Tuning of the sensing properties of luminescent Eu3+ complexes towards the nitrate anion Electronic Supplementary Information

(a)

(b)

Figure S1. Electronic spectra of: (a) solution containing $\mathrm{Eu}(\mathrm{OTf})_{3}: \mathbf{L} 2$ in 1:1 molar ratio $\left(\mathrm{C}_{\mathrm{Eu}}=\right.$ $0.019 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{~V}_{0}=2.0 \mathrm{~mL}$), titrated with a $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{4} \mathrm{NNO}_{3}$ solution ($2.4 \mathrm{mmol} \mathrm{L}^{-1}, 16$ additions of $4 \mu \mathrm{~L}$); final $\mathrm{C}_{\mathrm{Eu}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {nitrate }}=1 / 1 / 4$. (b) solution containing $\mathrm{Eu}(\mathrm{OTf})_{3}: \mathrm{L} 2$ in 1:2 molar ratio $\left(\mathrm{C}_{\mathrm{Eu}}=\right.$ $0.0096 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{~V}_{0}=2.0 \mathrm{~mL}$) titrated with a $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NNO}_{3}$ solution $\left(2.4 \mathrm{mmol} \mathrm{L}^{-1}, 8\right.$ additions of $4 \mu \mathrm{~L}$); final $\mathrm{C}_{\mathrm{Eu}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {nitrate }}=1 / 2 / 4$.

(a)

(b)

Figure S2. Electronic spectra of: (a) solution containing $1: 1 \mathrm{Eu}(\mathrm{OTf})_{3}: \mathbf{L 3}$ molar ratio $\left(\mathrm{C}_{\mathrm{Eu}}=\right.$ $0.0795 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{~V}_{0}=2.0 \mathrm{~mL}$), titrated with a $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{4} \mathrm{NNO}_{3}$ solution ($12.0 \mathrm{mmol} \mathrm{L}^{-1}, 7$ additions of $3 \mu \mathrm{~L}+8$ additions of $3.5 \mu \mathrm{~L}$); final $\mathrm{C}_{\mathrm{Eu}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {nitrate }}=1 / 1 / 4$. (b) solution containing $\mathrm{Eu}(\mathrm{OTf})_{3}: \mathrm{L} 3$ in 1:2 molar ratio $\left(\mathrm{C}_{\mathrm{Eu}}=0.0394 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{~V}_{0}=2.0 \mathrm{~mL}\right)$ titrated with a $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NNO}_{3}$ solution (2.4 $\mathrm{mmol} \mathrm{L}{ }^{-1}, 8$ additions of $3.5 \mu \mathrm{~L}$); final $\mathrm{C}_{\mathrm{Eu}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {nitrate }}=1 / 2 / 4$.

(a)

(b)

Figure S3. Speciation during the titration of (a) $\operatorname{EuL3}(\mathrm{OTf})_{3}$ and (b) $\mathrm{Eu}(\mathbf{L} 3)_{2}(\mathrm{OTf})_{3}$ with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NNO}_{3}$
(a)

(b)

Figure S4. Molecular crystal structure of (a) $\operatorname{EuL}\left(\left(\mathrm{NO}_{3}\right)_{3}\right.$ and (b) $\mathrm{EuL3}\left(\mathrm{NO}_{3}\right)_{3}$. View parallel to the N 4 square plane.

Figure S5. Evolution of the luminescence emission spectrum of 0.04 mM AN solution of $\operatorname{EuL1}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band. As the $\lambda_{\text {exc }}=285 \mathrm{~nm}, \mathrm{~L} \rightarrow \mathrm{Eu}^{3+}$ energy transfer (ET) has been exploited (antenna effect).

Figure S6. Evolution of the luminescence emission spectrum of 0.04 mM AN solution of $\mathrm{Eu}(\mathbf{L} 1)_{2}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band. As the $\lambda_{\text {exc }}=288 \mathrm{~nm}, \mathrm{~L} \rightarrow$ Eu ${ }^{3+}$ energy transfer (ET) has been exploited (antenna effect).

Figure S7. Evolution of the luminescence emission spectrum of 0.02 mM AN solution of $\operatorname{EuL2}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band.

Figure S8. Evolution of the luminescence emission spectrum of 0.02 mM AN solution of $\mathrm{Eu}(\mathbf{L 2})_{2}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band.

Figure S9. Evolution of the luminescence emission spectrum of 0.08 mM AN solution of $\operatorname{EuL3}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band. As the $\lambda_{\text {exc }}=278 \mathrm{~nm}, \mathrm{~L} \rightarrow \mathrm{Eu}^{3+}$ energy transfer (ET) has been exploited (antenna effect).

Figure S10. Evolution of the luminescence emission spectrum of 0.04 mM AN solution of $\mathrm{Eu}(\mathbf{L 3})_{2}(\mathrm{OTf})_{3}$ upon addition of the nitrate anion. All the spectra are normalized to the area of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ emission band. As the $\lambda_{\text {exc }}=289 \mathrm{~nm}, \mathrm{~L} \rightarrow \mathrm{Eu}^{3+}$ energy transfer (ET) has been exploited (antenna effect).

Figure S11. Luminescence emission spectra of 1 mM AN solution of $\operatorname{EuL} \mathbf{1}\left(\mathrm{NO}_{3}\right)_{3}$ (black line) and EuL1 +3.5 eq of nitrate (red line).

