11)-C(12)-C(17)	124.8(4)
C(13)-C(12)-Dy(1)	73.4(2)
C(11)-C(12)-Dy(1)	74.0(2)
C(17)-C(12)-Dy(1)	127.2(3)
C(12)-C(13)-C(14)	107.2(4)
C(12)-C(13)-C(18)	126.7(4)
C(14)-C(13)-C(18)	125.9(4)
C(12)-C(13)-Dy(1)	76.4(2)
C(14)-C(13)-Dy(1)	73.3(2)
C(18)-C(13)-Dy(1)	119.7(3)
C(10)-C(14)-C(13)	108.3(4)
C(10)-C(14)-Dy(1)	75.9(2)
C(13)-C(14)-Dy(1)	75.7(2)
O(1)-C(19)-C(20)	107.4(4)
C(19)-C(20)-C(21)	103.7(4)
C(22)-C(21)-C(20)	102.0(4)
O(1)-C(22)-C(21)	105.4(4)

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2

	3- Y	3-Dy
formula	$C_{32}H_{44}N_2O_2Y_2$	$C_{32}H_{44}N_2O_2Dy_2$
fw	666.51	813.69
temp (K)	88(2)	133(2)
Wavelength	0.71073 Å	0.71073 Å
cryst syst	Monoclinic	Monoclinic
space group	$P2_{1}/n$	$P2_{1}/n$
a (Å)	11.9100(9)	11.9046(7)
b (Å)	10.0376(7)	10.0279(6)
c (Å)	12.6988(9)	12.7468(8)
Volume (Å ³)	1510.39(19)	1513.95(16)
a (deg)	90	90
β (deg)	95.7802(9)	95.7793(8)
γ (deg)	90	90
Z	2	2
ρ_{calc} (Mg/m ³)	1.466	1.785
μ (mm ⁻¹)	3.853	4.927
R1 $(I > 2\sigma(I))^a$	0.0193	0.0164
wR2 (all data) ^a	0.0453	0.0403

 Table S12
 X-ray Data Collection Parameters of 3-Y and 3-Dy.

^aDefinitions: wR2 = [$\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$]^{1/2}; R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$.

X-ray Data Collection, Structure Solution and Refinement for 3-Y. A blue crystal of approximate dimensions 0.148 x 0.184 x 0.273 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹⁷ program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT⁸ and SADABS¹⁸ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL¹⁹ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/n$ that was later determined to be correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}). The molecule was located about an inversion center. At convergence, wR2 = 0.0453 and Goof = 1.034 for 260 variables refined against 3825 data (0.73Å), R1 = 0.0193 for those 3517 data with I > 2.0 σ (I).

Fig. S9 Thermal ellipsoid plot of $[(C_5H_4Me)_2(THF)Y]_2(\mu-\eta^2:\eta^2-N_2)$, **3-Y** drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Y(1)-Cnt1	2.387
Y(1)-Cnt2	2.381
Y(1)-N(1)	2.3023(11)
Y(1)-N(1)#1	2.3292(11)
Y(1)-O(1)	2.4046(10)
Y(1)-C(10)	2.6427(13)
Y(1)-C(9)	2.6591(14)
Y(1)-C(3)	2.6599(13)
Y(1)-C(2)	2.6673(14)
Y(1)-C(11)	2.6732(13)

Table S13	Bond lengths	s [Å] and	l angles [^o] for 3-Y .
-----------	--------------	-----------	------------	---------------------------------

