

Fig S1 Rietveld refinement of SXRPD and NPD data corresponding to LWO sample using Fm3m SG (same data as publication¹, same description as in publication²).

¹ A. Magrasó, J. M. Polfus, C. Frontera, J. Canales-Vazquez, L.-E. Kalland, C. H. Hervoches, S. Erdal, R. Hancke, M. S. Islam, T. Norby and R. Haugsrud, J. Mater. Chem., 2012, 22(5), 1762–1764

² T. Scherb, S. A. J. Kimber, C. Stephan, P. F. Henry, G. Schumacher, J. Just, S. Escolastico, J. M. Serra, J. Seeger, A. H. Hill and J. Banhart, arXiv:1305.3385v1, 2013

Fig. S2 Rietveld refinement of SXRPD and NPD data corresponding to LWO sample using F^{43m} SG (same data as publication¹ and the same description as publication³, for better comparison)

³ A. Magraso, C. Frontera, D. Marrero-Lopez and P.Nuñez, Dalton Trans., 2009, 10273–10283

Table S1. Structural details of LWO sample obtained through the joint refinement of SXRPD and NPD data using $F^{4}3m$ space group with lattice parameter a=11.17664(6)Å. La1 is placed at 4a (0 0 0), and La2 at 24g (x $\frac{1}{4}$ $\frac{1}{4}$); W1 is at 4b ($\frac{1}{2}$ $\frac{1}{2}$), and W2 at 4d ($\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$); oxygen ions are all at 16*e* (x x x) positions. The different parameters, agreement factors, and some relevant bond distances are listed.

La1	B_{iso} (Å ²)	1.5(1)	O1a <i>x</i>	0.132(1)
La2	x	-0.0028(6)	$B_{iso}(Å^2)$	1.2(1)
	Occ.	0.936	O1b <i>x</i>	0.865(1)
	$B_{iso}(Å^2)$	2.2(2)	$B_{iso}(Å^2)$	1.2(1)
W1	$B_{iso}(Å^2)$	1.04(9)	O2a <i>x</i>	0.409(3)
W2	Occ.	0.064	Occ.	0.74(2)
	$B_{iso}(Å^2)$	2.2(1)	$B_{iso}(Å^2)$	5.2(6)
			O2b <i>x</i>	0.602(3)
			Occ.	0.74(2)
			$B_{iso}(Å^2)$	5.2(6)
χ^2	SXRPD	1.97	χ^2 NPD	8.59
R _B	SXRPD	4.81	R _B NPD	7.83
R _{exp}	SXRPD	14.38	R _{exp} NPD	4.74
R _{wp}	SXRPD	20.2	R _{wp} NPD	13.9
$d_{\text{Lal-Ola}}$	Å)	2.548(6)	$d_{\text{La2/W2-O1a}}(\text{\AA})$	2.362(6)
$d_{\text{Lal-Olb}}(\text{\AA})$		2.621(4)	$d_{\text{La2/W2-O1b}}(\text{\AA})$	2.379(5)
$\langle d_{\text{Lal-O}} \rangle$ (Å)		2.584(5)	$d_{\text{La2/W2-O2a}}(\text{\AA})$	2.697(10)
$d_{\text{W1-O2a}}(\text{\AA})$		1.767(10)	$d_{\text{La2/W2-O2b}}(\text{\AA})$	2.616(11)
$d_{\text{W1-O2b}}(\text{\AA})$		1.973(11)	$\langle d_{\text{La2/W2-O}} \rangle$ (Å)	2.513(9)
$\langle d_{\rm W1-O} \rangle$ (Å)	1.870(11)		

from diffraction in the disorder model $Fm3m$. Last column prints the distance between both positions. Those marked in bold and italic correspond to oxygen ions surrounding in DFT structure, a W cation placed in La2/W2 positions.
both positions. Those marked in bold and italic correspond to oxygen ions surrounding in DFT structure, a W cation placed in La2/W2 positions.
in DFT structure, a W cation placed in La2/W2 positions.

