Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting information

Iron cyclopentadienone complexes derived from C2-symmetric bis-propargylic alcohols; preparation and applications to catalysis.

Roy Hodgkinson, Alessandro Del Grosso, Guy J. Clarkson and Martin Wills.

Department of Chemistry, Warwick University, Coventry, CV4 7AL, UK. +44 24 7652 3260. Email <u>m.wills@warwick.ac.uk</u>

Additional results Tables and hydride formation experiments	S2
NMR spectra of complexes and intermediates	S15
GC data for reduction products	S82
X-ray crystallographic data	S 86

Additional results Tables and hydride formation experiments.

 Table S1. Additional results for ATH of acetophenone reduction using iron catalysts 13, 18-21.^a

O C	Catalyst FA/TEA (5:2) 60 °C, 24h		H H						
Entry	Catal-	Load-	Activa-	Time	Τ/	Alco	For	alcoh	Forma
	yst	ing	tor		°C	hol	mate	ol ee /	te ee/
		/mol%				/%	/ %	%	%
3	18	5	TMAO	24 h	40	13	0	2 (<i>S</i>)	-
4	18	1	TMAO	24 h	40	0	0	-	-
5	19	5	TMAO	24 h	40	16	0	29 (R)	-
6	19	1	TMAO	24 h	40	0	0	-	-
7	20	5	TMAO	24 h	40	9	1	21 (<i>R</i>)	b
8	20	1	TMAO	24 h	40	0.5	0.5	b	b
9	21	5	TMAO	24 h	40	14	0	37 (<i>R</i>)	-
10	21	1	TMAO	24 h	40	0	0	-	-

a. reaction conditions; [S] = ca. 1 M, TMAO (1 eq. relative to complexes) unless otherwise indicated, % conversions are given and the balance is unreduced ketone. b. not determined.

		•		•••	
Entry	Loading /mol%	Solvent	$H_2O(\%)^{c}$	Conv	ee
1	1	$\mathrm{THF}^{\mathrm{b}}$	0	69.5	11.4 (S)
2	1	THF	0	31	12.6 (S)
3	1	$\mathrm{THF}^{\mathrm{d}}$	0	25.7	12.0 (S)
4	1	THF	10	46.7	10.0 (S)
5	1	THF	50	83.4	12.6 (S)
6	1	THF	100	98.7	11.4 (S)
7	1	THF/H ₂	2O (5/2)	99.8	13.6 (S)

Table S2. Effect of water on reaction in anhydrous THF using catalyst 13.^a

a. Reaction conditions; 1 mol% catalyst, [S] = ca. 1.9 M, 30 bar H2, THF (0.7 mL) used as solvent b. "aged" THF, likely to contain water. c. relative to substrate. d. Test tube dried in oven overnight and cooled under flow of N₂.

Observation of hydride formation on treatment of complex 13 in THF/H₂0 (ADG231).

In a J. Young's NMR tube fitted with a d_6 -DMSO capillary, under nitrogen atmosphere, complex **13** (20 mg, 4.1×10^{-2} mmol) was dissolved in THF (0.5 mL) and H₂O (74 µl, 4.1 mmol) was added. Then the mixture was degassed by three freeze-pump-thaw cycles, and heated to 80 °C. ¹H NMR spectra were recorded before heating and after 3 and 19 hours at 80 80 °C. On heating, insoluble materials were formed and a peak at -12.10 ppm consistent with

a Fe-H species appeared. Furthermore, all the peaks broadened suggesting the formation of paramagnetic iron species.

Figure 1. ¹H NMR series of the mixture of complex **13** with H_2O in THF (d6-DMSO capillary used to lock the signal) at room temperature (lower spectrum), 3 hours at 80 °C (middle spectrum) and 19 hours at 80 °C (upper spectrum).

Figure 2. Expanded ¹H NMR series of the mixture of complex **13** with H_2O in THF (d6-DMSO capillary used to lock the signal) at room temperature (lower spectrum), 3 hours at 80

°C (middle spectrum) and 19 hours at 80 °C (upper spectrum). The signals due to the complex are visible in this expanded spectrum.

Entry	Loading/mol%	Additive	H ₂ O added/% ^b	Conv/%	Ee /%
1	1	none	0	18.8	6.8 (<i>S</i>)
2	1	none	0	25.2	6.8 (<i>S</i>)
3	1	TMAO (1%)	0	99.7	4(S)
4	1	None	10	3.8	6.4 (<i>S</i>)
5	1	None	50	10.9	6.4 (<i>S</i>)
6	1	none	100	20.6	6.8 (<i>S</i>)

Table S3. Effect of water on acetophenone reduction in dry toluene using catalyst 13.^a

a. Reaction conditions; 1 mol% catalyst, [S] = ca. 1.9 M, 30 bar H₂, Toluene (0.7 mL) used as solvent, 80 °C, 18h. b. relative to substrate.

