Supporting Information

Aluminum Methyl, Alkoxide and α -Alkoxy Ester Complexes Supported by

6,6'-Dimethylbiphenyl-Bridged Salen Ligands: Synthesis, Characterization and

Catalysis for rac-Lactide Polymerization

Chao Kan, Jilei Ge and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

* To whom correspondence should be addressed. Tel./Fax: +86 21 64253519. E-mail: haiyanma@ecust.edu.cn.

Table of contents

1. Molecular structures

Figure S1. Molecular structure of proligand L²H₂.
Figure S2. Molecular structure of complex 1.
Figure S3. Molecular structure of complex 3.
Figure S4. Molecular structure of complex 9.

2. Crystallographic data

Table S1. Crystallographic data for ligand L²H₂, complexes 1 and 2.
Table S2. Crystallographic data for complexes 3, 6 and 8.
Table S3. Crystallographic data for complexes 9, 10 and 11.
Table S4. Selected bond distances (Å) and angles (⁹) for complexes 10 and 11

3. NMR spectra of aluminum complexes 1–11

Figures S5–S26. ¹H and ¹³C NMR spectra of complexes 1–11.
Figure S27. The variable temperature ¹H NMR spectra of complex 10.
Figure S28. ²⁷Al NMR spectra of complexes 5 and 10.

4. NMR studies

Figure S29. ¹H NMR spectra of A) proligand; B) complex **8**; C) the reaction mixture of complex **8** with 50 equiv. of ^{*i*}PrOH.

Figure S30. ¹H NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate.

Figure S31. ¹³C NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate.

Figure S32. ²⁷Al NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate.

Figure S33. ¹H NMR spectra of the NMR tube reactions between complex **6** and A) BnOH; B) ^{*i*}PrOH; C) ^{*t*}BuOH. Figure S34. ¹H NMR spectrum of the NMR tube reactions of complex 5 and one equiv. of ^{*i*}PrOH in the presence of 20 equiv. of rac-LA.

5. Kinetic studies

Figure S35. Relationship of M_n and the polydispersity index (PDI) of the PLA sample versus monomer conversion catalyzed by complex 2^{i} PrOH.

Figure S36. Semilogarithmic plots for the polymerization of *rac*-LA promoted by complexes 1–3.

Figure S37. A) Semilogarithmic plots of $\ln([LA]_0/[LA]_t)$ versus time catalyzed by complex **8**; B) Linear plot of $\ln k_{obs}$ versus $\ln[Al]$ for the polymerization of *rac*-LA using **8** as an initiator.

6. Microstructure Analysis of Polylactides

Figure S38. ¹H NMR spectrum of the *rac*-LA oligomer produced by complex **8**.

Figure S39. ESI-TOF mass spectrum of the *rac*-LA oligomer produced by complex 8.

Figure S40. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-LA using complex $1/^{i}$ PrOH as initiator.

Figure S41. ESI-TOF mass spectrum of the *rac*-LA oligomer produced by complex **4** ([*rac*-LA] : [**4**] = 20:1, in toluene).

Figure S42. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-LA using complex **4** as initiator.

1. Molecular structures

Figure S1. Molecular structure of proligand L^2H_2 (all hydrogen atoms omitted for clarity; thermal ellipsoids drawn at the 50% probability level).

Figure S2. Molecular structure of **1** (all solvent molecules and hydrogen atoms omitted for clarity; thermal ellipsoids drawn at the 50% probability level). Selected bond lengths (Å) and angles (deg): Al1–O1 1.7733(12), Al1–O2 1.8340(12), Al1–N1 2.1142(14), Al1–N2 2.0165(13), Al1–C1 1.9771(18), O1–Al1–O2 91.99(6), O1–Al1–N1 87.62(6), O1–Al1–N2 112.94(6), O2–Al1–N1 175.09(6), O2–Al1–N2 88.68(5), O1–Al1–C1 125.06(7), O2–Al1–C1 93.42(7), N2–Al1–N1 86.96(5), C1–Al1–N1 90.81(7), C1–Al1–N2 121.81(7).

