Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

ESI

Contents

Table S1 Crystal data and structural refinement of 1

Table S2 Selected bond lengths (Å) and bond angles (°) in 1 at 296, 393 and 421 K

Table S3 Anisotropic and isotropic displacement parameters U_{ii} and $U_{iso}(Å^2)$ of 1 at 296K, 393K and 421K

Figure S1 Powder X-ray diffraction patterns at 298 K (experimental and simulated profiles) for as-prepared sample of **1** which confirms the phase purity of the asprepared sample.

Figure S2 TGA curve for 1 (the measurements were performed under N_2 atmosphere) disclosed that 1 is thermally stable below 300 °C.

Figure S3 Complex impedance plots of **1** at selected temperatures (a) at 333, 343, 353, 363, 373 and 383 K (b) the enlarged one at 373 and 383 K.

Figure S4 Variation in dielectric constant permittivity of both real and imaginary parts with temperature for **1**.

Figure S5 H-bonding interactions between the cation and the inorganic double chain for **1** in LT phase (at 296 K).

Figure S6 The π ... π stacking between two adjacent pyridyl rings containing N(3) atom for **1** in HT phase (at 421 K).

Figure S7 Illustration for the relative orientation changes between neighbouring cations in a cation arrangement as well as within an anion chain in (a, b and c) LT phase (d, e and f) HT phase viewed along the inorganic chain direction.

Figure 8 Solid-state PL spectra of 1 at (a) 223 K (b) 173 K (c, d) 10 K under variation of excited light.

Temperature	296 K	393 K	421 K	
Chemical formula		$C_{24}H_{41}I_6N_4Pb_2$		
Wavelength (Å)	0.71073	0.71073	0.71073	
CCDC numbers	1026623	1026624	1026625	
Crystal system	orthorhombic	orthorhombic	triclinic	
Space group	Pbcn	Pbcn	<i>P</i> -1	
a (Å)	20.7859(13)	21.089(3)	8.9573(17)	
b (Å)	8.8243(6)	8.9287(11)	14.924(3)	
c (Å)	42.787(3)	42.348(5)	15.212(3)	
α (°)	90	90	84.535(5)	
β(°)	90	90	86.831(5)	
γ (°)	90	90	89.177(5)	
V(Å ³) / Z	7848.0(9)/8	7974.0(18)/8	2021.1(7)/2	
Density (g·cm ⁻³)	2.645	2.603	2.498	
Abs coeff. (mm ⁻¹)	13.309	13.099	12.917	
F(000)	5568.0	5568.0	1308.0	
Data collect θ range	0.95-28.43	0.96-27.65	1.83-25.00	
	$-26 \le h \le 27$	$-27 \le h \le 27$	$-10 \le h \le 10$	
Index range	$-11 \le k \le 11$	$-11 \le k \le 10$	$-17 \le k \le 17$	
	$-54 \le l \le 45$	$-52 \le l \le 55$	$-18 \le l \le 18$	
Reflns collected	9697	9246	6880	
Independent reflns	6322	4195	3383	
Data/restraints/parameters	9697/0/327	9246/0/327	6880/389/306	
Goodness-of-fit on F ²	1.069	1.006	0.953	
Einel D indices $[I > 2 - (I)]$	$R_1 = 0.0489$	$R_1 = 0.0713$	$R_1 = 0.0825$	
Final K indices $[1 > 2\sigma(1)]$	$wR_2 = 0.1021$	$wR_2 = 0.1428$	$wR_2 = 0.1953$	

Table S1 Crystal data and structural refinement of 1

 $R_1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|, \ w R_2 = \Sigma w(|F_0|^2 - |F_c|^2)^2 / \Sigma w \ (|F_0|^2)^2]^{1/2}$

