Supporting information

to the manuscript

Hydridosilylamido complexes of Ta and Mo isolobal with Berry's zirconocenes: syntheses, β -Si-H agostic interactions, catalytic hydrosilylation, and insight into mechanism

Nicolas A. McLeod, Lyudmila G. Kuzmina, Ilia Korobkov, Judith A. K. Howard and Georgii I. Nikonov

Contents

I.	Experimental Details	SI2
II.	General Procedure for Hydrosilylation	SI15
III.	X-ray diffraction studies	SI15
IV.	References	SI18

Experimental

All manipulations were carried out using conventional inert atmosphere glove-box and Schlenk techniques. Dry diethyl ether, toluene, hexanes, and acetonitrile were obtained, using Grubbs-type purification columns, other solvents were dried by distillation from appropriate drying agents. Dimethoxyethane (DME) was dried over sodium benzophenone ketyl and collected through distillation. C_6D_6 , PhMe-d₈ were dried by distillation from K/Na alloy, and CDCl₃ was dried by distillation from CaH₂. NMR spectra were obtained with a Bruker DPX-300 and Bruker DPX-600 instruments (¹H: 300 and 600 MHz; ²H: 92.1 MHz; ¹³C: 75.5 and 151 MHz; ²⁹Si: 59.6 and 119.2 MHz; ³¹P: 121.5 and 243 MHz; ¹¹B: 96.3 and 192.6 MHz). NMR analysis was done at room temperature unless specified. IR spectra were measured on a Perkin-Elmer 1600 FT-IR spectrometer. (RN)₂MoCl₂(DME) (R = Ar, ^{*t*}Bu; Ar = 2,6-diisopropylphenyl, ^{*t*}Bu = *tert*-butyl) were prepared *via* literature preparation.¹

Preparation of Cp(ArN)Ta[N(SiHMe₂)^tBu](Cl) (1)

Cp(ArN)TaCl₂ (0.102 g, 0.06 mmol) was dissolved in 10 mL of Et₂O. A solution of LiN(SiHMe₂)¹Bu·THF (0.014 g, 0.07 mmol) in 5 mL of Et₂O was added directly to this at room temperature. This was allowed to stir overnight upon which time all volatiles were removed. The product was extracted using 20 mL of hexanes. The resulting filtrate was reduced in volume (2 mL) and allowed to crystallize overnight at -30 °C. ¹H-NMR (300 MHz, Benzene-*d*₆, 22 °C, δ, ppm): 0.21 (d, 3H, SiH*Me*₂, ³*J*_{H-H} = 3.6 Hz), 0.31 (d, ³*J*_{H-H} = 3.6 Hz, 3H, SiH*Me*₂), 1.30 (s, 9H, ^{*i*}*bu*N), 1.35 (d, ³*J*_{H-H} = 6.9 Hz, 6H, C*H*₃, *Ar*N), 1.39 (d, ³*J*_{H-H} = 6.9 Hz, 6H, C*H*₃, *Ar*N), 4.13 (sept., ³*J*_{H-H} = 7.5 Hz, 1H, *p*- *Ar*N), 7.18 (d, ³*J*_{H-H} = 7.5 Hz, 2H, *m*- *Ar*N). ¹³C {¹H}-NMR (75.5 MHz; Benzene-*d*₆, 22 °C, δ, ppm): -1.62 (s, CH₃, Si*Me*₂), 1.47 (s, CH₃, Si*Me*₂), 24.65 (s, CH₃, *Ar*N), 25.17 (s, *CH*₃, *Ar*N), 27.18 (s, CH, *Ar*N), 35.31 (s, *CH*₃, ^{*t*}*Bu*N), 61.23 (s, NC(CH₃)₃, ^{*t*}*Bu*N), 110.4 (s, *C*₅H₅, *Cp*), 123.0 (s, *p*-*Ar*N), 124.2 (s, *m*-*Ar*N), 145.6 (s, *o*-*Ar*N), 150.7 (s, *i*-*Ar*N). ²⁹Si INEPT+ (119 MHz, Benzene-*d*₆, 22 °C, *J* = 200 Hz, δ, ppm): 26.1 (d, ¹*J*_{Si-H} = 183.6 Hz). Elem. Anal. (%): calc. for C₂₃H₃₈CITaN₂Si (587.05) C 47.06, H 6.52, N 4.77; found C 47.31. H 6.42, N 4.65.