Figure S3. Molecular structure of **3** (all hydrogen atoms omitted for clarity; thermal ellipsoids drawn at the 50% probability level). Selected bond lengths (Å) and angles (deg): Al1–O1 1.852(2), Al1–O2 1.773(2), Al1–N1 1.990(3), Al1–N2 2.112(3), Al1–C1 1.935(4), O1–Al1–O2 92.10(11), O1–Al1–N1 89.29(11), O1–Al1–N2 176.79(11), O2–Al1–N1 109.22(12), O2–Al1–N2 87.48(11), O1–Al1–C1 93.01(14), O2–Al1–C1 127.42(15), N1–Al1–N2 87.85(11), C1–Al1–N1 123.14(15), C1–Al1–N2 89.77(14).

Figure 4. Molecular structure of **9** (all hydrogen atoms omitted for clarity; thermal ellipsoids drawn at the 50% probability level). Selected bond lengths (Å) and angles (deg): Al1–O1 1.758(2), Al1–O2 1.816(2), Al1–O3 1.729(2), Al1–N1 2.044(3), Al1–N2 1.992(3), O1–Al1–O2 90.19(11), O1–Al1–O3 123.80(11), O2–Al1–O3 99.75(12), O1–Al1–N1 88.08(11), O2–Al1–N1 174.58(12), O3–Al1–N1 85.48(12), O1–Al1–N2 116.99(13), O2–Al1–N2 88.32(11), O3–Al1–N2 118.46(12), N1–Al1–N2 87.89(12).

2. Crystallographic data

		1 0	1
	L^2H_2	1	2
Empirical formula	$C_{38}H_{44}N_2O_2$	$C_{36}H_{36}AlN_2O_2$	$C_{39}H_{45}AlN_2O_2$
Formula weight	560.75	555.65	600.75
Temp (K)	130	140(2)	140(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	A e a 2	C 2/c	C 2/c
<i>a</i> (Å)	9.9750(19)	28.105(3)	29.421(5)
<i>b</i> (Å)	30.060(7)	12.8850(15)	11.873(2)
<i>c</i> (Å)	10.719(2)	17.816(2)	20.751(4)
α()	90	90	90
β()	90	108.596(2)	109.235(3)
γ(⁹	90	90	90
Volume (Å ³)	3214.0(11)	6114.8(12)	6844(2)
Crystal size (mm)	$0.32\times 0.12\times 0.03$	$0.22\times 0.16\times 0.09$	$0.30\times 0.15\times 0.05$
Z	4	8	8
Density $_{calcd}$ (Mg/m ³)	1.159	1.207	1.166
Abs coeff (mm ^{-1})	0.071	0.101	0.095
F (000)	1208	2360	2567
θ range ()	1.355 to 30.947	1.529 to 30.537	1.47 to 30.78
Data collected (<i>hkl</i>)	±14, ±43, -15 to 8	-39 to 40, ±18, -25 to 17	-28 to 42, -16 to 17, -29 to 28
Reflns collected/unique	15858/4310	29891/9313	33844/10581
R(int)	0.0764	0.0551	0.1210
Max. and min. transmn	0.7461, 0.5575	0.7461, 0.6927	0.9953, 0.9722
Data/restrains/para	4310 / 1 / 196	9313 / 0 / 378	10581 / 0 / 408
Goodness-of-fit on F^2	1.020	1.015	0.965
Final R_1 , wR_2 [I > $2\sigma(I)$]	0.0521, 0.1235	0.0515, 0.1324	0.0717, 0.1589
R_1 , wR_2 (all data)	0.0706, 0.1350	0.0911, 0.1561	0.1712, 0.2116
$\Delta \rho_{\text{max}}, \min/e \text{ Å}^{-3}$	0.271, -0.205	0.466, -0.339	0.426, -0.424