Table S4. Additional results for oxidation of 1-phenylethanol using iron catalysts 13, 18-21.^a

OH	Catalyst TMAO, 60 °C Acetone	° C				
Entry	Catalyst	Loading	Time	Alcohol	Ketone	Alcohol
		/ mol%	/ h	/ %	/ %	ee / %
6	18	1	5	85	15	2 (<i>R</i>)
7	18	1	24	23	77	0(R)
12	19	1	5	62	38	3 (<i>S</i>)
13	19	1	24	36	64	6 (<i>S</i>)
16	20	1	24	83	17	1 (<i>S</i>)
21	21	1	5	96	4	0(R)
22	21	1	24	65	35	1 (<i>R</i>)

a. Reaction conditions; 60 °C, [S] = 0.19M, acetone solvent, TMAO (1 eq. relative to complexes).

Table S5. Reduction of acetylcyclohexane using iron catalysts 13, 18-21.^a

Entry	APH/ATH	Catalyst	Loading / mol%	T / °C	Time / h	Alcohol ^b / %	Ketone / %
1	ATH	18	10	60	48	97	3
2	APH	18	1	60	72	Trace	>99
3	ATH	19	10	60	48	81	12
4	APH	19	1	60	72	Trace	>99
5	ATH	20	10	40	24	66	31
6	ATH	21	10	60	48	61	32
7	APH	21	1	60	72	Trace	>99

a. Reaction conditions; ATH: 100 mg of cyclohexylmethyl ketone, 10 mol% Fe Catalyst, 10 mol% TMAO, FA/TEA 5:2, [S] = 1.5M; APH: 30 bar H₂, 100 mg of cyclohexylmethyl ketone, 1 mol% Fe Catalyst, 5 mol% K₂CO₃, 0.5 ml iPrOH/0.2 ml H₂O b. products were racemic.

Entry	Conditions	Catalyst	Alcohol /%	ee / %
1	FA/TEA (5:2)	18	100	9 (<i>S</i>)
2	FA/TEA (5:2)	19	100	10 (<i>R</i>)
3	FA/TEA (5:2)	20	100	24 (<i>R</i>)
4	FA/TEA (5:2)	21	100	26 (<i>R</i>)
5	ⁱ PrOH	20	10.9	1 (<i>R</i>)
6	ⁱ PrOH	21	39.8	11 (<i>R</i>)
7	HCO ₂ Na/H ₂ O/DMF	20	0	-
8	HCO ₂ Na/H ₂ O/DMF	21	0	-

Table S6. ATH of 3,3-dimethyl-2-butanone using iron catalysts 13, 18-21.^a

a. Conditions; 10 mol% catalyst used, 24 h, 60 °C, [S] = ca.1.5M for FA/TEA, ca. 0.2M for IPA and H₂O

1.5M; DMF ca. 1M.

Table 57 . Pressure hydrogenation of 5,5-dimetriyi-2-butanone using catalysis 16-21										
Reaction	Catalyst	Alcohol			Ketone /	Alcohol				
number		Total /%	R /%	S /%	%	ee / %				
RCH1141	18	26	8.9	17.1	74	31 (<i>S</i>)				
		10	3.5	6.6	90	31 (<i>S</i>)				
RCH1050	19	0.4	0.2	0.2	99.6	-				
		0.2	0.1	0.1	99.8	-				
RCH1232	19	5.4	2.7	2.7	94.6	0				
		6.2	2.9	3.3	93.8	-				
RCH1051	21	5.2	4.2	1		$62^{b}(R)$				
		3.9	2.6	1.3		$33^{b}(R)$				
RCH1233	20	5.2	3.5	1.7	94.8	$34^{b}(R)$				
		5.4	3.7	1.7	94.6	$38^{b}(R)$				

 Table S7. Pressure hydrogenation of 3,3-dimethyl-2-butanone using catalysts 18-21.^a

a. 1 mol% catalyst, 72h, 60 °C, 30 bar H₂. b. Due to the low conversions, these values cannot be regarded as accurate.

Table S8. Transfer Hydrogenation using complexes 22-25.^a

Reac	Ketone	Catal	Activa-	Time	Т	Alcol	nol		Form	ate		Ketone
-tion		yst	tion	/h	/°C	%	R%	S%	%	R%	S%	/%
RCH	Acetophe	25	TMAO	24 (dark)	60	0			0			100
1212	none											
RCH	Acetophe	25	TMAO	24 (Light)	60	1.1	0.6	0.5	1.9	1.2	0.7	97
1212	none											
RCH	Acetophe	24	TMAO	24 (dark)	60	0			0			100
1213	none											
RCH	Acetophe	24	TMAO	24 (Light)	60	12.2	7.2	5	8.9	5	3.9	78.9
1213	none											
RCH	Acetophe	24	Blue	24	25	0			0			100
1220	none		Light									
RCH	acetophe	25	Blue	24	25	0			0			100
1221	none		Light									
RCH	acetophe	24	UV ($\lambda =$	24	25	0			0			100