		1 (296 K)	1 (393 K)	1 (421 K)
	Pb1-I1	3.2650(5)	3.2451(12)	3.4150(17)
12	Pb1-I2	3.0477(9)	3.0279(13)	3.066(2)
	Pb1-I3	3.1380(9)	3.2086(13)	3.023(2)
13	Pb1-I4	3.1712(8)	3.0801(15)	3.331(2)
Pb1	Pb1-I6C	3.5167(9)	3.5530(8)	-
	I(2)-Pb(1)-I(3)	86.26(2)	89.20(4)	90.33(6)
11 16C	I(2)-Pb(1)-I(4)	93.87(2) 91.18(4)		104.45(5)
•114	I(3)-Pb(1)-I(4)	93.33(2) 91.27(4)		91.70(6)
	I(3)-Pb(1)-I(1A)	169.13(3)	177.46(4)	166.42(6)
	I(2)-Pb(1)-I(1A) 98.57(6) 1		102.79(3)	101.82(6)
	Pb2-I1B	3.5446(5)	3.4960(8)	3.6087(18)
I3B	Pb2-I3B	3.0949(9)	3.1731(12)	-
	Pb2-I4	3.1955(8)	3.1376(15)	3.331(2)
	Pb2-I5 3.0416(9) 3		3.0340(13)	3.1379(19)
14 • Pb2 • 16	I(5)-Pb(2)-I(3B)	I(5)-Pb(2)-I(3B) 88.77(2) 94.0		-
• 15	I(5)-Pb(2)-I(4)	90.89(2)	88.47(4)	90.31(6)
	I(3B)-Pb(2)-I(4)	89.83(2)	94.61(4)	-
▼ I6A	I(5)-Pb(2)-I(6) 88.31(2) 96.25(4)		96.25(4)	102.72(6)
	I(4)-Pb(2)-I(6)	176.49(2)	169.44(4)	175.85(6)

Table S2 Selected bond lengths (Å) and bond angles (°) in 1 at 296, 393 and 421 K

Table S3 Anisotropic and isotropic displacement parameters U_{ii} and U_{iso}(Å²) of 1 at 296K, 393K and 421K

C1	0.055(4)	0.050(4)	0.051(4)	0.0520(19)	0.087(7)	0.076(7)	0.072(7)	0.078(3)
C2	0.057(4)	0.053(4)	0.051(4)	0.054(2)	0.081(8)	0.071(7)	0.074(7)	0.075(4)
C3	0.056(5)	0.052(4)	0.049(4)	0.052(2)	0.088(9)	0.078(7)	0.071(8)	0.079(4)
C4	0.058(5)	0.045(4)	0.056(4)	0.053(2)	0.085(8)	0.068(7)	0.081(8)	0.078(4)
C5	0.055(4)	0.051(4)	0.053(4)	0.0531(19)	0.089(8)	0.085(7)	0.080(7)	0.085(3)
C6	0.055(4)	0.053(4)	0.052(4)	0.054(2)	0.089(8)	0.086(7)	0.082(7)	0.086(4)
C7	0.057(5)	0.061(4)	0.058(4)	0.058(2)	0.098(8)	0.113(8)	0.092(8)	0.101(4)
C8	0.061(4)	0.066(4)	0.066(4)	0.064(2)	0.107(8)	0.124(8)	0.105(8)	0.112(4)
С9	0.064(5)	0.074(5)	0.071(5)	0.070(3)	0.125(11)	0.162(10)	0.120(10)	0.135(5)
C10	0.080(6)	0.093(6)	0.082(6)	0.085(3)	0.136(11)	0.176(11)	0.130(11)	0.147(5)
C11	0.084(7)	0.107(7)	0.090(7)	0.094(3)	0.140(12)	0.199(12)	0.129(12)	0.156(6)
C12	0.096(9)	0.125(10)	0.098(9)	0.106(5)	0.19(2)	0.26(2)	0.18(2)	0.211(10)
C13	0.053(4)	0.043(4)	0.050(4)	0.0488(18)	0.094(8)	0.090(7)	0.079(7)	0.088(4)
C14	0.054(4)	0.039(4)	0.049(4)	0.048(2)	0.093(8)	0.074(7)	0.086(8)	0.084(4)
C15	0.052(5)	0.047(4)	0.047(4)	0.049(2)	0.093(9)	0.090(8)	0.079(8)	0.088(4)
C16	0.053(4)	0.040(4)	0.051(4)	0.048(2)	0.095(8)	0.086(7)	0.073(8)	0.084(3)
C17	0.051(4)	0.048(4)	0.052(4)	0.0507(19)	0.092(8)	0.086(7)	0.087(7)	0.087(3)
C18	0.054(4)	0.049(4)	0.052(4)	0.0516(19)	0.096(8)	0.098(7)	0.087(7)	0.093(4)
C19	0.054(4))	0.058(4)	0.058(4	0.057(2)	0.103(8)	0.117(8)	0.098(8)	0.106(4)
C20	0.064(4)	0.067(4)	0.066(4)	0.066(2)	0.107(8)	0.123(8)	0.107(8)	0.112(4)
C21	0.075(6)	0.087(5)	0.078(5)	0.080(3)	0.113(10)	0.139(9)	0.113(10)	0.122(5)
C22	0.091(6)	0.107(6)	0.095(6)	0.098(3)	0.133(11)	0.162(10)	0.130(10)	0.142(5)
C23	0.091(7)	0.121(7)	0.098(7)	0.103(4)	0.136(12)	0.185(12)	0.141(12)	0.154(6)
C24	0.115(10)	0.136(10)	0.115(10)	0.122(5)	0.19(2)	0.26(2)	0.19(2)	0.217(11)