	x-DFT	y-DFT	z-DFT	x-diff.	y-diff.	z-diff.	Dist(Å)
01 0	0.12462	0.12909	0.07164	0.13342	0.13342	0.06671	0.15551
O2 O	0.87098	0.87228	0.06734	0.86658	0.86658	0.06671	0.08174
03 0	0.87165	0.13884	0.43339	0.86658	0.13342	0.43329	0.08302
O4 O	0.13478	0.87403	0.43485	0.13342	0.86658	0.43329	0.09159
O5 O	0.13216	0.63261	0.31738	0.13342	0.63342	0.31671	0.02247
O6 O	0.87215	0.37938	0.3183	0.86658	0.36658	0.31671	0.16009
O7 O	0.87601	0.6419	0.18177	0.86658	0.63342	0.18329	0.14583
080	0.18685	0.33839	0.18471	0.13342	0.36658	0.18329	0.67625
09 0	0.62748	0.14121	0.31325	0.63342	0.13342	0.31671	0.13411
O10 O	0.37457	0.8783	0.31389	0.36658	0.86658	0.31671	0.17069
011 0	0.35795	0.16401	0.19253	0.36658	0.13342	0.18329	0.41111
012 0	0.63346	0.879	0.1816	0.63342	0.86658	0.18329	0.14393
013 0	0.63547	0.63855	0.07181	0.63342	0.63342	0.06671	0.12971
014 0	0.3709	0.37215	0.05675	0.36658	0.36658	0.06671	0.23628
015 0	0.3589	0.63626	0.4282	0.36658	0.63342	0.43329	0.14609
016 0	0.6296	0.36463	0.43289	0.63342	0.36658	0.43329	0.04879
017 0	0.86447	0.87712	0.43222	0.86658	0.86658	0.43329	0.12255
018 0	0.13178	0.14085	0.43277	0.13342	0.13342	0.43329	0.08587
019 0	0.14751	0.872	0.0658	0.13342	0.86658	0.06671	0.17003
O20 O	0.86623	0.15237	0.06766	0.86658	0.13342	0.06671	0.21299
O21 O	0.87517	0.37221	0.18553	0.86658	0.36658	0.18329	0.12529
O22 O	0.13544	0.62562	0.18476	0.13342	0.63342	0.18329	0.09591
<i>023 0</i>	0.15425	0.32772	0.30511	0.13342	0.36658	0.31671	0.5571
O24 O	0.86108	0.63807	0.31348	0.86658	0.63342	0.31671	0.10818
O25 O	0.36667	0.87172	0.18325	0.36658	0.86658	0.18329	0.05749
O26 O	0.63136	0.13944	0.18312	0.63342	0.13342	0.18329	0.07125
O27 O	0.63715	0.87222	0.31542	0.63342	0.86658	0.31671	0.08093
028 O	0.33225	0.15469	0.31097	0.36658	0.13342	0.31671	0.46947
O29 O	0.37173	0.37466	0.4292	0.36658	0.36658	0.43329	0.14087
O30 O	0.63705	0.63884	0.43352	0.63342	0.63342	0.43329	0.07312
031 0	0.64368	0.38017	0.06512	0.63342	0.36658	0.06671	0.1937
O32 O	0.37495	0.64718	0.06501	0.36658	0.63342	0.06671	0.18406
033 0	0.61875	0.6202	0.2167	0.61167	0.61167	0.21685	0.124
O34 O	0.60348	0.43252	0.3068	0.61167	0.4337	0.30584	0.09498
O35 O	0.42649	0.60592	0.30069	0.4337	0.61167	0.30584	0.15459
O36 O	0.42834	0.89598	0.44373	0.4337	0.88833	0.44417	0.10491
O37 O	0.584	0.89613	0.0373	0.61167	0.88833	0.03315	0.33459
O38 O	0.38295	0.05937	0.0578	0.38833	0.0663	0.05584	0.10745
O39 O	0.88617	0.39378	0.46979	0.88833	0.38833	0.46685	0.09284
O40 O	0.05145	0.38839	0.06008	0.0663	0.38833	0.05584	0.19122