1224	none		365 nm)		1	1	1	1				
RCH	acetophe	25	$UV (\lambda =$	24	25	0			0			100
1225	none	-0	365 nm			Ũ			Ũ			100
RCH	acetophe	23	TMAO	24	60	6	2.6	3.4	1	0.4	0.6	93
1217	none	-0			00	Ũ		011	-	0	0.0	10
RCH	acetophe	22	TMAO	24	60	4.9	2.5	2.4	1.1	0.5	0.6	94
1216	none									0.0		· ·
RCH	acetophe	22	Blue	24	25	0						100
1222	none		Light									
RCH	acetophe	23	Blue	24	25	0						100
1223	none		Light									
RCH	acetophe	22	UV ($\lambda =$	24	25	0						100
1226	none		365 nm)									
RCH	acetophe	23	UV ($\lambda =$	24	25	0						100
1227	none		365 nm)									
RCH	Pinacolo	25	TMAO	24 (dark)	60	0						100
1214	ne											
RCH	Pinacolo	25	TMAO	24 (Light)	60	7	2.9	4.1				93
1214	ne											
RCH	Pinacolo	24	TMAO	24 (dark)	60	0						100
1215	ne											
RCH	Pinacolo	24	TMAO	24 (Light)	60	0.5	0.3	0.2				99.5
1215	ne											
RCH	Pinacolo	23	TMAO	24	60	0						100
1217	ne											
RCH	Pinacolo	22	TMAO	24	60	0						100
1218	ne											

a. reaction conditions; [S] = ca. 1 M, TMAO (1 eq. relative to complexes) unless otherwise indicated.

Reaction	Ketone	Catalyst	Alcohol			Ketone /%
			Total /%	R /%	S /%	
RCH1206	Acetophenone	24	0.8	0.5	0.3	98.9
			0.6	0.4	0.2	99.1
RCH1207	Acetophenone	25	2	1.2	0.8	97.7
			2.1	1.2	0.9	97.7
RCH1229	Acetophenone	22	0.2	0.1	0.1	99.8
			0.2	0.1	0.1	99.8
RCH1228	Acetophenone	23	0.4	0.1	0.3	99.6
			0.2	0	0.2	99.8
RCH1208	pinacolone	24	1	0.5	0.5	98.9
			2	1	1	98.1
RCH1209	pinacolone	25	4.5	2.2	2.3	95.5
			3.1	1.5	1.6	96.9
RCH1231	Pinacolone	22	0.2	0.1	0.1	99.8
			0.2	0.1	0.1	99.8
RCH1230	Pinacolone	23	0.2	0.1	0.1	99.8
			0.4	0.2	0.2	99.6

Table S9. Pressure hydrogenation using Monophos complexes.^a

a. Reaction conditions; 1 mol% catalyst, [[S] = 0.83 (100 mg), 30 bar H₂, iPrOH/H₂O (0.5 ml/0.2 ml) used as solvent.

Table S10. Effect of added phosphine on APH of acetophenone using catalyst 13.^a

Entry	Activator (mol%)	Additive (%)	Conv	ee
1	TMAO (1%)	$PPh_{3}(1\%)$	93.5	10.6 (<i>S</i>)
2	TMAO (2%)	$PPh_{3}(1\%)$	60.4	7.8 (<i>S</i>)
3	TMAO (3%)	$PPh_{3}(1\%)$	11.2	8.8 (<i>S</i>)
4	TMAO (2%)	PPh ₃ (2%)	0	
5	TMAO (3%)	PPh ₃ (2%)	0	

a. Reaction conditions; 1 mol% catalyst, [S] = 1.9 M (206 mg, 200 µl), 30 bar H₂, iPrOH/H₂O (0.5 ml/ 0.2mL) used as solvent, 80 °C, 18h.

Table S11. Effect of added MONOPHOS on APH of acetophenone using catalyst 13.^a

Entry	Activator (mol%)	Additive (1 mol%)	Conv./%	Ee ^b /%
1	TMAO (1%)	(R)-MONOPHOS	99.8	10 (<i>S</i>)
2	TMAO (2%)	(R)-MONOPHOS	66.4	9 (<i>S</i>)
3	TMAO (1%)	(S)-MONOPHOS	99.7	12 (S)
4	TMAO (2%)	(S)-MONOPHOS	54.2	9 (<i>S</i>)

a Reaction conditions; 1 mol% catalyst, [S] = 1.9 M (206 mg, 200 µl), 30 bar H₂, iPrOH/H₂O (0.5 ml/ 0.2mL) used as solvent, 80 °C, 18h.

¹H-NMR of ATH reduction using catalyst 24.

In a J. Young's borosilicate NMR tube, under nitrogen atmosphere, complex 24 (10 mg, 9.8x10⁻³ mmol) was dissolved in C_6D_6 (0.6 mL) and ¹H NMR spectrum was recorded (Figure 3). Acetophenone (5.7 μ L, 4.9x10⁻² mmol) was added. Then the mixture was degassed by three freeze-pump-thaw cycles, back-filled with hydrogen at -196 °C and the NMR tube was sealed. The mixture was warmed to room temperature and irradiated under 365 nm UV light (Spectroline ERT-260C/F, 6 Watt, 8 cm from source). The reaction progress was monitored by ¹H NMR. Figure 4 shows the ¹H NMR after 1 hour (lower spectrum), 3 hours (middle spectrum) and 4 hours (upper spectrum) irradiation. Figure 5 shows the zoom of the hydride region. Upon irradiation the peaks of complex 24 decreased and Fe-H species appeared. The main doublet at -12.11 ppm (J = 88.6 Hz) and the doublet at -12.18 ppm (J = 80.1 Hz) can be tentatively assigned to two hydride diastereoisomers or rotamers deriving from complex. The doublet at -11.40 ppm (J = 88.6 Hz) can be tentatively assigned to the hydride species derived from complex 25 present as impurity in 24, on the basis of its similar integral value. After 4 h of UV irradiation, the mixture was heated at 80 °C for 3 days and a NMR was recorded. The ¹H NMR indicated that after heating the complex **24** was re-formed (Figure 6) and the doublet at -12.18 ppm became the main hydride species (Figure 7). The mixture was