Table S1. Crystallographic data for proligand L^2H_2 , complexes 1 and 2

	3	6	8
Empirical formula	$C_{65}H_{65}AlN_2O_2$	$C_{77}H_{83}Al_2N_2O_2$	$C_{41}H_{49}AlN_2O_3$
Formula weight	933.17	1122.41	644.80
Temp (K)	140(2)	140(2)	140(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	P -1	P -1	C 2/c
<i>a</i> (Å)	15.337(3)	11.4917(18)	29.753(3)
<i>b</i> (Å)	18.328(3)	17.564(3)	12.0799(10)
<i>c</i> (Å)	22.205(4)	18.529(3)	21.3364(19)
α()	112.830(3)	106.220(3)	90
β()	90.449(3)	107.539(3)	104.425(2)
γ()	110.283(3)	102.510(3)	90
Volume (Å ³)	5322.4(17)	3234.0(9)	7426.9(11)
Crystal size (mm)	$0.220 \times 0.160 \times 0.100$	$0.36\times 0.26\times 0.15$	$0.200\times0.080\times0.060$
Z	4	2	8
Density $_{calcd}$ (Mg/m ³)	1.165	1.153	1.153
Abs coeff (mm ^{-1})	0.084	0.093	0.093
F (000)	1992	1202	2768
θ range ()	1.009 to 27.661	1.24 to 26.00	1.828 to 30.629
Data collected (hkl)	-19 to 20, ±23, -23 to 28	-13 to 14, -21 to 20, ±22	±42, -12 to 17, ±30
Reflns collected/unique	43450/24571	23299/12653	37343/11416
R(int)	0.0799	0.0540	0.0952
Max. and min. transmn	0.7456, 0.6071	0.9862, 0.9674	0.7461, 0.6837
Data/restrains/para	24571 / 36 /1283	12653 / 1 / 294	11416 / 0 / 436
Goodness-of-fit on F^2	0.947	1.026	0.955
Final R_1 , wR_2 [I > 2 σ (I)]	0.0710, 0.1760	0.0781, 0.2039	0.0572, 0.1106
R_1 , wR_2 (all data)	0.1660, 0.2407	0.1331, 0.2653	0.1505, 0.1437
$\Delta \rho_{max}$, $_{min}/e$ Å $^{-3}$	0.668, -0.347	1.273, -0.442	0.308, -0.322

Table S2. Crystallographic data for complexes 3, 6 and 8

	9	10	11
Empirical formula	$C_{45}H_{49}AlN_2O_3$	$C_{43}H_{51}AlN_2O_5$	C ₄₂ H ₄₈ Al N ₂ O ₅
Formula weight	692.84	702.83	687.80
Temp (K)	140(2)	143(2)	130
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic	Triclinic
Space group	P 21 21 21	P -1	P -1
<i>a</i> (Å)	12.2232(13)	14.0490(14)	13.950(3)
<i>b</i> (Å)	15.5668(16)	16.3570(17)	16.296(3)
<i>c</i> (Å)	20.211(2)	21.740(2)	21.630(4)
α()	90	91.197(2)	91.070(3)
β()	90	94.859(2)	95.849(3)
γ()	90	113.992(2)	114.041(3)
Volume (Å ³)	3845.6(7)	4539.4(8)	4457.2(14)
Crystal size (mm)	$0.200 \times 0.160 \times 0.080$	$0.250 \times 0.150 \times 0.030$	$0.25 \times 0.2 \times 0.15$
Z	4	4	4
Density $_{calcd}$ (Mg/m ³)	1.197	1.028	1.025
Abs coeff (mm ^{-1})	0.095	0.084	0.085
F (000)	1480	1504	1468
θ range ()	1.651 to 30.530	0.942 to 30.754	0.948 to 26.000
Data collected (hkl)	±42, ±22, -24 to 28	-20 to 13, ±23, ±31	-19 to 20, -18 to 23, ± 30
Reflns collected/unique	39163/11764	46825/27926	44848/17512
R(int)	0.0981	0.0680	0.0590
Max. and min. transmn	0.7461, 0.6827	0.7461, 0.6275	0.7461, 0.5752
Data/restrains/para	11764 / 0 / 470	27926 / 0 / 945	17512 / 53 / 945
Goodness-of-fit on F^2	0.993	0.861	1.105
Final R_1 , wR_2 [I > 2 σ (I)]	0.0614, 0.1092	0.0710, 0.1533	0.0787, 0.2097
R_1 , wR_2 (all data)	0.1248, 0.1319	0.1835, 0.1793	0.1131, 0.2237
$\Delta\rho_{max},~_{min}\!/e~{\rm \AA}^{-3}$	0.238, -0.316	0.302, -0.319	0.603, -0.685