13 14 15 14 16 16 16 10 10 10 10 10 10 10 10 10 10									
1 at 393 K					1 at 421 K				
Atom	U ₁₁	U ₂₂	U ₃₃	U _{iso}	U ₁₁	U ₂₂	U ₃₃	U _{iso}	
Pb1	0.0636(5)	0.0491(3)	0.0544(4)	0.0557(2)	0.0552(4)	0.0719(5)	0.0568(5)	0.0618(2)	
Pb2	0.0652(5)	0.0486(3)	0.0505(4)	0.0548(2)	0.0582(4)	0.0670(5)	0.0742(6)	0.0668(3)	
I1	0.0691(8)	0.0655(6)	0.0597(7)	0.0648(3)	0.0798(9)	0.0751(9)	0.0600(8)	0.0719(4)	
12	0.1074(11)	0.0635(7)	0.0680(8)	0.0796(4)	0.1155(13)	0.0828(11)	0.0912(11)	0.0970(5)	
13	0.1072(11)	0.0553(6)	0.0827(9)	0.0818(4)	0.0798(10)	0.1723(17)	0.0688(10)	0.1097(6)	
I4	0.0870(10)	0.0881(9)	0.0852(9)	0.0868(4)	0.0877(10)	0.0873(11)	0.1271(14)	0.0995(6)	
15	0.1049(11)	0.0787(7)	0.0636(8)	0.0824(4)	0.0799(10)	0.1395(14)	0.0772(10)	0.0986(5)	
16	0.0929(10)	0.0761(7)	0.0643(8)	0.0777(4)	0.0950(12)	0.0827(11)	0.1672(18)	0.1181(7)	
N1	0.108(11)	0.096(10)	0.091(10)	0.098(5)	0.132(18)	0.108(15)	0.054(12)	0.100(7)	
N2	0.081(7)	0.075(6)	0.069(6)	0.075(3)	0.106(15)	0.19(2)	0.070(13)	0.122(8)	
N3	0.116(12)	0.127(11)	0.104(11)	0.116(5)	0.094(13)	0.074(12)	0.095(14)	0.089(6)	
N4	0.090(7)	0.087(6)	0.079(7)	0.085(3)	0.16(2)	0.079(14)	0.17(2)	0.137(9)	
C1	0.087(7)	0.076(7)	0.072(7)	0.078(3)	0.085(17)	0.11(2)	0.11(2)	0.106(9)	
C2	0.081(8)	0.071(7)	0.074(7)	0.075(4)	0.039(10)	0.14(2)	0.061(14)	0.080(7)	