filtered through a short plug of silica gel, washed through with EtOAc/petroleum ether 3/7 (until no further alcohol was eluted) and analysed by GC using the previously cited GC conditions. The conversion of acetophenone to alcohol by ¹H NMR (Figure 6) could not be established due to the low sensitivity of the NMR. Therefore the isolated product from the reaction was analysed by GC (Figure 8). This indicated a conversion of ca 5.9 % and a product ee of 18.% (*R*).

Figure 3. ¹H NMR of complex **24** in C_6D_6

Figure 4. ¹H NMR series of the mixture of complex **24** and acetophenone under hydrogen pressure after 1 hour (lower spectrum), 3 hours (middle spectrum) and 4 hours (upper spectrum) irradiation at 365 nm.

Figure 5. Zoom of the region of the ¹H NMR series of the mixture of complex **24** and acetophenone under hydrogen pressure after 1 hour (lower spectrum), 3 hours (middle spectrum) and 4 hours (upper spectrum) irradiation at 365 nm.

Figure 6. ¹H NMR series of the mixture of complex **24** and acetophenone under hydrogen pressure after 4 hours irradiation at 365 nm(lower spectrum) and after heating the mixture at 80 °C for 3 days (upper spectrum).

Figure 7. Zoom of the region of the ¹H NMR series (offset at -0.15 ppm) of the mixture of complex **24** and acetophenone under hydrogen pressure after 4 hours irradiation at 365 nm(lower spectrum) and after heating the mixture at 80 °C for 3 days (upper spectrum).

Figure 8. GC spectrum of isolated product mixture (He gas, 110 °C). 5.9% conv. ee 18.0% (*R*); ketone; 5.7 min, (*R*) isomer; 13.8 min, (*S*) isomer; 15.2 min.

Hydride species formed from complex 25.

This experiment was carried out in order to establish the identity of the minor peaks in the above experiment. In a J. Young's borosilicate NMR tube, complex **25** (10 mg, 9.8×10^{-3} mmol) was dissolved in C₆D₆ (0.6 mL) and ¹H NMR spectrum was recorded (Figure 9). Then the mixture was degassed by three freeze-pump-thaw cycles, back-filled with hydrogen at - 196 °C and the NMR tube was sealed. The mixture was warmed at room temperature and irradiated under 365 nm UV light (Spectroline ERT-260C/F, 6 Watt, 8 cm from source). The reaction progress was monitored by ¹H NMR. Figure 10 shows the ¹H NMR after 4 hours (lower spectrum), 8 hours (middle spectrum) and 10 hours (upper spectrum) irradiation. Figure 11 shows the zoom of the hydride region. Upon irradiation the peaks of complex **25** decreased and Fe-H species appeared. The ¹H NMR spectrum showed four visible doublets. The main doublet at -11.42 ppm (J = 88.8 Hz) and the doublet at -12.51 ppm (J = 81.5 Hz) can be tentatively assigned to two hydride diastereoisomers or rotamers derived from complex **25**, while the doublets at -12.11 ppm (J = 89.1 Hz) and at 12.19 ppm (J = 80.0 Hz) can be tentatively assigned to the hydride species deriving from complex **24** present as

impurity. The ${}^{1}H{}^{31}P{}$ NMR spectrum showed two more hydride peaks at -9.81 and -12.41 ppm not visible in the ${}^{1}H$ NMR spectrum (Figure 12).

Figure 9. ¹H NMR of complex **25** in C_6D_6

Figure 10. ¹H NMR series of the complex **25** under hydrogen pressure after 4 hours (lower spectrum), 8 hours (middle spectrum) and 10 hours (upper spectrum) irradiation at 365 nm.

Figure 11. Zoom of the region of the ¹H NMR series of the complex **25** under hydrogen pressure after 4 hours (lower spectrum), 8 hours (middle spectrum) and 10 hours (upper spectrum) irradiation at 365 nm.

Figure 12. ¹H NMR (upper spectrum) and ¹H{ 31 P} NMR of the mixture of complex **25** under hydrogen pressure after 10 hours irradiation at 365 nm

NMR spectra of complexes and intermediates

(3S,6S)-1,8-Diphenylocta-1,7-diyne-3,6-diol **12**. $\delta_{\rm H}$ (500 MHz, CDCl₃)

HPLC Trace for diol 12.

Conditions: IB column, 30°C, 80% Hexane: 20% iso-propanol, 1 ml/min. 99% ee and 96% de

Reference to diol synthesis and ee determination: Fang, Z.; Wills, M. J. Org. Chem. 2013, 78, 8594–8605.