Figure SI1. ¹H-NMR (400 MHz, Benzene- d_6) – Cp(ArN=)Ta[N^tBu(SiHMe₂)]Cl (1)

Figure SI2. ¹³C{¹H} NMR (150.9 MHz, Benzene- d_6) - Cp(ArN=)Ta[N^tBu(SiHMe₂)]Cl (1)

Figure SI3. ²⁹Si INEPT+ (119 MHz, Benzene- d_6) - Cp(ArN=)Ta[N^tBu(SiHMe₂)]Cl (1)

NMR scale generation of Cp(ArN)Ta{ η^3 -N^tBu-SiMe₂-H}(H) (2)

Cp(ArN)Ta(H)(Cl)(PMe₃) (0.023 g, 0.04 mmol) and LiN(^tBu)SiHMe₂·THF (0.009 g, 0.04 mmol) were added to two separate vials and dissolved in 0.3 mL of C₆D₆ each. BPh₃ (0.010 mg, 0.04 mmol) was added directly to the Cp(ArN)Ta(H)(Cl)(PMe₃) solution, quickly followed by the LiN(^tBu)SiHMe₂·THF solution. This was mixed thoroughly and transferred to an NMR tube. ¹H-NMR (300 MHz, Benzene-*d*₆, 22 °C, δ, ppm): 0.08 (d, ³*J*_{H-H} = 3.6 Hz, 3H, Si*Me*₂), 0.23 (d, ³*J*_{H-H} = 3.6 Hz, 3H, Si*Me*₂), 1.31 (s, 9H, ^{*t*}*Bu*N), 1.37 (dd, ³*J*_{H-H} = 6.9 Hz, 12H, C*H*₃, *Ar*N), 3.12 (d quart, ²*J*_{H-H} = 3.6 Hz, ³*J*_{H-H} = 7.5 Hz, 1H, Si-*H*), 4.84 (sept, ³*J*_{H-H} = 6.9 Hz, 2H, C*H*, *Ar*N), 5.87 (s, 5H, *Cp*), 6.92 (t, ³*J*_{H-H} = 7.5 Hz, 1H, *p*-Ar), 7.17 (d, ³*J*_{H-H} = 7.5 Hz, 2H, *m*-Ar), 12.05 (d, ²*J*_{H-H} = 3.6 Hz, 1H, Ta-*H*). ²⁹Si INEPT+ (119 MHz, Benzene-*d*₆, 22 °C, *J* = 200 Hz, δ, ppm): -59.7 (d, ¹*J*_{Si-H} = 155.0 Hz).

Figure SI5. ²⁹Si INEPT+ (119 MHz, Benzene- d_6) - Cp(ArN)Ta{ η^3 -N^tBu-SiMe₂-H}(H) (2)

Preparation of (ArN)₂Mo[N(SiHMe₂)^{*t*}Bu](Cl) (3)

(ArN)₂MoCl₂(DME) (0.877 g, 1.56 mmol) was added to a flask and dissolved in 50 mL of toluene. This solution was added to Li(N(^tBu)SiHMe₂ (0.317 g, 1.51 mmol) in 10 mL of toluene, to produce a dark red mixture with formation of a white precipitate. After stirring for one day at room temperature the mixture was filtered and product extracted with 10 mL of toluene. The solution was placed in the -80°C freezer for six days where large dark red crystals were seen. These were washed with cold (-30°C) hexane and dried in vacuum. Yield: 0.8142g, 88%. ¹H-NMR (300 MHz, Benzene-d₆, 22 °C, δ , ppm): 6.97 (d, ³J_{H-H} = 7.4 Hz, 4 H, *m*-Ar), 6.91 (t, ³J_{H-H} = 7.4 Hz, 2H, *p*-Ar), 5.64 (sept, ³J_{H-H} = 3.3 Hz, 1 H, SiHMe₂), 3.92 (sept, ³J_{H-H} = 6.9 Hz, 4 H, CHMe₂, Ar), 1.41 (s, 9 H, ¹Bu), 1.20 (d, ³J_{H-H} = 6.9 Hz, 12 H, CHMe₂, Ar), 1.13 (d, ³J_{H-H} = 6.9 Hz, 12 H, CHMe₂, Ar), 0.36 (d, ³J_{H-H} = 3.3 Hz, 6 H, SiHMe₂). ¹³C{¹H}-NMR (75.5 MHz; Benzene-d₆, 22 °C, δ , ppm): 153.9 (*i*-Ar), 143.2 (*o*-Ar), 127.0 (*m*-Ar), 123.0 (*p*-Ar), 62.1 (NC(CH₃)₃), 34.2 (NC(CH₃)₃), 28.2 (Ar-CHMe₂), 24.4 (Ar-CHMe₂), 23.6 (Ar-CHMe₂), 0.6 (Si(CH₃)₂). ²⁹Si INEPT+ (119 MHz, Benzene-d₆, 22 °C, *J* = 180 Hz, δ , ppm): -25.18 (d sept, ¹J_{Si}-H = 172.9 Hz). IR (Nujol): 1971 cm⁻¹ (Si-H). Elem. Anal. (%): calc. for C₃₀H₅₀ClMoN₃Si (612.22) C 58.85, H 8.23, N 6.86; found C 58.48. H 7.85, N 6.47.

