Supporting Information for:

A Novel Samarium(II) Complex Bearing a Dianionic Bis(phenolate) Cyclam Ligand: Synthesis, Structure and Electron-Transfer Reactions

Leonor Maria,^{1,*} Marina Soares,^{1,2} Isabel C. Santos,¹ Vânia R. Sousa,¹ Elsa Mora,¹ Joaquim Marçalo,¹ Konstantin V. Luzyanin^{3,4}

¹Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
²Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
³Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, 198504 Saint Petersburg, Russian Federation.
⁴Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, United Kingdom

Table of Contents

1.	NMR data	2
2.	UV-vis-NIR data	<mark>18</mark>
3.	X-ray crystallography data	<mark>18</mark>

1. NMR Data

Figure S1. ¹H NMR spectrum of $[Sm{(^{tBu2}OAr)_2Me_2-cyclam}]$ (1) in toluene- d_8 at 23 °C.

Figure S2. ¹H NMR of $[Sm{(^{tBu2}OAr)_2Me_2-cyclam}](1)$ in toluene- d_8 at -40°C.

3

Figure S4. ¹H NMR spectrum of $[Sm{(^{1Bu2}ArO)_2Me_2-cyclam}](1)$ in thf- d_8 at -40°C.

Figure S5. ¹H NMR spectrum of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam}]$ (1) in toluene-*d*₈ with thf addition at 25°C.

Figure S6. ¹H NMR spectrum of $[Sm\{({}^{tBu2}ArO)_2Me_2-cyclam\}]$ (1) in toluene-*d*₈ with thf addition at -40°C.

Figure S7. ¹H NMR of **1** spectrum in toluene- d_8 , toluene- d_8 with addition of thf and in thf- d_8 at -50°C.

Figure S8. ¹H NMR of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in acetonitrile- d_3 at 23 °C.

Figure S9. ¹H NMR of $[Sm{(^{1Bu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in thf- d_8 at 23 °C.

Figure S10. ¹H NMR of spectrum of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in thf- d_8 at -30 °C.

Figure S11. ¹H -¹H COSY of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in thf- d_8 at -30 °C.

Figure S12. ¹H-¹³C HSQC spectrum of $[Sm{(^{tBu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in thf- d_8 at -30

	Chemical Shift (δ, ppm)	
	¹ H	¹³ C
ArC-H	9.08	129.91
ArC-H	9.04	129.91
ArC-H	7.77	125.48
ArC-H	7.64	125.12
ArCH ₂ N	12.08; 7.41	75.95
ArCH ₂ N	9.00; 5.94	75.20
CH ₂	5.21, 3.50	66.84
CH ₂	7.35, 3.63	64.18
CH ₂	4.33, 2.43	62.14
CH ₂	-0.70 (2H)	62.08
CH ₂	2.03, -0.88	59.88
CH ₂	2.20, -0.88	55.87
CH ₂	-1.11, -2.53	54.72
CH ₂	4.75, 3.14	57.38
CH ₂	2.55, 2.17	25.46
CH ₂	2.84, 1.91	22.04
C(<u>CH</u> 3)3	1.87 (9H), 1.82 (9H)	32.43
C(<u>CH</u> ₃) ₃	1.01 (18H)	31.81
	[BPh ₄] ⁻	
<i>m</i> -Ph-BPh ₄	7.20	137.00
o-Ph-BPh ₄	6.84	125.65
<i>p</i> -Ph-BPh ₄	6.72	121.79

Table S1 ¹H and ¹³C chemical shifts of $[Sm{(^{tBu2}ArO)_2Me_2-cyclam}][BPh_4]$ (2) in thf- d_8 at -30°C^{a)}

H₃C N N Sm^{III} CH₃

a) The ${}^{13}C$ chemical shifts were extracted from the ${}^{1}H$ - ${}^{13}C$ HSQC experiment.

Figure S13. ¹H NMR of [($\{Sm\{(^{tBu2}ArO)_2Me_2-cyclam\}\}_2(\mu-O)$] (3) in benzene- d_6 at 23 °C.

Figure S14. ¹H-¹³C HSQC spectrum of $[({Sm{(t^{Bu2}ArO)_2Me_2-cyclam}})_2(\mu-O)]$ (3) in thf- d_8

Figure S15. Full ¹H NMR spectrum of $[Sm{(^{tBu2}ArO)_2Me_2-cyclam}(bipy^{-})]$ (5) in toluene-*d*₈ at 25 °C from 60 to -260 ppm.

Figure S16. ¹H NMR spectrum of $[Sm{(^{1Bu2}ArO)_2Me_2-cyclam} (bipy^{-})]$ (5) in toluene- d_8 at 25 °C from 14 to -22 ppm.

Figure S17. ¹H- ¹H gCOSY spectrum of [Sm{(t^{Bu2}ArO)₂Me₂-cyclam} (bipy•-)] (5) in toluene-*d*₈ at 25 °C from 14 to -8 ppm

Figure S18. $^{1}\text{H} - ^{13}\text{C}$ HSQC spectrum of $[\text{Sm}\{(^{tBu2}\text{ArO})_2\text{Me}_2\text{-cyclam}\}(\text{bipy}^{\bullet-})]$ (5) in toluene- d_8 at 25 °C from 11 to -22 ppm

Figure S19. Full ¹H NMR spectrum of [$\{Sm\{(^{tBu2}ArO)_2Me_2-cyclam\}\}(Me_2-bipy^{\bullet-})$] (6) in toluene- d_8 at 25 °C from 200 to -290 ppm.