Tricarbonyl ((*4S*,*7S*)-4,7-dihydroxy-1,3-diphenyl-4,5,6,7-tetrahydro-2H-inden-2-one) iron **13**.

$\delta_{\rm H}$ (500 MHz, CDCl₃)

 $\delta_{\rm C}$ (125 MHz, CDCl₃).

a) Enantiomerically-pure (*S*,*S*)-OH catalyst **13**; b) racemic/meso OH catalyst **13** from racemic diol.

S21

Tricarbonyl (*4S*,*7S*)-4,7-bis(benzyloxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2*H*-inden-2-one iron **18**.

(3S,6S)-3,6-Bis(tert-butyldimethylsilyloxy)octa-1,7-diyne-1,8-diyl)dibenzene 15.

S26

Tricarbonyl ((*4S*,*7S*)-4,7-bis((*tert*-butyldimethylsilyl)oxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2*H*-inden-2-one) iron **19**. _{QTBS}

Parts of the 13C NMR have been expanded below.

((3S, 6S)-3,6-Bis(triisopropylsilyloxy)octa-1,7-diyne-1,8-diyl)dibenzene **16**.

S31

Tricarbonyl ((*4S*,*7S*)-1,3-diphenyl-4,7-bis((triisopropylsilyl)oxy)-4,5,6,7-tetrahydro-2H-inden-2-one) iron **20**.

((*3S*,*6S*)-3,6-Bis(dimethylphenylsilyloxy)octa-1,7-diyne-1,8-diyl)dibenzene **17**.

(*S*)-*N*,*N*-Dimethyldinaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepin-4-amine MONOPHOS).

$\delta_{\rm C}$ (125 MHz, CDCl₃)

Expanded:

$\begin{array}{l} P\text{-NMR} \\ \delta_{P} \left(202 \text{ MHz}, \text{CDCl}_{3} \right) \end{array}$

RCH1053 in CDCI3 @ 298 K

Jun17-2015.031.esp

-162.2

(*R*)-*N*,*N*-Dimethyldinaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepin-4-amine MONOPHOS).

P-NMR

 δ_P (202 MHz, CDCl₃)

RCH1071 in CDCI3 @ 298 K

Jun17-2015.021.esp

1.591-

Dicarbonyl-((4S,7S)-4,7-bis(benzyloxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2H-inden-2-one-(S)-

N,*N*- dimethyldinaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepin-4-amine) iron **22**.

P-NMR

 $\delta_{\rm P}$ (242 MHz, CDCl₃)

Jun26-2015.011.esp

85.881-

1) OBn catalyst with S-Monophos; 2) OBn Catalyst; 3) S-Monophos.

 $\label{eq:linear} Dicarbonyl-((4S,7S)-4,7-bis(benzyloxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2H-inden-2-one-(R)-N,N-dimethyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine) iron$ **23**.

 $\delta_{\rm C}$ (125 MHz, CDCl₃)

P-NMR

 $\delta_{\rm P}$ (242 MHz, CDCl₃)

Jun18-2015.021.esp

29'061-

1) OBn catalyst with R-Monophos; 2) OBn Catalyst; 3) R-Monophos.

1) OBn Catalyst with R-Monophos; 2) OBn Catalyst with S-Monophos.

 $\label{eq:2.1} Dicarbonyl-((4S,7S)-4,7-bis((tert-butyldimethylsilyl)oxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2H-inden-2-one-(S)-N,N-dimethyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine) iron$ **24**.

4 x SiMe: -3.3344, -4.6515, -4.8590, -5.8728. Aromatic CH: 130.07, 129.99 (2C), 129.83, 129.54 (2C), 128.25, 128.03, 127.96 (2C), 127.31, 127.12 (2C), 126.95, 126.74, 126.14, 125.98, 125.82, 125.02, 124.98, 122.88 (JPC 2.5), 120.9. (22 ArH).

P-NMR

 δ_{P} (242 MHz, CDCl₃)

a) S-Monophos; b) OTBS Catalyst; c) OTBS catalyst with S-Monophos

 $\label{eq:linear} Dicarbonyl-((4S,7S)-4,7-bis((tert-butyldimethylsilyl)oxy)-1,3-diphenyl-4,5,6,7-tetrahydro-2H-inden-2-one-(R)-N,N-dimethyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine) iron$ **25**.

 $\delta_{\rm H}$ (500 MHz, CDCl₃)

 $\delta_{\rm C}$ (125 MHz, CDCl₃)

S74

S75

P-NMR.

 $\delta_{\rm P}$ (242 MHz, CDCl₃)

1: OTBS catalyst with R-Monophos; 2: OTBS Catalyst; 3) R-Monophos.

a) OTBS with R-Monophos 24; b) OTBS with S-Monophos 25. Each complex contains ca 10% of the other diastereosiomer, as discussed in the paper.

GC data for reduction products.

I-Phenylethanol. Racemic, 110 °C.

Result Table (Uncal - C:\Clarity\WORK1\DATA\ADG\ADG racemic 1-phenylethanol He - U-PAD2 - 1)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	12.952	25.289	1.160	50.0	55.7	0.33	
2	14.292	25.295	0.924	50.0	44.3	0.40	
	Total	50.584	2.085	100.0	100.0		

Chiral (RCH1047, Catalyst OTIPS, 99.2% conversion, 32% ee) 110 °C.