Y(1)-C(4)	2.6741(13)
Y(1)-C(1)	2.6758(14)
Y(1)-C(7)	2.6765(14)
Y(1)-C(8)	2.6842(14)
O(1)-C(16)	1.4556(17)
O(1)-C(13)	1.4617(16)
N(1)-N(1)#1	1.250(2)
N(1)-Y(1)#1	2.3292(11)
C(1)-C(2)	1.407(2)
C(1)-C(5)	1.418(2)
C(2)-C(3)	1.413(2)
C(3)-C(4)	1.415(2)
C(4)-C(5)	1.4135(19)
C(5)-C(6)	1.504(2)
C(7)-C(11)	1.4114(19)
C(7)-C(8)	1.414(2)
C(8)-C(9)	1.406(2)
C(9)-C(10)	1.417(2)
C(10)-C(11)	1.4114(19)
C(11)-C(12)	1.5031(19)
C(13)-C(14)	1.512(2)
C(14)-C(15)	1.525(2)
C(15)-C(16)	1.522(2)
Cnt1-Y(1)-N(1)	104.0
Cnt1-Y(1)-N(1')	115.8
Cnt1-Y(1)-O(1)	103.0
Cnt1-Y(1)-N(1)	102.6
Cnt1-Y(1)-N(1')	109.4
Cnt1-Y(1)-O(1)	103.9
Cnt1-Y(1)-Cnt2	129.1
N(1)-Y(1)-N(1)#1	31.30(5)
N(1)-Y(1)-O(1)	114.83(4)
N(1)#1-Y(1)-O(1)	83.65(4)
N(1)-Y(1)-C(10)	100.72(4)
N(1)#1-Y(1)-C(10)	120.95(4)

O(1)-Y(1)-C(10)	126.80(4)
N(1)-Y(1)-C(9)	127.82(4)
N(1)#1-Y(1)-C(9)	135.43(4)
O(1)-Y(1)-C(9)	97.41(4)
C(10)-Y(1)-C(9)	31.00(4)
N(1)-Y(1)-C(3)	129.50(4)
N(1)#1-Y(1)-C(3)	131.47(4)
O(1)-Y(1)-C(3)	82.99(4)
C(10)-Y(1)-C(3)	104.19(5)
C(9)-Y(1)-C(3)	92.54(5)
N(1)-Y(1)-C(2)	103.08(4)
N(1)#1-Y(1)-C(2)	100.83(4)
O(1)-Y(1)-C(2)	79.29(4)
C(10)-Y(1)-C(2)	130.70(4)
C(9)-Y(1)-C(2)	123.27(5)
C(3)-Y(1)-C(2)	30.75(5)
N(1)-Y(1)-C(11)	76.87(4)
N(1)#1-Y(1)-C(11)	90.91(4)
O(1)-Y(1)-C(11)	122.30(4)
C(10)-Y(1)-C(11)	30.79(4)
C(9)-Y(1)-C(11)	51.01(4)
C(3)-Y(1)-C(11)	134.85(4)
C(2)-Y(1)-C(11)	156.75(4)
N(1)-Y(1)-C(4)	117.60(4)
N(1)#1-Y(1)-C(4)	139.16(4)
O(1)-Y(1)-C(4)	112.76(4)
C(10)-Y(1)-C(4)	80.06(4)
C(9)-Y(1)-C(4)	81.40(4)
C(3)-Y(1)-C(4)	30.76(4)
C(2)-Y(1)-C(4)	50.66(4)
C(11)-Y(1)-C(4)	108.23(4)
N(1)-Y(1)-C(1)	78.99(4)
N(1)#1-Y(1)-C(1)	89.81(4)
O(1)-Y(1)-C(1)	106.30(4)
C(10)-Y(1)-C(1)	118.83(5)
C(9)-Y(1)-C(1)	131.25(4)