Table S3. Crystallographic data for complexes 9, 10 and 11

		10	
Al1-01	1.847(2)	Al1–O2	1.8291(1
Al1-03	1.817(2)	Al1–O4	2.0296(1
Al1-N1	2.007(2)	Al1–N2	2.073(2)
01-Al1-O2	90.48(9)	O1-Al1-O3	97.18(9)
O1-A11-O4	89.06(8)	O2-A11-O3	168.09(9
O2-A11-O4	88.70(8)	O3-A11-O4	82.35(8)
O1-A11-N1	89.03(9)	O1-A11-N2	175.38(1
O2-A11-N1	94.90(9)	O2-A11-N2	85.19(9)
O3-A11-N1	94.33(9)	O3-A11-N2	87.35(9)
O4-A11-N1	175.93(9)	O4-A11-N2	92.45(8)
N1-A11-N2	89.73(9)		
Al2-06	1.8188(19)	A12-07	1.8174(1
Al208	1.8056(19)	Al2-09	2.023(2)
A12-N3	2.090(2)	Al2–N4	2.045(2)
O6–Al2–O7,	96.35(10)	O6-A12-O8	97.02(11)
O6-A12-O9	172.33(10)	O7-A12-O8	96.46(10)
O7-A12-O9	91.26(9)	O8-A12-O9	83.04(10)
O6-A12-N3	87.00(10)	O6-A12-N4	94.74(11)
O7-A12-N3	171.18(12)	O7-A12-N4	86.90(10)
O8-A12-N3	91.21(11)	08-A12-N4	167.32(1
O9-A12-N3	85.34(9)	O9-A12-N4	84.67(10)
N3-A12-N4	84.68(11)		
		11	
Al1-01	1.822(2)	Al1–O2	1.849(2)
Al1-O3	1.812(2)	Al1–O4	2.039(2)
A11-N1	2.063(3)	A11-N2	2.005(3)
01–Al1–O2	91.47(10)	O1-Al1-O3	169.66(1)
01-Al1-O4	89.07(10)	O2-A11-O3	95.16(10)
O2-A11-O4	89.62(10)	O3-A11-O4	83.06(10)
01-Al1-N1	85.33(10)	O1-A11-N2	93.98(11)
O2-A11-N1	176.79(11)	O2-A11-N2	90.11(10)
O3-A11-N1	87.99(10)	O3-A11-N2	93.93(11)
O4-A11-N1	90.16(10)	O4-A11-N2	176.94(1
N1-A11-N2	90.28(11)		
A12-06	1.805(2)	Al2-07	1.828(2)
A1208	1.808(2)	Al2-09	2.038(2)

able S4. Selected bond distances (Å) and angles (°) for complexes 10 and 11

2.079(3)	Al2-N4	2.059(3)
06 27(0)	06 412 08	06 88(0)
90.27(9) 171 56(9)	00-A12-08	90.88(9) 96.54(9)
92 13(8)	07-A12-08	82 98(8)
86.79(9)	06-Al2-N4	94.56(9)
170.63(9)	07-A12-N4	86.76(9)
91.87(9)	O8-A12-N4	167.66(10)
84.78(9)	O9-A12-N4	85.02(9)
84.17(9)		
	2.079(3) 96.27(9) 171.56(9) 92.13(8) 86.79(9) 170.63(9) 91.87(9) 84.78(9) 84.17(9)	2.079(3) Al2–N4 96.27(9) O6–Al2–O8 171.56(9) O7–Al2–O8 92.13(8) O8–Al2–O9 86.79(9) O6–Al2–N4 170.63(9) O7–Al2–N4 91.87(9) O8–Al2–N4 84.78(9) O9–Al2–N4 84.17(9)

3. NMR spectra of complexes 1–11

Figure S5. ¹H NMR spectrum of complex 1 (400 MHz, C_6D_6 , 25 °C).