041 0	0.88859	0.58412	0.03862	0.88833	0.61167	0.03315	0.33147
042 0	0.13016	0.12412	0.22792	0.11167	0.11167	0.21685	0.35131
O43 O	0.12366	0.93143	0.30781	0.11167	0.9337	0.30584	0.14339
O44 O	0.93849	0.12307	0.30528	0.9337	0.11167	0.30584	0.13883
045 0	0.3794	0.37504	0.26543	0.38833	0.38833	0.28315	0.43485
O46 O	0.40189	0.55832	0.1847	0.38833	0.5663	0.19417	0.27533
O47 O	0.5877	0.39164	0.19149	0.5663	0.38833	0.19417	0.24945
O48 O	0.60107	0.12892	0.04953	0.61167	0.11167	0.03315	0.43063
O49 O	0.38813	0.12416	0.466	0.38833	0.11167	0.46685	0.14097
O50 O	0.61292	0.07467	0.44187	0.61167	0.0663	0.44417	0.10771
051 0	0.89924	0.8972	0.29152	0.88833	0.88833	0.28315	0.24445
O52 O	0.90425	0.05256	0.19058	0.88833	0.0663	0.19417	0.24848
O53 O	0.08066	0.88953	0.19553	0.0663	0.88833	0.19417	0.16398
O54 O	0.12204	0.60711	0.04771	0.11167	0.61167	0.03315	0.34939
O55 O	0.11568	0.43684	0.43951	0.11167	0.4337	0.44417	0.11876
O56 O	0.93993	0.6176	0.44023	0.9337	0.61167	0.44417	0.13044
O57 O	0.14138	0.13552	0.56799	0.13342	0.13342	0.56671	0.0964
O58 O	0.87013	0.87346	0.56979	0.86658	0.86658	0.56671	0.11063
O59 O	0.87103	0.13806	0.93392	0.86658	0.13342	0.93329	0.07326
O60 O	0.13662	0.87316	0.93308	0.13342	0.86658	0.93329	0.08195
O61 O	0.12852	0.63875	0.81118	0.13342	0.63342	0.81671	0.14781
O62 O	0.87378	0.37931	0.81592	0.86658	0.36658	0.81671	0.16449
O63 O	0.86627	0.64069	0.68588	0.86658	0.63342	0.68329	0.09988
064 0	0.17849	0.34926	0.68504	0.13342	0.36658	0.68329	0.54132
O65 O	0.63411	0.13081	0.81282	0.63342	0.13342	0.81671	0.09208
O66 O	0.36642	0.86351	0.81644	0.36658	0.86658	0.81671	0.0349
067 O	0.34715	0.15954	0.68591	0.36658	0.13342	0.68329	0.3687
O68 O	0.63382	0.87448	0.68216	0.63342	0.86658	0.68329	0.09199
O69 O	0.63664	0.63997	0.56984	0.63342	0.63342	0.56671	0.10752
O70 O	0.36774	0.3724	0.56575	0.36658	0.36658	0.56671	0.06974
O71 O	0.36239	0.60905	0.93394	0.36658	0.63342	0.93329	0.27688
O72 O	0.60716	0.36808	0.93373	0.63342	0.36658	0.93329	0.29428
O73 O	0.8637	0.86531	0.93199	0.86658	0.86658	0.93329	0.04565
O74 O	0.12857	0.13053	0.93499	0.13342	0.13342	0.93329	0.07369
O75 O	0.13455	0.8727	0.56667	0.13342	0.86658	0.56671	0.0696
O76 O	0.86849	0.14632	0.5667	0.86658	0.13342	0.56671	0.14582
077 O	0.88253	0.37159	0.68263	0.86658	0.36658	0.68329	0.18752
O78 O	0.1376	0.62799	0.68006	0.13342	0.63342	0.68329	0.1053
079 0	0.17204	0.33287	0.80746	0.13342	0.36658	0.81671	0.6094
080 O	0.86553	0.63742	0.8188	0.86658	0.63342	0.81671	0.06575
081 0	0.36848	0.87433	0.68561	0.36658	0.86658	0.68329	0.10321
082 0	0.62666	0.14215	0.68516	0.63342	0.13342	0.68329	0.13035
083 0	0.62624	0.87116	0.81884	0.63342	0.86658	0.81671	0.10648
084 0	0.33936	0.15871	0.80475	0.36658	0.13342	0.81671	0.49412
O85 O	0.63788	0.64173	0.93463	0.63342	0.63342	0.93329	0.10963

