Supporting information for

Solvent triggered structural diversity of triple-stranded helicates: single

molecular magnets[†]

Hongfeng Li, Peng Chen,* Wenbin Sun, Lei Zhang and Pengfei Yan*

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China E-mail: jehugu@gmail.com (Chen P.); yanpf@vip.sina.com (Yan P.).

1			
Dy1-014	2.351(9)	Dy2–015	2.342(9)
Dy1-013	2.357(9)	Dy2–O4	2.345(10)
Dy1-010	2.377(8)	Dy2-09	2.351(10)
Dy1-05	2.385(9)	Dy2–08	2.374(12)
Dy1-07	2.389(11)	Dy2–011	2.392(9)
Dy1-012	2.407(9)	Dy2–O6	2.411(10)
Dy1-017	2.444(11)	Dy2–O2	2.436(10)
Dy1-03	2.489(11)	Dy2-01	2.496(13)
2			
Dy1-07	2.290(5)	Dy2–O6	2.293(5)
Dy1-03	2.351(5)	Dy2-01	2.297(6)
Dy1-08	2.326(5)	Dy2–O2	2.328(5)
Dy1-04	2.348(5)	Dy2–O5	2.338(5)
Dy1-011	2.348(5)	Dy2–013	2.576(6)
Dy1-015	2.474(7)	Dy2–O9	2.311(5)
Dy1-012	2.289(6)	Dy2–014	2.489(5)
Dy1-016	2.484(6)	Dy2-010	2.336(5)
3			
Dy1-01	2.293(3)	Dy2-03	2.297(3)
Dy1-017	2.304(3)	Dy2–08	2.321(3)
Dy1-014	2.310(3)	Dy2–015	2.321(3)
Dy1-07	2.327(3)	Dy2-012	2.323(3)
Dy1-010	2.338(3)	Dy2–04	2.326(3)
Dy1-016	2.364(3)	Dy2–O9	2.343(3)
Dy1-05	2.418(3)	Dy2–O2	2.425(3)
Dy1-011	2.495(3)	Dy2-013_#1	2.472(2)

Table S1 Selected bond lengths for 1–3 (Å).

Symmetry transformations used to generate equivalent atoms: #1 x-1,y+1,z.

Fig. S1 TG curve of the precipitate $Dy_2(BTB)_3(H_2O)_4$.

Fig. S2 TG curve of 1.

Fig. S4 TG curve of 3.

Crystals of 1-3 have been selected for the thermogravimetric analysis in the experimental range of 30-780 degree, while higher temperature is unavailable because of the limitation of the equipment. TG analysis indicates a total weight loss of 79.66 wt% (calcd. 79.31 wt%) for 1. The first stage is ascribed to the loss of methanol (found 9.06 wt%, calcd. 8.73 wt%). And the second stage occurring at 300 deg is found for the removal of one ligand until 420 deg (found 24.74 wt%, calcd. 23.35 wt%). And the third stage consequently occurring is ascribed to the removal of the rest two ligands (found 45.86 wt%, calcd. 46.23 wt%). In the case of 2, a total weight loss of 79.49 wt% (calcd. 79.26 wt%) is observed. The first stage is ascribed to the loss of DME (found 10.31 wt%, calcd. 10.07 wt%). And the second stage occurring at 300 deg is found for the removal of one ligand until 420 deg (found 23.79 wt%, calcd. 23.81 wt%). And the third stage consequently occurring is ascribed to the removal of the rest two ligands (found 45.49 wt%, calcd. 46.62 wt%). In the case of 3, a total weight loss of 82.13wt% (calcd. 82.49 wt%) is found. The first stage is owing to the removal of 4.5 dioxane molecules (found 18.93 wt%, calcd. 18.61 wt%) before 140 degree and a further weight loss of 1.36 wt% (calcd. 1.69 wt%) is detected for the two water molecules attached to the Dy³⁺ centers until 260 degree. Consequently, a weight loss of 4.66 wt% (calcd. 4.14 wt%) is owing to the removal of a dioxane molecule, which bridges two adjacent helicates. The fourth stage occurring at 300 deg is found for the removal of one ligand until 420 deg (found 18.29 wt%, calcd. 20.10 wt%). And the last stage consequently occurring is ascribed to the removal of the rest two ligands (found 38.89 wt%, calcd. 37.95 wt%).

Fig. S5 The coordination geometry of Dy^{3+} ions in **1**.

Fig. S6 The coordination geometry of Dy^{3+} ions in 2.

Fig. S7 The coordination geometry of Dy^{3+} ions in **3**.

Fig. S8 Magnetization as a function of H/T for **1**.

Fig. S9 Magnetization as a function of *H*/*T* for **2**.

Fig. S10 Magnetization as a function of *H*/*T* for **3**.

Fig. S11 Temperature dependence of the in-phase (χ ', top) and the out-of-phase (χ '', bottom) ac susceptibility from 2 to 12 K under zero dc field for **1**.

Fig. S12 Temperature dependence of the in-phase (χ ', top) and the out-of-phase (χ '', bottom) ac susceptibility from 2 to 14 K under zero dc field for **2**.

Fig. S13 Temperature dependence of the in-phase (χ' , top) and the out-of-phase (χ'' , bottom) ac susceptibility from 2 to 12 K under zero dc field for **3**.

Fig. S14 Temperature dependence of the in-phase (χ ', top) and the out-of-phase (χ '', bottom) ac susceptibility from 2 to 12 K under 2000 Oe dc field for **1**.

Fig. S15 Temperature dependence of the in-phase (χ' , top) and the out-of-phase (χ'' , bottom) ac susceptibility from 2 to 14 K under 2000 Oe dc field for **2**.

Fig. S16 Temperature dependence of the in-phase (χ' , top) and the out-of-phase (χ'' , bottom) ac susceptibility from 2 to 8 K under 2000 Oe dc field for **3**.

Fig. S17 Frequency dependence of in-phase (χ' , top) and the out-of-phase (χ'' , bottom) ac magnetic susceptibilities for **3** under an applied field of 2000 Oe in the temperature range of 2–4 K.

Fig. S18 Cole-Cole plots using the ac susceptibility data of **2** under an applied field of 2000 Oe (2-6.5 K, 0.5K interval).

Fig. S19 Cole-Cole plots using the ac susceptibility data of 3 under an applied field of 2000 Oe (2-4 K, 0.2 K interval).