Figure S6. ¹³C NMR spectrum of complex **1** (100 MHz, C_6D_6 , 25 °C).

Figure S7. ¹H NMR spectrum of complex **2** (400 MHz, C_6D_6 , 25 °C).

Figure S8. ¹³C NMR spectrum of complex **2** (100 MHz, C_6D_6 , 25 °C).

Figure S9. ¹H NMR spectrum of complex **3** (400 MHz, C_6D_6 , 25 °C).

Figure S10. ¹³C NMR spectrum of complex 3 (100 MHz, C_6D_6 , 25 °C).

Figure S11. ¹H NMR spectrum of complex **4** (400 MHz, C_6D_6 , 25 °C).

Figure S12. ¹³C NMR spectrum of complex 4 (100 MHz, C_6D_6 , 25 °C).

Figure S13. ¹H NMR spectrum of complex **5** (400 MHz, C_6D_6 , 25 °C).

Figure S14. ¹³C NMR spectrum of complex **5** (100 MHz, C_6D_6 , 25 °C).

Figure S15. ¹H NMR spectrum of complex **6** (400 MHz, C_6D_6 , 25 °C).

Figure S16. ¹³C NMR spectrum of complex 6 (100 MHz, C_6D_6 , 25 °C).

Figure S17. ¹H NMR spectrum of complex **7** (400 MHz, C_6D_6 , 25 °C).

Figure S18. ¹³C NMR spectrum of complex 7 (100 MHz, C_6D_6 , 25 °C).

Figure S19. ¹H NMR spectrum of complex 8 (400 MHz, C_6D_6 , 25 °C).

Figure S20. ¹³C NMR spectrum of complex 8 (100 MHz, C_6D_6 , 25 °C).

Figure S21. ¹H NMR spectrum of complex 9 (400 MHz, C_6D_6 , 25 °C).

Figure S22. ¹³C NMR spectrum of complex **9** (100 MHz, C_6D_6 , 25 °C).

Figure S23. ¹H NMR spectrum of complex **10** (400 MHz, C_6D_6 , 25 °C).

Figure S24. ¹³C NMR spectrum of complex 10 (100 MHz, C_6D_6 , 25 °C).

Figure S25. ¹H NMR spectrum of complex 11 (400 MHz, C_6D_6 , 25 °C).

Figure S26. ¹³C NMR spectrum of complex 11 (100 MHz, C_6D_6 , 25 °C).

Figure S27. The variable temperature ¹H NMR spectra of complex **10**: A) the whole spectra; B) partial signals are shown (400 MHz, toluene- d_8).

Figure S28. ²⁷Al NMR spectrum of A) complex 5; B) complex 10 (130.3 MHz, CDCl₃, r.t.).

4. NMR studies

complex **8** and 50 equiv. of ^{*i*}PrOH (C_6D_6 , 400 MHz, r.t).

Figure S30. ¹H NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate (400 MHz, CDCl₃, r.t.).

Figure S31. ¹³C NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate (100 MHz, CDCl₃, r.t.).

Figure S32. ²⁷Al NMR spectrum of the reaction mixture of *rac*-(SalBinap)AlMe and methyl 2-hydroxyisobutyrate (CDCl₃, 130.3 MHz, r.t).*

* The extremely low symmetric property around the Al center led to the weak singnal in ²⁷ Al NMR in Figure S28 and S32, when even more than 100 mg complex was added to the NMR tube and detected for about 10 hours. ([a] N. Nomura, T. Aoyama, R. Ishii and T. Kondo, *Macromolecules*, 2005, **38**, 5363–5366; [b] H. Du, A. H. Velders, P. J. Dijkstra, J. Sun, Z. Zhong, X. Chen and J. Feijen, *Chem. Eur. J.*, 2009, **15**, 9836–9845.)