C3	0.088(9)	0.078(7)	0.071(8)	0.079(4)	0.080(15)	0.084(15)	0.073(15)	0.079(6)
C4	0.085(8)	0.068(7)	0.081(8)	0.078(4)	0.110(17)	0.114(18)	0.049(13)	0.091(7)
C5	0.089(8)	0.085(7)	0.080(7)	0.085(3)	0.080(16)	0.109(19)	0.12(2)	0.102(9)
C6	0.089(8)	0.086(7)	0.082(7)	0.086(4)	0.12(2)	0.17(3)	0.075(18)	0.124(10)
C7	0.098(8)	0.113(8)	0.092(8)	0.101(4)	0.25(4)	0.33(5)	0.13(3)	0.23(2)
C8	0.107(8)	0.124(8)	0.105(8)	0.112(4)	0.62(13)	0.50(9)	0.13(4)	0.42(5)
C9	0.125(11)	0.162(10)	0.120(10)	0.135(5)	0.22(4)	1.67(4)	0.14(4)	0.67(2)
C10	0.136(11)	0.176(11)	0.130(11)	0.147(5)	0.36(9)	1.39(13)	0.24(6)	0.64(5)
C11	0.140(12)	0.199(12)	0.129(12)	0.156(6)	0.43(12)	0.60(13)	0.40(9)	0.46(6)
C12	0.19(2)	0.26(2)	0.18(2)	0.211(10)	0.11(3)	0.27(6)	0.88(18)	0.42(6)
C13	0.094(8)	0.090(7)	0.079(7)	0.088(4)	0.098(2)	0.098(2)	0.098(2)	0.0979(19)
C14	0.093(8)	0.074(7)	0.086(8)	0.084(4)	0.1146(14)	0.1145(15)	0.1146(15)	0.1145(14)
C15	0.093(9)	0.090(8)	0.079(8)	0.088(4)	0.097(2)	0.097(2)	0.097(2)	0.0974(19)
C16	0.095(8)	0.086(7)	0.073(8)	0.084(3)	0.096(18)	0.109(19)	0.11(2)	0.104(8)
C17	0.092(8)	0.086(7)	0.087(7)	0.087(3)	0.081(15)	0.054(13)	0.13(2)	0.089(7)
C18	0.096(8)	0.098(7)	0.087(7)	0.093(4)	0.11(2)	0.14(2)	0.13(2)	0.127(10)
C19	0.103(8)	0.117(8)	0.098(8)	0.106(4)	0.34(6)	0.16(3)	0.18(4)	0.23(2)
C20	0.107(8)	0.123(8)	0.107(8)	0.112(4)	0.19(5)	0.74(14)	0.30(4)	0.42(5)
C21	0.113(10)	0.139(9)	0.113(10)	0.122(5)	0.41(8)	0.45(8)	0.24(4)	0.38(4)
C22	0.133(11)	0.162(10)	0.130(10)	0.142(5)	0.21(6)	0.10(3)	1.0(2)	0.46(7)
C23	0.136(12)	0.185(12)	0.141(12)	0.154(6)	0.32(6)	0.17(4)	0.25(5)	0.24(2)
C24	0.19(2)	0.26(2)	0.19(2)	0.217(11)	0.27(6)	0.26(6)	0.27(6)	0.27(3)

Figure S1 Powder X-ray diffraction patterns at 298 K (experimental and simulated profiles) for as-prepared sample of **1** which confirms the phase purity of the as-prepared sample.

Figure S2 TGA curve for 1 (the measurements were performed under N_2 atmosphere) disclosed that 1 is thermally stable below 300 °C.

Figure S3 Complex impedance plots of **1** at selected temperatures (a) at 333, 343, 353, 363, 373 and 383 K (b) the enlarged one at 373 and 383 K.

Figure S4 Variation in dielectric constant permittivity of both real and imaginary parts with temperature for **1**.

Figure S5 H-bonding interactions between the cation and the inorganic double chain for **1** in LT phase (at 296 K).

Figure S6 The π ... π stacking between two adjacent pyridyl rings containing N(3) atom for **1** in HT phase (at 421 K).

Figure S7 Illustration for the relative orientation changes between neighbouring cations in a cation arrangement as well as within an anion chain in (a, b and c) LT phase (d, e and f) HT phase viewed along the inorganic chain direction.

Figure 8 Solid-state PL spectra of 1 at (a) 223 K (b) 173 K (c, d) 10 K under variation of excited light.