Figure SI6. ¹H-NMR (400 MHz, Benzene- d_6) – (ArN=)₂Mo[N^tBu(SiMe₂H)]Cl (3)

Figure SI7. ¹³C{¹H}-NMR (150.9 MHz, Benzene- d_6) - (ArN=)₂Mo[N^tBu(SiMe₂H)]Cl (3)

NMR scale preparation of $(ArN)_2Mo(\eta^3-N^tBu-SiMe_2-H)(H)$ (4)

(ArN)₂Mo[N(⁴Bu)SiHMe₂]Cl (0.022 g, 0.04mmol) was dissolved in C₆D₆ and transferred to an NMR tube. L-Selectride (36.0 µL, 0.04 mmol, 1.6 M in THF) was added directly to the NMR tube via a 50 µL syringe. This solution was thoroughly mixed and after 15 minutes at room temperature, selective formation of **4**. Attempted scale-ups (1-2 mmol scale) of this reaction resulted in a red oily material which does not precipitate from hexane or ether even upon cooling to – 30 °C and – 80 °C, whereas slow removal of volatiles by vapour diffusion regenerates the original red oil. ¹H-NMR (300 MHz, Benzene-*d*₆, 22 °C, δ , ppm): 7.02 (d, ³*J*_{H-H} = 6.98 Hz, 4 H, *m*-Ar), 6.94 (t, ³*J*_{H-H} = 6.98 Hz, 2H, *p*-Ar), 6.49 (d, ³*J*_{H-H} = 3.0 Hz, 1 H, Mo-H), 4.13 (d sept, ³*J*_{H-H} = 3.0 Hz, ²*J*_{H(MO)-H} = 3.0 Hz, 1 H, Si*H*Me₂), 4.06 (sept, ³*J*_{H-H} = 6.9 Hz, 4 H, C*H*Me₂, Ar), 1.35 (s, 9 H, ⁴Bu), 1.21 (d, ³*J*_{H-H} = 7.2 Hz, 12 H, CH*Me*₂, Ar), 1.18 (d, ³*J*_{H-H} = 6.6 Hz, 12 H, CH*Me*₂, Ar), 0.22 (d, ³*J*_{H-H} = 3.0 Hz, 6H, SiH*Me*₂). ¹³C{¹H}-NMR (75.5 MHz; Benzene-*d*₆, 22 °C, δ , ppm): 153.1 (*i*-Ar), 141.9 (*o*-Ar), 125.5 (*m*-Ar), 122.5 (*p*-Ar), 59.0 (NC(CH₃)₃), 35.1 (NC(CH₃)₃), 27.9 ([Ar-CHMe₂]₂), 23.7 (Ar-CH*Me*₂), 23.1 (Ar-CH*Me*₂), 0.9 (Si(*C*H₃)₂). ²⁹Si INEPT+ (119 MHz, Benzene-*d*₆, 22 °C, *J* = 125 Hz, δ , ppm): -52.9 (d, ¹*J*_{Si-H} = 125.3 Hz). IR (Nujol): 1886 cm⁻¹ (Si-H-Mo), 1710 cm⁻¹ (Mo-H).

Figure SI10. ¹**H-NMR** (400 MHz, Benzene- d_6) – (ArN=)₂Mo(η^3 -N'Bu-SiMe₂-H)(H) (4)

Figure SI11. ¹³C{¹H} **NMR** - (150.9 MHz, Benzene-*d*₆) - (ArN=)₂Mo(η^3 -N^{*t*}Bu-SiMe₂-H)(H)

(4)

Figure SI12. ²⁹Si INEPT+ (119 MHz, Benzene- d_6) - (ArN=)₂Mo(η^3 -N^tBu-SiMe₂-H)(H) (4)