C(3)-Y(1)-C(1)	50.52(5)
C(2)-Y(1)-C(1)	30.53(5)
C(11)-Y(1)-C(1)	131.16(5)
C(4)-Y(1)-C(1)	50.31(4)
N(1)-Y(1)-C(7)	86.85(4)
N(1)#1-Y(1)-C(7)	84.84(4)
O(1)-Y(1)-C(7)	91.80(4)
C(10)-Y(1)-C(7)	50.58(4)
C(9)-Y(1)-C(7)	50.61(4)
C(3)-Y(1)-C(7)	141.93(4)
C(2)-Y(1)-C(7)	168.74(5)
C(11)-Y(1)-C(7)	30.59(4)
C(4)-Y(1)-C(7)	129.12(4)
C(1)-Y(1)-C(7)	160.46(5)
N(1)-Y(1)-C(8)	117.37(4)
N(1)#1-Y(1)-C(8)	109.70(4)
O(1)-Y(1)-C(8)	77.49(4)
C(10)-Y(1)-C(8)	50.67(4)
C(9)-Y(1)-C(8)	30.52(4)
C(3)-Y(1)-C(8)	112.45(5)
C(2)-Y(1)-C(8)	138.89(5)
C(11)-Y(1)-C(8)	50.70(4)
C(4)-Y(1)-C(8)	110.31(4)
C(1)-Y(1)-C(8)	160.48(4)
C(7)-Y(1)-C(8)	30.59(4)
C(16)-O(1)-C(13)	109.29(10)
C(16)-O(1)-Y(1)	127.91(8)
C(13)-O(1)-Y(1)	122.44(8)
N(1)#1-N(1)-Y(1)	75.54(10)
N(1)#1-N(1)-Y(1)#1	73.17(10)
Y(1)-N(1)-Y(1)#1	148.70(5)
C(2)-C(1)-C(5)	108.97(13)
C(2)-C(1)-Y(1)	74.40(8)
C(5)-C(1)-Y(1)	75.09(8)
C(1)-C(2)-C(3)	107.70(13)
C(1)-C(2)-Y(1)	75.06(8)

C(3)-C(2)-Y(1)	74.33(8)
C(2)-C(3)-C(4)	107.84(13)
C(2)-C(3)-Y(1)	74.91(8)
C(4)-C(3)-Y(1)	75.17(8)
C(5)-C(4)-C(3)	108.65(13)
C(5)-C(4)-Y(1)	75.20(8)
C(3)-C(4)-Y(1)	74.06(8)
C(4)-C(5)-C(1)	106.84(13)
C(4)-C(5)-C(6)	127.20(13)
C(1)-C(5)-C(6)	125.93(13)
C(4)-C(5)-Y(1)	74.22(8)
C(1)-C(5)-Y(1)	74.24(8)
C(6)-C(5)-Y(1)	118.74(9)
C(11)-C(7)-C(8)	108.55(12)
C(11)-C(7)-Y(1)	74.58(8)
C(8)-C(7)-Y(1)	75.00(8)
C(9)-C(8)-C(7)	107.93(13)
C(9)-C(8)-Y(1)	73.76(8)
C(7)-C(8)-Y(1)	74.40(8)
C(8)-C(9)-C(10)	107.71(12)
C(8)-C(9)-Y(1)	75.73(8)
C(10)-C(9)-Y(1)	73.86(8)
C(11)-C(10)-C(9)	108.55(12)
C(11)-C(10)-Y(1)	75.80(8)
C(9)-C(10)-Y(1)	75.14(8)
C(7)-C(11)-C(10)	107.25(12)
C(7)-C(11)-C(12)	127.14(13)
C(10)-C(11)-C(12)	125.53(13)
C(7)-C(11)-Y(1)	74.83(8)
C(10)-C(11)-Y(1)	73.41(8)
C(12)-C(11)-Y(1)	119.83(9)
O(1)-C(13)-C(14)	104.31(11)
C(13)-C(14)-C(15)	102.43(12)
C(16)-C(15)-C(14)	102.18(12)
O(1)-C(16)-C(15)	106.22(11)
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1