Figure S33. ¹H NMR spectra of the NMR tube reactions between complex **6** and A) BnOH, determined immediately after mixing; B) ^{*i*}PrOH, determined immediately after mixing; C) ^{*i*}BuOH, determined after mixing for 12 h at 80 °C (All in C_6D_6 , 400 MHz, r.t.).

Figure S34. ¹H NMR spectrum of the NMR tube reactions of complex **5** and one equiv. of ^{*i*}PrOH in the presence of 20 equiv. of *rac*-LA (C_6D_6 , 400 MHz, r.t.).

5. Kinetic studies

Figure S35. Relationship of M_n and the polydispersity index (PDI) of the PLA samples versus monomer conversion obtained by complex **2** ([*rac*-LA]₀ = 1.0 M, [*rac*-LA]₀ : [**2**]₀ : [^{*i*}PrOH]₀ = 100:1:1, 110 °C, in toluene).

Figure S36. Semilogarithmic plots for the polymerization of *rac*-LA initiated by complexes $1-3/{}^{i}$ PrOH. ([*rac*-LA]₀ : [Al]₀ : [i PrOH]₀ = 100:1:1, [*rac*-LA]₀ = 1.0 M, 110 °C, toluene) For **1**, first stage, $k_{app} = (18.9 \pm 1.5) \times 10^{-2} h^{-1}$, R = 0.990; second stage, $k_{app} = (8.60 \pm 0.39) \times 10^{-2} h^{-1}$, R = 0.997. For **2**, first stage, $k_{app} = (3.23 \pm 0.18) \times 10^{-2} h^{-1}$, R = 0.996; second stage, $k_{app} = (1.89 \pm 0.12) \times 10^{-2} h^{-1}$, R = 0.996. For **3**, $k_{app} = (3.94 \pm 0.18) \times 10^{-2} h^{-1}$, R = 0.996.

Figure S37. A) Linear plots of $\ln([LA]_0/[LA]_t)$ versus time; B) Linear plot of $\ln k_{obs}$ versus $\ln[Al]$ for the polymerization of *rac*-LA using **8** as an initiator ([*rac*-LA]_0 = 1.0 M; [Al]_0 = 0.01, 0.008, 0.0067, 0.0057 M in toluene at 110 °C).

6. Microstructure analysis of polylactides

Figure S38. ¹H NMR spectrum (400 MHz, CDCl₃) of *rac*-LA oligomer produced by complex **8** ([*rac*-LA]₀ : [**8**]₀ = 20:1, in toluene).

Figure S39. ESI-TOF mass spectrum of the *rac*-LA oligomer produced by complex **8** $([rac-LA]_0 : [8]_0 = 20:1, in toluene).$

Figure S40. Homonuclear decoupled ¹H NMR spectrum (400 MHz, CDCl₃) of PLA produced from *rac*-LA using complex $1/^{i}$ PrOH as initiator ([*rac*-LA]₀ = 1.0 M, [*rac*-LA]₀ : [1]₀ : [^{*i*}PrOH]₀ = 100:1:1, in toluene, 110 °C, 92% monomer conversion, $P_{\rm m} = 0.73$).

Figure S41. ESI-TOF mass spectrum of the *rac*-LA oligomer produced by complex 4 $([rac-LA]_0 : [4]_0 = 20:1, in toluene).$

Figure S42. Homonuclear decoupled ¹H NMR spectrum of PLA produced from *rac*-LA using complex **4** as initiator ([*rac*-LA]₀ = 1.0 M, [*rac*-LA]₀ : [**4**]₀ = 100:1, in toluene, 110 °C, 90% monomer conversion, $P_{\rm m} = 0.56$).