Electronic Supplementary Information for

Transfer hydrogenation with abnormal dicarbene rhodium(III) complexes containing ancillary and modular imine ligands

Kevin Farrell,^a Philipp Melle,^a Robert A. Gossage,^{b,c} Helge Müller-Bunz^a and Martin Albrecht*^{a,b}

Variable Temperature NMR Studies and the Calculation of the Free Energy of Inversion. The CD₃CN solutions of the complex were cooled to – 20 °C using a 500 MHz NMR machine and the low temperature ¹H and ¹³C{¹H} spectra were then recorded. The sample was then heated in 10 °C intervals while recording of the ¹H NMR spectrum at each interval was likewise carried out. The coalescence temperature (T_c) for the NCH₂N and the *i*Pr methyl signals were estimated for each complex **2a**–**d** and are shown in Tables S1 and S2. From the T_c for each complex, the free energy of inversion (Δ G) of the imidazolylidene linker (NCH₂N) and the *i*Pr methyl groups were estimated using equation 1. The main source of error was in the estimation of the T_c for which the Δ G value for each calculation is derived. The overlay of variable temperature ¹H NMR spectra showing the slow exchange limit and the coalescence of the NCH₂N ¹H NMR signals with increased temperature is shown in Figure S1.

Table S1. ¹H NMR data, coalescence temperature and free energy estimation based on the coalescence temperature of the NCH₂N linker ¹H NMR signals (CD₃CN solutions).

Complex	$\delta_{\rm H} ({\rm ppm}) / J_{\rm HH} ({\rm Hz})$	$T_{c}(^{\circ}C)$	δν (Hz)	$\Delta G (kJ/mol)$
2a	6.99 (13.1), 6.15 (13.1)	60	420	63±1
2b	6.97 (13.1), 6.15 (13.1)	55 ^a	410	62±1
2c	6.96 (13.1), 6.14 (13.1)	50	410	61±1
2d	6.94 (13.2), 6.16 (13.2)	50	390	61±1

^a The coalescence for complex **2b** occurred between 50 and 60 °C and was estimated at 55 °C.

Table S2. ¹H NMR data, coalescence temperature and free energy estimation based on the coalescence temperature of the *i*Pr methyl group ¹H NMR signals.

Complex	$\delta_{\rm H} ({\rm ppm}) / J_{\rm HH} ({\rm Hz})$	T_{c} (°C)	δv (Hz)	$\Delta G (kJ/mol)$
2a	1.62 (6.6), 1.40 (6.6)	40	110	63±1
2b	1.61 (6.6), 1.40 (6.6)	35 ^a	105	62±1
2c	1.61 (6.6), 1.40 (6.6)	35 ^a	105	62±1
2d	1.64 (6.6), 1.41 (6.6)	30	115	60±1

^a The coalescence for the *i*Pr ¹H NMR signals of complexes **2b** and **2c** occurred between 30 and 40 °C and were therefore estimated at 35 °C.

$$\Delta G = RT_c(22.96 + \ln(T_c/\delta \nu))$$
(1)

where R = 8.3144 (for unit of J/mol)

 T_c = coalescence temperature (in K)

 δv = difference between ¹H NMR signals at slow-exchange limit (in Hz)

^{19 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1} f1 (ppm)

2b

S3

Figure S1. Variable temperature ¹H NMR spectra overlays showing the slow exchange limit (-20 °C) and the coalescence of the NCH₂N protons with heating for complexes 2a-d.