	1	Result Table (Un	ncal - C: CLARI	TY WORKI DA	TA ROY RCH10	47-24-110 - U-P	AD2 - 1)
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	6.032	0.218	0.064	0.8	2.4	0.05	
2	7.756	1.698	0.420	6.6	15.9	0.07	
3	8.680	4.362	0.645	16.8	24.4	0.11	
4	13.568	11.946	0.917	46.1	34.7	0.20	
5	14.992	7.695	0.594	29.7	22.5	0.20	
	Total	25.920	2.639	100.0	100.0		

1-Phenylethyl formate (racemic) 110 °C.

Result Table (Uncar - C. (CDARTT (WORKT (DATA (RUT (RUT107+110 - 0-PAD2 - 1)							
	Reten. Time	Area	Height	Area	Height	W05	Compound
	[min]	[mV.s]	[Wm]	[%]	[%]	[min]	Name
1	7.620	62.779	6.773	50.0	55.7	0.15	
2	8.548	62.876	5.394	50.0	44.3	0.19	
	Total	125.654	12.167	100.0	100.0		

Enriched sample (51% ee (S) from (R) enantiomer of alcohol using Mitsunobu reaction described below) 110 °C.

	Reten. Time	Area	Height	Area	Height	W05	Compound
	[min]	[mV.s]	[mV]	[%]	[%]	[min]	Name
1	7.724	31.907	4.426	75.4	72.2	0.12	
2	8.748	10.433	1.707	24.6	27.8	0.10	
	Total	42.341	6.133	100.0	100.0		

S84

3,3-Dimethyl-2-butanol. 70 °C. Racemic

Result Table (Uncal - C:\Clarity\WORK1\DATA\ADG\ADG racemic 3,3-dimethyl-2-butanol He ok - U-PAD2 - 1)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	8.408	7.123	0.808	49.6	52.6	0.14	
2	8.772	7.241	0.729	50.4	47.4	0.15	
	Total	14.363	1.537	100.0	100.0		

Chiral (RCH1184-OTBDPS catalyst, 100% conv. With a 26% ee). 70 °C.

Result Table (Uncal	- C: \CLARITY\WORK1\DATA\ROY\RCH1184-24-70 - U-PAD2 - 1)	

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	8.248	26.876	2.094	62.9	65.8	0.21	
2	8.708	15.820	1.088	37.1	34.2	0.24	
	Total	42.696	3.182	100.0	100.0		

The X-ray crystallographic structure of **4b** (CCDC 1431241, local code ADG2).

solid state structure of adg2 with atom labels and thermal ellipsoids at 50% probability level Eta4 coordination drawn to the butadiene part C2 C3 C8 C9 as bonds to the centre of the double bonds.

Below, different pictures with different bonding pictures

Picture with one bond to the centroid of the butadiene system

Crystal structure determination of [adg2]

The asymmetric unit contains the complex, there are two complexes in the unit cell. The CP ring is not flat but puckered. The iron appears to bind to just the butadiene fragment and the C=O bond is puckered above the ring plane, indicating expected Eta4 bonding.

Crystal structure determination of [adg2]

Experimental

Single crystals of $C_{24}H_{18}FeO_4$ [adg2] were grown from a solution of hot benzene upon cooling to rt. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for C₂₄H₁₈FeO₄ (*M* =426.23 g/mol): triclinic, space group P-1 (no. 2), *a* = 9.12907(18) Å, *b* = 9.72040(17) Å, *c* = 11.56823(16) Å, *a* = 80.5397(13)°, *β* = 70.1570(15)°, $\gamma = 77.6372(16)^\circ$, *V* = 938.50(3) Å³, *Z* = 2, *T* = 150(2) K, μ (MoK α) = 0.833 mm⁻¹, *Dcalc* = 1.508 g/cm³, 57661 reflections measured (4.814° $\leq 2\Theta \leq 64.582^\circ$), 6365 unique ($R_{int} = 0.0336$, $R_{sigma} = 0.0198$) which were used in all calculations. The final R_1 was 0.0317 (I > 2σ (I)) and wR_2 was 0.1148 (all data).

Table 1 Crystal data and structure refinement for adg2.

Identification code	adg2
Empirical formula	$C_{24}H_{18}FeO_4$
Formula weight	426.23
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.12907(18)
b/Å	9.72040(17)
c/Å	11.56823(16)
α/°	80.5397(13)

β/°	70.1570(15)
γ/°	77.6372(16)
Volume/Å ³	938.50(3)
Z	2
$ ho_{calc}g/cm^3$	1.508
μ/mm^{-1}	0.833
F(000)	440.0
Crystal size/mm ³	$0.3 \times 0.3 \times 0.25$ yellow block
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.814 to 64.582
Index ranges	$-13 \le h \le 13, -14 \le k \le 13, -17 \le l \le 17$
Reflections collected	57661
Independent reflections	6365 [$R_{int} = 0.0336$, $R_{sigma} = 0.0198$]
Data/restraints/parameters	6365/0/262
Goodness-of-fit on F ²	1.294
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0317, wR_2 = 0.0973$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.1148$
Largest diff. peak/hole / e $Å^{-3}$	0.82/-0.86

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

2.a Secondary CH2 refined with riding coordinates:

C4(H4A,H4B), C5(H5A,H5B), C6(H6A,H6B), C7(H7A,H7B)

2.b Aromatic/amide H refined with riding coordinates:

C11(H11), C12(H12), C13(H13), C14(H14), C15(H15), C17(H17), C18(H18),

C19(H19), C20(H20), C21(H21)

This report has been created with Olex2, compiled on 2015.01.26 svn.r3151 for OlexSys.