X-ray Data Collection, Structure Solution and Refinement for 3-Dy. A green crystal of approximate dimensions 0.169 x 0.199 x 0.265 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2²⁰ program package and the CELL_NOW¹⁵ were used to determine the unit-cell parameters. Data was collected using a 10 sec/frame scan time for a sphere of diffraction data. The raw frame data was processed using SAINT⁸ and TWINABS¹⁶ to yield the reflection data file (HKLF 5 format)¹⁶. Subsequent calculations were carried out using the SHELXTL⁵ program. The diffraction symmetry was 2/*m* and the systematic absences were consistent with the monoclinic space group $P_{2_1/n}$ that was later determined to be correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁶ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule was located about an inversion center (Z = 2). At convergence, wR2 = 0.0403 and Goof = 1.036 for 175 variables refined against 3608 data (0.74Å), R1 = 0.0164 for those 3406 with I > 2.0 σ (I). The structure was refined as a two-component twin, BASF⁵ = 0.4066.

Fig. S10 Thermal ellipsoid plot of $[(C_5H_4Me)_2(THF)Dy]_2(\mu-\eta^2:\eta^2-N_2)$, **3-Dy** drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Dy(1)-Cnt1	2.391
Dy(1)-Cnt2	2.385
Dy(1)-N(1)	2.296(2)
Dy(1)-N(1)#1	2.334(2)
Dy(1)-O(1)	2.4156(17)
Dy(1)-C(10)	2.645(2)
Dy(1)-C(9)	2.661(3)
Dy(1)-C(3)	2.662(3)
Dy(1)-C(2)	2.673(3)
Dy(1)-C(4)	2.674(2)
Dy(1)-C(7)	2.677(2)

 Table S14
 Bond lengths [Å] and angles [°] for 3-Dy.

Dy(1)-C(11)	2.677(2)
Dy(1)-C(1)	2.681(3)
Dy(1)-C(8)	2.686(3)
O(1)-C(16)	1.451(3)
O(1)-C(13)	1.460(3)
N(1)-N(1)#1	1.250(4)
N(1)-Dy(1)#1	2.334(2)
C(1)-C(2)	1.395(4)
C(1)-C(5)	1.420(4)
C(2)-C(3)	1.419(4)
C(3)-C(4)	1.412(4)
C(4)-C(5)	1.415(4)
C(5)-C(6)	1.500(4)
C(7)-C(8)	1.407(4)
C(7)-C(11)	1.411(4)
C(8)-C(9)	1.404(4)
C(9)-C(10)	1.419(4)
C(10)-C(11)	1.405(4)
C(11)-C(12)	1.497(4)
C(13)-C(14)	1.510(4)
C(14)-C(15)	1.516(4)
C(15)-C(16)	1.520(4)
Cnt1-Dy(1)-N(1)	104.0
Cnt1-Dy(1)-N(1)#1	116.0
Cnt1-Dy(1)-O(1)	103.1
Cnt2-Dy(1)-N(1)	102.6
Cnt2-Dy(1)-N(1)#1	109.3
Cnt2-Dy(1)-O(1)	103.9
Cnt1-Dy(1)-Cnt2	129.1
N(1)-Dy(1)-N(1)#1	31.32(9)
N(1)-Dy(1)-O(1)	114.57(6)
N(1)#1-Dy(1)-O(1)	83.38(6)
N(1)-Dy(1)-C(10)	100.44(8)
N(1)#1-Dy(1)-C(10)	120.54(8)
O(1)-Dy(1)-C(10)	127.02(8)