Figure SI13. ¹H-¹H COSY (600 MHz, Benzene- d_6) - (ArN=)₂Mo(η^3 -N'Bu-SiMe₂-H)(H) (4)

Figure SI14. ¹H-²⁹Si HSQC (600 MHz/119 MHz, Benzene- d_6 , J = 200 Hz) - (ArN=)₂Mo(η^3 -N^tBu-SiMe₂-H)(H) (4)

Preparation of (ArN)₂Mo[N(SiHMe₂)^tBu](Me) (5)

(ArN)₂Mo[N(SiHMe₂)^tBu]Cl (0.252 g, 0.41 mmol) was dissolved in 10 mL of Et₂O and transferred to a small flask, along with a solution of LiMe (0.26 mL, 0.41 mmol; 1.6 M in Et₂O) at room temperature and stirred for 30 minutes. The mixture was filtered and washed with 2 x 3 mL of Et₂O followed by volume reduction in vacuum to 2 mL, then placed in a -30°C freezer for two days. After this time, light orange crystalline solid grew on the sides of the flask. The solution was decanted and the residue was dried in vacuum to give 5 as the sole product. (0.048 g; 20 % yield). ¹H-NMR (300 MHz, Benzene-d₆, 22 °C, δ , ppm): 7.01 (d, ³J_{H-H} = 7.4 Hz, 4H, m-Ph, ArN,), 6.95 (d, ${}^{3}J_{H-H} = 7.0$ Hz, 1H, p-ArN, ${}^{3}J_{H-H} = 7.0$ Hz), 6.94 (d, ${}^{3}J_{H-H} = 7.0$ Hz, 1H, p-ArN), 5.18 (sept, ${}^{3}J_{H-H} = 3.3$ Hz, 1H, SiH), 3.88 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 4H, CH, ArN), 1.54 (s, 3H, MoMe), 1.36 (s, 9H, ^tBuNSiHMe₂), 1.18 (d, ³ $J_{H-H} = 6.8$ Hz, 12H, CH₃, ArN), 1.14 (d, ³ $J_{H-H} = 6.9$ Hz, 12H, CH₃, ArN), 0.31 (d, ${}^{3}J_{H-H} = 3.4$ Hz, 6H, SiMe₂). ${}^{13}C{}^{1}H$ -NMR (75.5 MHz; Benzene*d*₆, 22 °C, δ, ppm): 153.4 (*i*-Ar), 142.0 (*o*-Ar), 125.3 (*p*-Ar), 122.7 (*m*-Ar), 60.14 (*C*(CH₃), ^{*t*}*Bu*N), 35.10 (CH₃, ^tBuN), 28.09 (CH, ArN), 24.16 (CH₃, ArN), 23.55 (CH₃, ArN), 20.57 (MoMe), 0.85 $(SiMe_2)$. ²⁹Si INEPT+ (119 MHz, Benzene- d_6 , 22 °C, J = 150 Hz, δ , ppm): -32.60 (dsept, $SiMe_2H$, ${}^{1}J_{Si-H} = 166.0$ Hz, ${}^{2}J_{Si-H} = 7.0$ Hz). Elem. Anal. (%): calc. for C₃₁H₅₃MoN₃Si (591.799) C 62.92, H 9.03, N 7.10; found C 61.01. H 9.53, N 6.55. Several attempts to obtain better elemental analyses from three different laboratories returned results consistently low in carbon even when single crystals of 5 were submitted. We attribute this failure to incomplete combustion due to the formation of molybdenum carbides as a result of the presence of direct Mo-C bond in the starting compound.

Figure SI15. ¹H-NMR (400 MHz, Benzene- d_6) – (ArN=)₂Mo[N^tBu(SiMe₂H)]Me (5)

Figure SI16. ¹³C{¹H}-NMR (150.9 MHz, Benzene- d_6) - (ArN=)₂Mo[N^tBu(SiMe₂H)]Me (5)

Figure SI18. ²⁹Si INEPT+ (119 MHz, Benzene- d_6) - (ArN=)₂Mo[N^tBu(SiMe₂H)]Me (5)

Preparation of (ArN)₂Mo[N(SiHMe₂)^tBu](OBn) (8)