Figure S20. ¹H NMR spectrum of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam} (Me_2-bipy^{--})]$ (6) in toluene d_8 at 25 °C from 26 to -46 ppm.

Figure S21. ¹H – ¹³C HSQC spectrum of $[Sm{(t^{Bu2}ArO)_2Me_2-cyclam}(Me_2-bipy^{\bullet})]$ (6) in toluene-*d*₈ at 25 °C from 14 to -11 ppm

Chemical Shift (δ, ppm)					
	5 (R = H)	6 (R = CH ₃)			
	(^{tBu2} ArO) ₂ Me ₂ -cyclam ²⁻				
NCH ₃	0.98 (6H)	0.98 (6H)			
	1.74 (9H), 1,64 (9H)	1.77 (9H), 1.66 (9H)			
$C(CH_3)_3$	-0.21 (9H), -0,66 (9H)	-0.22 (9H), -0.69 (9H)			
	9.59, 8.12,	9.49, 8.15,			
ArC-H	7.72, 7.54,	7.74, 7.56			
	12.54, 8.23, 4.62, 4.46,				
	4.22, 3.85,	12 73 8 35 4 65			
	3.32, 2.53 (2H), 2.00-	4 32 3 87 3 38 2 56			
ArCH-N+CH.	1.10 (8H), 1.10-0.80	2.15-1.10 (9H), -0.90.			
	(2H),	-4.115.686.71			
	-1.00, -4.16				
	-5.68, -6.56, -6.69				
	4,4'-R ₂ -2,2'-bipy				
	11.48 (2H), - 16.83,	24.12.10.02			
	-20.79, -164.6,	24.13, 18.82,			
Ar-H	-170.1233.8.	-42.82, -44.64, -235.9,			
	-239.8	-242.0			
Ar-CH ₃	-	160.6 (3H), 159.6 (3H)			

Table S2. ¹H chemical shifts of $[Sm\{(^{tBu2}ArO)_2Me_2-cyclam\}(R_2-bipy^{\bullet-})]$ in toluene- d_8 at25°C

2. UV-vis-NIR data

Figure S22. UV-vis-NIR spectra (23°C) of toluene solutions of 1 (green line), 5 (blue line) and 6 (red line).

3. X-ray crystallography data

Figure S23: Diagram of the asymmetric unit of compound $[Sm{(^{IBu2}ArO)_2Me_2-cyclam}][BPh_4]_2$ (2).

	1	2. CH ₃ CN	$3.(C_4H_8O)_2$	$4.C_6H_{14}$	6
Empirical formula	$C_{54}H_{82}N_4O_2Sm$	$C_{138}H_{189}B_2N_{11}O_4Sm_2$	$C_{96}H_{164}N_8O_8Sm_2$	$C_{90}H_{150}N_8O_4SSm_2$	$\mathrm{C}_{54}\mathrm{H}_{82}\mathrm{N}_{6}\mathrm{O}_{2}\mathrm{Sm}$
Crystal size (mm)	0.22 x 0.12 x 0.04	0.25 x 018 x 0.04	0.22 x 0.16 x 0.04	0.40 x 0.10 x 0.08	0.30 x 0.20 x 0.10
Formula weight	813.17	2388.32	1859.07	1740.94	997.61
Cryst. System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	C2/c	$P2_1/n$	$P2_1/n$
<i>a</i> [Å]	26.2754(14)	40.1363(7)	20.7329(14)	15.8177(3)	17.906(5)
<i>b</i> [Å]	9.0495(5)	18.3016(3)	30.8997(19)	37.3695(8)	14.892(5)
<i>c</i> [Å]	17.5199(10)	17.6719(3)	15.2338(10)	18.0889(4)	21.375(5)
α [°]	90	90	90	90	90
β[°]	93.263(2)	100.442(1)	97.093(2)	115.1330(10)	104.623(5)
γ [°]	90	90	90	90	90
V[Å ³]	4159.1(4)	12766.1(4)	9684.7(11)	9680.0(3)	5515(3)
Z	4	4	4	4	4
Calculated density (mg/m ⁻³)	1.299	1.243	1.275	1.195	1.201
μ (mm ⁻¹)	1.449	0.967	1.257	1.271	1.106
T_{min}/T_{max}	0.7410/0.944	0.749/0.962	0.770/0.951	0.630/0.905	0.733/0.897
F(000)	1712	5040	3936	3672	2104
θ_{\max} (°)	25.03	25.68	25.03	25.03	12.91
Reflections collected	23262	98512	23205	68171	12014
Unique refl. (R _{int})	7326 (0.0919)	24192 (0.0906)	8482 (0.0907)	16883 (0.0709)	1415(0.0860)
$R_1[I > 2\sigma(I)]$	0.0717	0.0525	0.0510	0.0605	0.0731
wR2 (all data)	0.1624	0.1137	0.1064	0.1507	0.2070
Parameters	457	1476	529	960	314
GOF on F ²	1.054	1.026	0.894	1.057	1.088
Largest diff. peak , hole/e Å-	³ 1.131, - 2.361	1.581, -1.285	1.339, -0.905	5.285, -1.634	1.470, -0.444

 Table S3 : Selected Crystal Data and Data Collection Parameters for complexes 1-4 and 6