N(1)-Dy(1)-C(9)	127.68(8)
N(1)#1-Dy(1)-C(9)	135.25(8)
O(1)-Dy(1)-C(9)	97.75(8)
C(10)-Dy(1)-C(9)	31.02(8)
N(1)-Dy(1)-C(3)	129.47(8)
N(1)#1-Dy(1)-C(3)	131.60(8)
O(1)-Dy(1)-C(3)	83.21(7)
C(10)-Dy(1)-C(3)	104.47(9)
C(9)-Dy(1)-C(3)	92.61(9)
N(1)-Dy(1)-C(2)	102.86(9)
N(1)#1-Dy(1)-C(2)	100.88(8)
O(1)-Dy(1)-C(2)	79.62(8)
C(10)-Dy(1)-C(2)	130.87(8)
C(9)-Dy(1)-C(2)	123.45(9)
C(3)-Dy(1)-C(2)	30.85(9)
N(1)-Dy(1)-C(4)	117.74(8)
N(1)#1-Dy(1)-C(4)	139.43(8)
O(1)-Dy(1)-C(4)	112.89(7)
C(10)-Dy(1)-C(4)	80.24(8)
C(9)-Dy(1)-C(4)	81.27(8)
C(3)-Dy(1)-C(4)	30.69(8)
C(2)-Dy(1)-C(4)	50.63(8)
N(1)-Dy(1)-C(7)	87.17(8)
N(1)#1-Dy(1)-C(7)	84.93(8)
O(1)-Dy(1)-C(7)	91.55(7)
C(10)-Dy(1)-C(7)	50.38(8)
C(9)-Dy(1)-C(7)	50.36(8)
C(3)-Dy(1)-C(7)	141.66(9)
C(2)-Dy(1)-C(7)	168.70(9)
C(4)-Dy(1)-C(7)	128.93(8)
N(1)-Dy(1)-C(11)	76.90(8)
N(1)#1-Dy(1)-C(11)	90.71(8)
O(1)-Dy(1)-C(11)	122.06(7)
C(10)-Dy(1)-C(11)	30.61(8)
C(9)-Dy(1)-C(11)	50.86(8)
C(3)-Dy(1)-C(11)	134.98(8)

C(2)-Dy(1)-C(11)	156.76(8)
C(4)-Dy(1)-C(11)	108.39(8)
C(7)-Dy(1)-C(11)	30.57(8)
N(1)-Dy(1)-C(1)	79.15(8)
N(1)#1-Dy(1)-C(1)	90.17(8)
O(1)-Dy(1)-C(1)	106.38(8)
C(10)-Dy(1)-C(1)	118.76(9)
C(9)-Dy(1)-C(1)	130.99(8)
C(3)-Dy(1)-C(1)	50.33(9)
C(2)-Dy(1)-C(1)	30.21(9)
C(4)-Dy(1)-C(1)	50.21(8)
C(7)-Dy(1)-C(1)	160.75(9)
C(11)-Dy(1)-C(1)	131.31(9)
N(1)-Dy(1)-C(8)	117.53(8)
N(1)#1-Dy(1)-C(8)	109.73(8)
O(1)-Dy(1)-C(8)	77.60(7)
C(10)-Dy(1)-C(8)	50.63(8)
C(9)-Dy(1)-C(8)	30.44(8)
C(3)-Dy(1)-C(8)	112.31(9)
C(2)-Dy(1)-C(8)	139.00(10)
C(4)-Dy(1)-C(8)	110.01(8)
C(7)-Dy(1)-C(8)	30.42(8)
C(11)-Dy(1)-C(8)	50.61(8)
C(1)-Dy(1)-C(8)	160.09(9)
C(16)-O(1)-C(13)	109.31(18)
C(16)-O(1)-Dy(1)	127.92(14)
C(13)-O(1)-Dy(1)	122.40(14)
N(1)#1-N(1)-Dy(1)	76.03(18)
N(1)#1-N(1)-Dy(1)#1	72.65(17)
Dy(1)-N(1)-Dy(1)#1	148.68(9)
C(2)-C(1)-C(5)	109.4(3)
C(2)-C(1)-Dy(1)	74.56(15)
C(5)-C(1)-Dy(1)	74.90(15)
C(1)-C(2)-C(3)	107.7(2)
C(1)-C(2)-Dy(1)	75.23(15)
C(3)-C(2)-Dy(1)	74.15(15)