To a freshly prepared sample of $(ArN)_2Mo(\eta^3-N(^tBu)Si(Me_2)-H)(H)$ (0.764 mmol) in toluene (10 mL) using the procedure described above, benzaldehyde (77.9 µL, 0.400 mmol) was directly added *via* 100 µL syringe. The dark brown solution turned a light red colour. Volatiles were removed in vacuum to give a red oil. A small amount of hexanes was added and the solution was cooled to -80°C overnight. A light orange solid was observed after one night in the -80 °C

freezer, so the solution was decanted and washed with cold hexane (2 mL) to give 0.160 g of pure (ArN)₂Mo(N(^{*t*}Bu)SiMe₂H)(OBn). Yield: 31 %. However, numerous attempts to obtain a satisfactory elemental analysis failed. ¹H-NMR (300 MHz, Benzene-d₆, 22 °C, δ , ppm): 0.37 (d, ³*J*_{H-H} = 3.4 Hz, 6H, Si*Me*₂), 1.09 (d, ³*J*_{H-H} = 6.8 Hz, 12 H, C*H*₃, *Ar*N), 1.16 (d, ³*J*_{H-H} = 6.8 Hz, 12 H, C*H*₃, *Ar*N), 1.16 (d, ³*J*_{H-H} = 6.8 Hz, 12 H, C*H*₃, *Ar*N), 1.44 (s, 9H, ^{*t*}*Bu*N), 3.88 (sept, 4H, C*H*, *Ar*N, ³*J*_{H-H} = 6.8 Hz), 5.55 (sept, ³*J*_{H-H} = 3.3 Hz, 1H, Si*H*), 5.74 (s, 2H, C*H*₂, OBn), 6.92 (m, 2H, *p*-Ph, *Ar*N), 6.99 (m, 4H, *m*-Ph, *Ar*N). ¹³C{¹H}-NMR (75.5 MHz; Benzene-*d*₆, 22 °C, δ , ppm): 1.85 (s, CH₃, Si*Me*₂), 23.47 (s, CH₃, *Ar*N), 24.33 (s, CH₃, *Ar*N), 28.09 (s, CH, *Ar*N), 34.51 (s, CH₃, ^{*t*}*Bu*N), 79.59 (s, CH₂, OBn), 122.83 (s, *p*-Ph, *Ar*N), 125.85 (s, *m*-Ph, *Ar*N). ²⁹Si INEPT+ (119 MHz, Benzene-*d*₆, 22 °C, *J* = 125 Hz, δ , ppm): -21.92 (d sept, HSi*M*e₂, ¹*J*_{Si-H} = 176.4 Hz, ²*J*_{Si-H} = 6.9 Hz).

Figure SI19. ¹H-NMR (400 MHz, Benzene- d_6) – (ArN=)₂Mo[N^tBu(SiMe₂H)](OBn) (8)

Figure SI20. ¹³C{¹H} **DEPT-135 NMR** - (150.9 MHz, Benzene-*d*₆) - (ArN=)₂Mo[N^tBu(SiMe₂H)](OBn) (8). This spectrum was taken from an NMR tube reaction sample containing THF from the hydride generation step.

Figure SI21. ¹**H-**¹³**C HSQC** (600 MHz/151 MHz, Benzene-*d*₆) -

(ArN=)₂Mo[N^tBu(SiMe₂H)](OBn) (8). This spectrum was taken from an NMR tube reaction sample containing THF from the hydride generation step.

Reaction of (ArN)₂Mo[N(SiHMe₂)^tBu](OBn) (8) with PhHC=O and D₃SiPh.

To the NMR tube containing 0.0249 g (0.0364 mmol) $(ArN)_2Mo(\eta^3-N(^tBu)Si(Me_2)-H)(OBu)$ in 0.6 mL of C₆D₆ were added benzaldehyde (2.95 µL, 0.0364 mmol) and D₃SiPh (3.69 µL, 0.0364 mmol). NMR spectrum taken 20 min after keeping at room temperature showed the formation of the partially deuterated hydrosilylation product PhH_xD_ySiOCH_zD_kPh (x+y=2; z+k=2).

General Procedure for hydrosilylation using $(ArN)_2Mo(N(SiHMe_2)^tBu)(OBn)$ or $(ArN)_2Mo(\eta^3-N^tBu-SiMe_2-H)(H)$

To an NMR tube loaded with either $(ArN)_2Mo[N(SiHMe_2)^tBu](OBn)$ (5 mol %) or $(ArN)_2Mo(\eta^3-N(^tBu)Si(Me_2)-H)(H)$ (5 mol %) in 0.6 mL of C_6D_6 , silane and carbonyl were added in a 1:1 ratio sequentially. The reactions were monitored by ¹H-NMR spectroscopy at room temperature over the appropriate length of time. All structures were determined using 2D-NMR techniques or compared to known spectra.