The X-ray crystallographic structure of complex (*SS*,*S*)-**22** (CCDC 1431242, local code RH2).

Solid state structure of rh2 with key atoms labeled. Thermal ellipsoids are drawn at 50% probability level.

Crystal structure determination of [rh2]

The asymmetric unit contains the compound, there are 4 in the unit cell. Some of the thermal parameters of the benzyl and phenyl groups are rather large indicating some thermal motion but were not modeled as disordered.

The Flack parameter -0.005(1) is small with a small error and the stereochemistry of the refined structure also matches the known stereochemistry of the BINOL starting material (*S*).

Hooft y: -0.0030(11) (Olex2) Flack x: -0.005(1) (Shelx12014)

Experimental

Single crystals of C₅₉H₄₈FeNO₇P [**rh2**] were grown from a slowly evaporating solution of

EtOAc at rt. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation.

1 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

3 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for C₅₉H₄₈FeNO₇P (*M* =969.80 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 10.35102(7) Å, b = 19.11081(15) Å, c = 24.09710(17) Å, V = 4766.80(6) Å³, Z = 4, T = 150(2) K, μ (CuK α) = 3.316 mm⁻¹, *Dcalc* = 1.351 g/cm³, 42062 reflections measured (7.338° $\leq 2\Theta \leq 156.204°$), 10112 unique ($R_{int} = 0.0375$, $R_{sigma} = 0.0300$) which were used in all calculations. The final R_1 was 0.0361 (I > 2 σ (I)) and wR_2 was 0.1006 (all data).

Table 1 Crystal data and structure refinement for rh2.

-	
Identification code	rh2
Empirical formula	C ₅₉ H ₄₈ FeNO ₇ P
Formula weight	969.80
Temperature/K	150(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	10.35102(7)
b/Å	19.11081(15)
c/Å	24.09710(17)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4766.80(6)
Z	4
$\rho_{calc}g/cm^3$	1.351
μ/mm^{-1}	3.316
F(000)	2024.0

Crystal size/mm ³	$0.3\times0.2\times0.18$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.338 to 156.204
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}21 \leq k \leq 24, \text{-}30 \leq l \leq 30$
Reflections collected	42062
Independent reflections	10112 [$R_{int} = 0.0375$, $R_{sigma} = 0.0300$]
Data/restraints/parameters	10112/84/624
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0361, wR_2 = 0.0977$
Final R indexes [all data]	$R_1 = 0.0390, wR_2 = 0.1006$
Largest diff. peak/hole / e $Å^{-3}$	0.54/-0.36
Flack parameter	-0.0050(13)

Refinement model description

Number of restraints - 84, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

- At 1.5 times of: All C(H,H,H) groups
- 2. Uiso/Uaniso restraints and constraints

 $C10 \approx C15 \approx C14 \approx C13 \approx C12 \approx C11$: within 1.7A with sigma of 0.004 and sigma for terminal atoms of 0.008

 $O7 \approx C29 \approx C30 \approx C35 \approx C34 \approx C33 \approx C32 \approx C31$: within 1.7A with sigma of 0.002 and sigma for terminal atoms of 0.004

3.a Ternary CH refined with riding coordinates: C4(H4), C7(H7)

3.b Secondary CH2 refined with riding coordinates:

C5(H5A,H5B), C6(H6A,H6B), C22(H22A,H22B), C29(H29A,H29B)

3.c Aromatic/amide H refined with riding coordinates:

C11(H11), C12(H12), C13(H13), C14(H14), C15(H15), C17(H17), C18(H18),

C19(H19), C20(H20), C21(H21), C24(H24), C25(H25), C26(H26), C27(H27), C28(H28),

C31(H31), C32(H32), C33(H33), C34(H34), C35(H35), C40(H40), C41(H41),

C43(H43), C44(H44), C45(H45), C46(H46), C51(H51), C52(H52), C53(H53), C54(H54), C56(H56), C57(H57)

3.d Idealised Me refined as rotating group: C60(H60A,H60B,H60C),

C61(H61A,H61B,H61C)

This report has been created with Olex2, compiled on 2015.01.26 svn.r3150 for OlexSys.

The X-ray crystallographic structure of complex (*SS*,*R*)-**23** (CCDC14311243, local code <u>RH3).</u>

rh3

Just slightly different views of one of the crystallographically independent but chemically equivalent molecules in the asymmetric unit of rh3. Thermal ellipsoids are drawn at 50% probability level and only key atoms are labeled.