086 O	0.63606	0.37367	0.56498	0.63342	0.36658	0.56671	0.09302
O87 O	0.374	0.6405	0.56286	0.36658	0.63342	0.56671	0.1434
O88 O	0.60652	0.61243	0.79148	0.61167	0.61167	0.78315	0.19517
O89 O	0.58789	0.38849	0.80734	0.5663	0.38833	0.80584	0.24374
O90 O	0.38267	0.57295	0.80797	0.38833	0.5663	0.80584	0.10865
091 0	0.4159	0.89793	0.95379	0.4337	0.88833	0.94417	0.31213
O92 O	0.61532	0.89454	0.52983	0.61167	0.88833	0.53315	0.10955
O93 O	0.38817	0.94239	0.55811	0.38833	0.9337	0.55584	0.10965
O94 O	0.89288	0.41597	0.95425	0.88833	0.4337	0.94417	0.30448
O95 O	0.06827	0.39462	0.55765	0.0663	0.38833	0.55584	0.08409
O96 O	0.89581	0.58475	0.55374	0.88833	0.5663	0.55584	0.22752
<i>097 0</i>	0.12333	0.13513	0.72823	0.11167	0.11167	0.71685	0.38805
O98 O	0.10612	0.95581	0.81056	0.11167	0.9337	0.80584	0.27589
O99 O	0.9202	0.12362	0.80637	0.9337	0.11167	0.80584	0.20195
0100 O	0.38687	0.37157	0.74042	0.38833	0.38833	0.71685	0.55968
O101 O	0.4402	0.6071	0.69439	0.4337	0.61167	0.69417	0.08898
O102 O	0.60599	0.43397	0.69333	0.61167	0.4337	0.69417	0.0663
O103 O	0.56476	0.12142	0.55812	0.5663	0.11167	0.55584	0.12158
O104 O	0.39096	0.13898	0.94827	0.38833	0.11167	0.96685	0.5165
O105 O	0.61003	0.07111	0.93892	0.61167	0.0663	0.94417	0.13044
O106 O	0.88482	0.89329	0.78405	0.88833	0.88833	0.78315	0.07086
O107 O	0.89282	0.08237	0.69285	0.88833	0.0663	0.69417	0.1889
O108 O	0.06272	0.90556	0.69342	0.0663	0.88833	0.69417	0.19749
O109 O	0.12286	0.61707	0.53063	0.11167	0.61167	0.53315	0.14993
O110 O	0.13355	0.39274	0.95065	0.11167	0.38833	0.96685	0.43994
0111 0	0.06001	0.6109	0.93736	0.0663	0.61167	0.94417	0.16797