Crystal structure determination

X-ray quality crystals of complex 3 were grown from a toluene solution at -80 °C. A single crystal of 3 was mounted in a film of perfluoropolyether oil on a glass fibre and

transferred to a Siemens three-circle diffractometer with a CCD detector (SMART-1K system). The data were corrected for Lorentz and polarization effects.

Crystals of complex **5** were grown from an ether solution at -30 °C. A single crystal of **5** was mounted on a glass fibre using paraffin oil. Prior to data collection the crystal was cooled to 200 °K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. The data collection results represent the best data sets obtained in several trials for each sample. Raw data collection and processing were performed with APEX II software package from BRUKER AXS.² Diffraction data were collected with a sequence of 0.5° ω scans at 0, 120, and 240° in φ . Initial unit cell parameters were determined from 60 data frames with 0.3° ω scan each collected at the different sections of the Ewald sphere. Semi-empirical absorption corrections based on equivalent reflections were applied.³

Both structures were solved by direct methods⁴ and refined by full-matrix least squares procedures based on $F^{2.5}$ The solutions yielded a chemically reasonable and computationally stable result of refinement. For all structures the positions of hydrogen atoms attached to silicon were found as residual electron density peaks from the Fourier maps and their positions were refined isotropically. The hydrogen atoms directly attached to carbon atoms were restrained to riding models and were consecutively treated as idealized contributions during the refinement. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12.⁶ Crystal and structure refinement data are given in Table SI1.

	3	5
Empirical formula	C ₃₀ H ₅₀ MoN ₃ ClSi	C ₃₁ H ₅₃ MoN ₃ Si
Formula weight	612.21	591.79
Crystal size, mm ³	0.38 x 0.16 x 0.05	0.11 x 0.08 x 0.06
Crystal system	Triclinic	triclinic
Space group	P1	P1
Unit cell dimensions:		
a, Å	10.1926(8)	10.8122(14)
b, Å	10.7193(9)	10.8705(14)

 Table SI1 Crystal and structure refinement data for 3 and 5.

c, Å	16.7763(17)	16.219(2)
a, deg	71.491(3)	108.896(2)
β, deg.	86.247(5)	90.882(3)
γ, deg	69.622(3)	110.844(2)
Volume, Å ³	1627.3(2) Å	1667.0(4)
Z	2	2
Density (calculated), g/cm ³	1.249	1.179
Absorption coefficient, mm ⁻¹	0.544	0.451
F(000)	648	591.79
Diffractometer	Bruker SMART-1K	Bruker AXS SMART
Temperature, K	123(2)	200(2)
Radiation, (lambda, Å),	(0.71073) Mo K _α	(0.71073) Mo K _α
θ range for data collection, deg	1.28 to 28.50	2.04 to 24.86
Index ranges	$-13 \le h \le 13,$	$-12 \le h \le 12$,
	$-14 \le k \le 14,$	$-12 \le k \le 12,$
	$-22 \le l \le 22$	$-19 \le 1 \le 19$
Reflections collected	14574	11842
Independent reflections	8098 [R(int) = 0.0669]	5716 [R(int) = 0.0497]
Absorption correction	Multi-scan (SADABS)	Semi-empirical from
		equivalents
Max. transmission	0.8456	0.7451
Min. transmission	0.5638	0.6227
Refinement method	Full-matrix least-square on F^2	Full-matrix least-square on F^2
Data / restraints / parameters	8098 / 0 / 329	5716 / 0 / 331
Goodness-of-fit on F ²	0.928	1.012
Final R indices [I>2sigma(I)]	R1 = 0.0613, wR2 = 0.1366	R1 = 0.0487, wR2 = 0.0961
R indices (all data)	R1 = 0.0999, wR2 = 0.1477	R1 = 0.0757, wR2 = 0.1065
Largest diff. peak and hole,	1.241 and -2.602	0.437 and -0.418
e.Å ⁻³		

References

- ¹ P. W. Dyer, V. C. Gibson, J. A. K. Howard, B. Whittle, C. Wilson, *J. Chem. Soc., Chem. Commun.* 1992, 1666
- ² APEX Software Suite v.2010; Bruker AXS: Madison, WI, **2005**.
- ³ R. Blessing, *Acta Cryst.* 1995, **A51**, 33.
- ⁴ SHELXTL-Plus, Release 5.10; Bruker AXS Inc.:Madison, WI, 1997.
- ⁵ Olex-2 software: O.V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339.
- ⁶ G.M. Sheldrick, *Acta Cryst.* 2008, **A64**, 112.