C(4)-C(3)-C(2)	107.7(3)
C(4)-C(3)-Dy(1)	75.13(14)
C(2)-C(3)-Dy(1)	75.00(15)
C(3)-C(4)-C(5)	108.7(2)
C(3)-C(4)-Dy(1)	74.18(14)
C(5)-C(4)-Dy(1)	75.21(14)
C(4)-C(5)-C(1)	106.6(2)
C(4)-C(5)-C(6)	127.2(2)
C(1)-C(5)-C(6)	126.2(3)
C(4)-C(5)-Dy(1)	74.17(14)
C(1)-C(5)-Dy(1)	74.43(15)
C(6)-C(5)-Dy(1)	118.91(17)
C(8)-C(7)-C(11)	108.9(2)
C(8)-C(7)-Dy(1)	75.15(15)
C(11)-C(7)-Dy(1)	74.72(14)
C(9)-C(8)-C(7)	107.8(2)
C(9)-C(8)-Dy(1)	73.77(15)
C(7)-C(8)-Dy(1)	74.43(15)
C(8)-C(9)-C(10)	107.7(2)
C(8)-C(9)-Dy(1)	75.78(15)
C(10)-C(9)-Dy(1)	73.86(15)
C(11)-C(10)-C(9)	108.5(2)
C(11)-C(10)-Dy(1)	75.97(14)
C(9)-C(10)-Dy(1)	75.11(14)
C(10)-C(11)-C(7)	107.1(2)
C(10)-C(11)-C(12)	126.1(2)
C(7)-C(11)-C(12)	126.8(2)
C(10)-C(11)-Dy(1)	73.42(14)
C(7)-C(11)-Dy(1)	74.71(14)
C(12)-C(11)-Dy(1)	120.03(17)
O(1)-C(13)-C(14)	104.2(2)
C(13)-C(14)-C(15)	102.7(2)
C(14)-C(15)-C(16)	102.1(2)
O(1)-C(16)-C(15)	106.2(2)

Symmetry transformations used to generate equivalent atoms:

References

- (1) APEX2 Version 2008.3-0, Bruker AXS, Inc.; Madison, WI 2008.
- (2) Sheldrick, G. M. CELL_NOW, Version 2008/2, Bruker AXS, Inc.; Madison, WI 2008.
- (3) SAINT Version 7.68a, Bruker AXS, Inc.; Madison, WI 2009.
- (4) Sheldrick, G. M. TWINABS, Version 2008/4, Bruker AXS, Inc.; Madison, WI 2008.
- (5) Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- (6) International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- (7) APEX2 Version 2010.9-1, Bruker AXS, Inc.; Madison, WI 2010.
- (8) SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- (9) G. M. Sheldrick, SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- (10) S. Parsons, H. D. Flack, and T. Wagner, Acta Cryst. 2013, B69, 249.
- (11) G. M. Sheldrick, SADABS, Version 2008/1, Bruker AXS, Inc.; Madison, WI 2008.
- (12) A. L. Spek, SQUEEZE Acta. Cryst. 2015, C71, 9.
- (13) APEX2 Version 2014.9-0, Bruker AXS, Inc.; Madison, WI 2014.
- (14) A. L. Spek, PLATON, Acta. Cryst. 2009, D65, 148.
- (15) G. M. Sheldrick, CELL_NOW, Version 2008/4, Bruker AXS, Inc.; Madison, WI 2008.
- (16) G. M. Sheldrick, TWINABS, Version 2012/1, Bruker AXS, Inc.; Madison, WI 2012.
- (17) APEX2 Version 2014.1-1, Bruker AXS, Inc.; Madison, WI 2014.
- (18) G. M. Sheldrick, SADABS, Version 2014/2, Bruker AXS, Inc.; Madison, WI 2014.
- (19) G. M. Sheldrick, SHELXTL, Version 2014/2, Bruker AXS, Inc.; Madison, WI 2014.
- (20) APEX2 Version 2014.9-0, Bruker AXS, Inc.; Madison, WI 2014.

Definitions:

 $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$

Goof = S = $[\Sigma[w(F_o^2-F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.