	2a	2b	
CCDC No.	1437163	1437165	
Empirical formula	$C_{27}H_{35}N_7RhI_3$	$C_{28}H_{38}N_6Cl_2RhI_3$	
Molecular formula	$[C_{25}H_{32}N_6RhI_2]^+[I]^- \bullet C_2H_3N$	$[C_{28}H_{38}N_6Cl_2RhI_2]^+[I]^- \bullet CH_2Cl_2$	
Formula weight	941.23	1013.15	
Temperature	100(2) K	100(2) K	
Wavelength	0.71073 Å	1.54184 Å	
Crystal system	Orthorhombic	Monoclinic	
Space group	Pbca (#61)	$P2_1/c$ (#14)	
Unit cell dimensions	a= 18.4957(2) Å α= 90°.	a= 11.0534(1) Å α= 90°.	
	b= 18.0877(1) Å β = 90°.	b= 33.3241(3) Å β = 108.238(1)°.	
	c= 19.1324(2) Å γ= 90°.	$c= 10.6127(1) \text{ Å } \gamma = 90^{\circ}.$	
Volume	6400.64(10) Å ³	3712.75(6) Å ³	
Ζ	8	4	
Density (calculated)	1.953 Mg/m ³	1.813 Mg/m^3	
Absorption coefficient	3.456 mm ⁻¹	24.829 mm ⁻¹	
F(000)	3600	1944	
Crystal size (mm ⁻³)	$0.3092 \times 0.1872 \times 0.0570 \text{ mm}^3$	$0.1373 \times 0.1207 \times 0.0386 \ mm^3$	
θ range	2.72 to 32.96°.	4.21 to 76.95°.	
Index ranges	$-23 \le h \le 28, -27 \le k \le 27, -28 \le l \le 26$	$-10 \le h \le 13, -41 \le k \le 41, -13 \le l \le 13$	
Reflections collected	74243	55077	
Independent reflections	11370 [R(int) = 0.0259]	7742 [R(int) = 0.0510]	
Completeness	$(\theta = 32.00^{\circ})$ 98.8 %	$(\theta = 76.95^{\circ}) \ 98.9 \ \%$	
Absorption correction	Analytical	Analytical	
Max., min. transmission	0.888, 0.631	0.476, 0.156	
Data	11370	7742	
Restraints / parameters	0 / 355	6 / 369 ^{a)}	
Goodness-of-fit on F ²	1.127	1.058	
Final R indices [I>2o(I)]	R1 = 0.0242, $wR2 = 0.0530$	R1 = 0.0420, wR2 = 0.1120	
R indices (all data)	R1 = 0.0328, $wR2 = 0.0581$	R1 = 0.0452, wR2 = 0.1150	
Largest diff. peak, hole	1.081, -1.704 e.Å ⁻³	2.214, -1.285 e.Å ⁻³	

Table S3. Crystal data and structure refinement for 2a and 2b.

^{a)} The two disorder parts were restrained to have the same shape using SADI.

	4		
CCDC No.	1437164		
Empirical formula	$C_{32}H_{39}N_7Cl_4RhI_3$		
Molecular formula	$[C_{30}H_{35}N_7RhI]^{2+}\{[I]^-\}_2 \bullet 2 (CH_2Cl_2)^{a}$		
Formula weight	1147.11		
Temperature	100(2) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P-1 (#2)		
Unit cell dimensions	$a = 11.0304(3) \text{ Å} \alpha = 85.577(3)^{\circ}.$		
	b= 13.3992(4) Å β = 78.000(3)°.		
	$c= 14.0098(4) \text{ Å } \gamma = 80.837(3)^{\circ}.$		
Volume	1997.46(10) Å ³		
Z	2		
Density (calculated)	1.907 Mg/m ³		
Absorption coefficient	24.378 mm ⁻¹		
F(000)	1104		
Crystal size	$0.2880 \times 0.1335 \times 0.0384 \text{ mm}^3$		
θ range	3.23 to 77.29°.		
Index ranges	-13≤h≤13, -16≤k≤16, -17≤l≤17		
Reflections collected	81077		
Independent reflections	8346 [R(int) = 0.0748]		
Completeness	$(\theta = 77.29^{\circ})$ 98.5 %		
Absorption correction	Analytical		
Max., min. transmission	0.466, 0.035		
Data	8346		
Restraints / parameters	0 / 386		
Goodness-of-fit on F ²	1.031		
Final R indices [I>2 σ (I)]	R1 = 0.0473, $wR2 = 0.1282$		
R indices (all data)	R1 = 0.0491, $wR2 = 0.1296$		
Largest diff. peak, hole	2.390, -1.543 e.Å ⁻³		

 Table S4. Crystal data and structure refinement for 4

^{a)} The solvent could not be modelled in terms of atomic sites. Platon SQUEEZE was used to compensate for the spread electron density.