Table S3: Comparison of the positions of lanthanum cations obtained by DFT with								
those from diffraction in the disorder model $Fm3m$. Last column prints the distance								
between	both positio	ons. W cat	tions place	ed in La2	/W2 posit	ions used	for DFT	
calculation	ns are also ir	ncluded.	DDT	1:00	1:00	1:00	5	
.	x-DFT	y-DFT	z-DFT	x-diff.	y-diff.	z-diff.	Dist(A)	
Lal La	0.00058	0.00227	0.00038	0.00000	0.00000	0.00000	0.02753	
La2 La	0.99037	0.51802	0.25143	0.00000	0.50000	0.25000	0.23059	
La3 La	0.50916	0.00009	0.24895	0.50000	0.00000	0.25000	0.10504	
La4 La	0.51199	0.51479	0.00614	0.50000	0.50000	0.00000	0.25322	
La5 La	-0.00111	0.23275	0.13724	0.00000	0.23590	0.13205	0.12187	
La6 La	0.01307	0.74254	0.11749	0.00000	0.73590	0.11795	0.16417	
La7 La	-0.0012	0.26658	0.38207	0.00000	0.26410	0.38205	0.0308	
La8 La	0.00095	0.77087	0.36959	0.00000	0.76410	0.36795	0.08475	
La9 La	0.23422	0.00304	0.13572	0.23590	0.00000	0.13205	0.09076	
La10 La	0.26334	0.00397	0.38259	0.26410	0.00000	0.38205	0.04676	
Lall La	0.73604	0.01274	0.116	0.73590	0.00000	0.11795	0.14892	
La12 La	0.76853	0.01275	0.36699	0.76410	0.00000	0.36795	0.15238	
La13 La	0.23732	0.26922	0.49781	0.23590	0.26410	0.50000	0.07696	
La14 La	0.74248	0.25063	0.99672	0.73590	0.23590	0.00000	0.19465	
La15 La	0.24852	0.74799	0.99707	0.23590	0.73590	0.00000	0.20602	
La16 La	0.76808	0.74448	0.50087	0.76410	0.73590	0.50000	0.10748	
La17 La	0.27129	0.50036	0.36411	0.26410	0.50000	0.36795	0.11765	
La18 La	0.24495	0.5035	0.11743	0.23590	0.50000	0.11795	0.10907	
La19 La	0.7654	0.50285	0.38342	0.76410	0.50000	0.38205	0.04651	
La20 La	0.75013	0.50501	0.12864	0.73590	0.50000	0.13205	0.18504	
La21 La	0.23961	0.76566	0.25164	0.23590	0.76410	0.25000	0.05803	
La22 La	0.7623	0.76861	0.24634	0.76410	0.76410	0.25000	0.09818	
La23 La	0.73404	0.27152	0.2516	0.73590	0.26410	0.25000	0.09268	
La24 La	0.50111	0.24382	0.38159	0.50000	0.23590	0.38205	0.08997	
La25 La	0.50142	0.75466	0.37277	0.50000	0.76410	0.38205	0.23327	
La26 La	0.50319	0.25275	0.11976	0.50000	0.23590	0.11795	0.1959	
La27 La	0.50008	0.74181	0.13285	0.50000	0.73590	0.13205	0.06844	
La28 La	0.0023	0.00693	0.49951	0.00000	0.00000	0.50000	0.08234	
La29 La	0.98606	0.51826	0.74875	0.00000	0.50000	0.75000	0.25828	
La30 La	0.50587	0.99484	0.74847	0.50000	0.00000	0.75000	0.09381	
La31 La	0.50287	0.50505	0.4983	0.50000	0.50000	0.50000	0.07522	
La32 La	0.00748	0.23731	0.63115	0.00000	0.23590	0.63205	0.08742	
La33 La	0.00527	0.74354	0.61642	0.00000	0.73590	0.61795	0.10923	
La34 La	0.00018	0.26163	0.88238	0.00000	0.26410	0.88205	0.02865	
La35 La	0.00424	0 77326	0 86648	0.00000	0 76410	0.86795	0 1175	
La36 La	0 23398	-0.00193	0.6324	0 23590	0.00000	0.63205	0.03142	
La37 La	0 2637	0.00337	0.88228	0.26410	0.00000	0.88205	0.03828	
La38 La	0 73841	0.01253	0.61779	0 73590	0,00000	0.61795	0 14287	
La39 La	0 76484	0.00586	0.8683	0 76410	0.00000	0.86795	0.06648	
La40 La	0 23818	0 23817	0.00657	0.26410	0.23590	0.00000	0.32579	
La io La	0.20010		0.00007	0.20110	0.20000	0.00000	0.02017	

La41 La	0.73461	0.23734	0.49827	0.73590	0.23590	0.50000	0.0443
La42 La	0.26645	0.77163	0.49872	0.26410	0.76410	0.50000	0.09269
La43 La	0.75186	0.75398	0.00365	0.73590	0.76410	0.00000	0.22643
La44 La	0.22545	0.51181	0.87492	0.23590	0.50000	0.88205	0.23763
La45 La	0.23988	0.51021	0.61078	0.23590	0.50000	0.61795	0.20171
La46 La	0.73616	0.49854	0.86961	0.73590	0.50000	0.86795	0.04064
La47 La	0.75506	0.50172	0.62148	0.76410	0.50000	0.61795	0.12963
La48 La	0.27322	0.72993	0.74574	0.26410	0.73590	0.75000	0.15463
La49 La	0.74129	0.75068	0.75064	0.73590	0.73590	0.75000	0.17641
La50 La	0.76011	0.25094	0.74911	0.76410	0.23590	0.75000	0.17505
La51 La	0.5085	0.23605	0.8715	0.50000	0.23590	0.88205	0.25425
La52 La	0.49412	0.73668	0.87043	0.50000	0.73590	0.86795	0.08642
La53 La	0.50314	0.27628	0.63232	0.50000	0.26410	0.63205	0.14071
La54 La	0.5009	0.77133	0.61418	0.50000	0.76410	0.61795	0.11719
W1 W	0.26339	0.25697	0.24974	0.26410	0.26410	0.25000	0.08029
W6 W	0.24892	0.24727	0.74329	0.23590	0.23590	0.75000	0.24459