Crystal structure determination of [rh3]

The asymmetric unit contains two crystallographically independent but chemically identical complexes (see later for an overlay). There are 4 molecules in the unit cell. The crystals were small and weakly diffracting and this registers a C alert in the cif checker.

The Flack parameter -0.017(4) is small with a small error and the stereochemistry of the refined structure also matches the known stereochemistry of the BINOL starting material (*R*). Hooft y: -0.017(3) (Olex2)

Flack x: -0.017(4) (Shelx 2014)

Below is a picture of an overlay of the two molecules in the asymmetric unit using the 'match' algorithm in Olex2 with the statistics for the fit below that.

Alignment statistics Alignment RMSD {Fe2,C236,O236,...} to {Fe1,C136,O136,...} without inversion) is 0.468 A Alignment RMSD {Fe2,C236,O236,...} to {Fe1,C136,O136,...} with inversion) is 3.758 A

The statistics show that the molecules are very similar (only a volume of 0.468A cubed difference between the two structures) the difference being mainly rotations of the aromatic rings and not different stereochemistry.

Attempts to match the second molecule by inverting it (so the enantiomer of the 2nd molecule) has a poor fit (3.758A cubed out).

The molecules are crystallographically independent but stereochemically identical.

Experimental

Single crystals of $C_{59}H_{48}FeNO_7P$ [**rh3**] were grown from a slowly evaporating solution of EtOAc at rt. A suitable crystal was selected and mounted on a Mitegen head with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation.

1 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

2 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

3 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for C₅₉H₄₈FeNO₇P (*M* =969.80 g/mol): monoclinic, space group P2₁ (no. 4), a = 8.9958(5) Å, b = 22.5355(9) Å, c = 23.3422(15) Å, $\beta = 99.763(6)^{\circ}$, V = 4663.5(4) Å³, Z = 4, T = 150(2) K, μ (CuK α) = 3.389 mm⁻¹, *Dcalc* = 1.381 g/cm³, 50097 reflections measured (7.686° $\leq 2\Theta \leq 157.392^{\circ}$), 18903 unique ($R_{int} = 0.0914$, $R_{sigma} = 0.1131$) which were used in all calculations. The final R_1 was 0.0634 (I > 2 σ (I)) and wR_2 was 0.1964 (all data).

-	
Identification code	rh3
Empirical formula	C ₅₉ H ₄₈ FeNO ₇ P
Formula weight	969.80
Temperature/K	150(2)
Crystal system	Monoclinic
Space group	P21
a/Å	8.9958(5)
b/Å	22.5355(9)
c/Å	23.3422(15)
α/°	90
β/°	99.763(6)
$\gamma/^{\circ}$	90
Volume/Å ³	4663.5(4)
Z	4
$\rho_{calc}g/cm^3$	1.381
µ/mm ^{- 1}	3.389
F(000)	2024.0
Crystal size/mm ³	$0.2 \times 0.08 \times 0.06$ orange block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.686 to 157.392
Index ranges	$-11 \le h \le 11, -27 \le k \le 28, -29 \le l \le 29$

Table 1 Crystal data and structure refinement for rh3.

Reflections collected	50097
Independent reflections	18903 [$R_{int} = 0.0914$, $R_{sigma} = 0.1131$]
Data/restraints/parameters	18903/1/1247
Goodness-of-fit on F ²	1.008
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0634, wR_2 = 0.1614$
Final R indexes [all data]	$R_1 = 0.0962, wR_2 = 0.1964$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.94
Flack parameter	-0.010(4)

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

At 1.5 times of: All C(H,H,H) groups

2.a Ternary CH refined with riding coordinates: C104(H104), C107(H107), C204(H204), C207(H207)

2.b Secondary CH2 refined with riding coordinates: C105(H10A,H10B), C106(H10C,H10D), C122(H12A,H12B), C129(H12C,H12D), C205(H20A, H20B), C206(H20C,H20D), C222(H22A,H22B), C229(H22C,H22D)

2.c Aromatic/amide H refined with riding coordinates: C111(H111), C112(H112), C113(H113), C114(H114), C115(H115), C117(H117), C118(H118), C119(H119), C120(H120), C121(H121), C124(H124), C125(H125), C126(H126), C127(H127), C128(H128), C131(H131), C132(H132), C133(H133), C134(H134), C135(H135), C140(H140), C141(H141), C143(H143), C144(H144), C145(H145), C146(H146), C151(H151), C152(H152), C153(H153), C154(H154), C156(H156), C157(H157), C211(H211), C212(H212), C213(H213), C214(H214), C215(H215), C217(H217), C218(H218), C219(H219), C220(H220), C221(H221), C224(H224), C225(H225), C226(H226), C227(H227), C228(H228), C231(H231), C232(H232), C233(H233), C234(H234), C235(H235), C240(H240), C241(H241), C243(H243), C244(H244), C245(H245), C246(H246), C251(H251), C252(H252), C253(H253), C254(H254), C256(H256), C257(H257)

2.d Idealised Me refined as rotating group;

C160(H16A,H16B,H16C),C161(H16D,H16E,H16F), C260(H26A,H26B,H26C),

C261(H26D, H26E, H26F)

This report has been created with Olex2, compiled on 2015.01.26 svn.r3151 for OlexSys.