Figure S12. Luminescence emission spectra of 1 mM AN solution of EuL2 +4.5 eq of nitrate (solution 1, black line), $\operatorname{EuL2}\left(\mathrm{NO}_{3}\right)_{3}$ (solution 2, blue line) and $\operatorname{EuL} \mathbf{2}\left(\mathrm{NO}_{3}\right)_{3}+1$ eq of nitrate (solution 3, red dotted line).

Figure S13. Asymmetry ratio (R) vs nitrate concentration plot for $\operatorname{Eu}(\mathbf{L} 1)_{2}$ at two different concentration (i.e. 0.04 and 1 mM).

Figure S14. Asymmetry ratio (R) vs nitrate concentration plot for $\operatorname{Eu}(\mathbf{L} 2)_{2}$ at two different concentration (i.e. 0.02 and 1 mM).

Compound	$\mathrm{EuL3}\left(\mathrm{NO}_{3}\right)_{3} \cdot 0.40 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{EuN}_{7} \mathrm{O}_{9} .0 .40 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Fw	653.60
T, K	293(2)
λ, \AA	0.71073
Crystal symmetry	Triclinic
Space group	$P-1$
a, \AA	9.7469(6)
b, \AA	13.7146(8)
c, \AA	20.006(1)
α	78.020(1)
β	76.941(1)
γ	86.008(1)
Cell volume, \AA^{3}	2547.7(3)
Z	4
$\mathrm{D}_{\mathrm{C}}, \mathrm{Mg} \mathrm{m}^{-3}$	1.704
$\mu\left(\mathrm{Mo}^{-\mathrm{K}_{\alpha}}\right), \mathrm{mm}^{-1}$	2.524
$\mathrm{F}(000)$	1299
Crystal size/ mm	$0.15 \times 0.25 \times 0.30$
θ limits, ${ }^{\circ}$	$1.52-27.00$
Reflections collected	27988
Unique obs. reflections [$\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)$]	8336 [$\mathrm{R}(\mathrm{int})=0.0282]$
Goodness-of-fit-on F^{2}	1.022
$\mathrm{R}_{1}(\mathrm{~F})^{\mathrm{a}}$, $\mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0346, 0.0836
Largest diff. peak and hole, e. \AA^{-3}	0.0830 and -0.578
${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\left\|-\left\|\mathrm{F}_{\mathrm{c}}\right\| / / \Sigma\right\| \mathrm{F}_{\mathrm{o}} \mid .$	$\mathrm{e} \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(a \mathrm{P})^{2}+b\right.$

Table S1

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the two complexes of $\mathrm{EuL3}\left(\mathrm{NO}_{3}\right)_{3}$ in the asymmetric unit of the crystal

Bond lengths for isomer 1		Bond lengths for isomer 2	
$\mathrm{Eu}(1)-\mathrm{N}_{\mathrm{im}}(1)$	$2.548(4)$	$\mathrm{Eu}(2)-\mathrm{N}_{\mathrm{im}}(8)$	$2.544(4)$
$\mathrm{Eu}(1)-\mathrm{N}_{\mathrm{im}}(2)$	$2.566(3)$	$\mathrm{Eu}(2)-\mathrm{N}_{\mathrm{im}}(9)$	$2.570(4)$
$\mathrm{Eu}(1)-\mathrm{N}_{\mathrm{py}}(3)$	$2.581(4)$	$\mathrm{Eu}(2)-\mathrm{N}_{\mathrm{py}}(10)$	$2.598(5)$
$\mathrm{Eu}(1)-\mathrm{N}_{\mathrm{py}}(4)$	$2.588(4)$	$\mathrm{Eu}(2)-\mathrm{N}_{\mathrm{py}}(11)$	$2.593(4)$
$\mathrm{Eu}(1)-\mathrm{O}(1)$	$2.521(3)$	$\mathrm{Eu}(2)-\mathrm{O}(10)$	$2.475(4)$
$\mathrm{Eu}(1)-\mathrm{O}(2)$	$2.509(3)$	$\mathrm{Eu}(2)-\mathrm{O}(11)$	$2.460(4)$
$\mathrm{Eu}(1)-\mathrm{O}(4)$	$2.503(4)$	$\mathrm{Eu}(2)-\mathrm{O}(13)$	$2.520(4)$
$\mathrm{Eu}(1)-\mathrm{O}(5)$	$2.603(4)$	$\mathrm{Eu}(2)-\mathrm{O}(14)$	$2.523(4)$
$\mathrm{Eu}(1)-\mathrm{O}(7)$	$2.496(4)$	$\mathrm{Eu}(2)-\mathrm{O}(16)$	$2.529(4)$
$\mathrm{Eu}(1)-\mathrm{O}(9)$	$2.470(3)$	$\mathrm{Eu}(2)-\mathrm{O}(17)$	$2.504(4)$

Bond angles for isomer 1 Bond angles for isomer 2
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(2) \quad 63.2(1) \quad \mathrm{N}(8)-\mathrm{Eu}(2)-\mathrm{N}(9) \quad 63.6(1)$
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(3) \quad 126.4(1) \quad \mathrm{N}(8)-\mathrm{Eu}(2)-\mathrm{N}(10) \quad 124.8(1)$
$\mathrm{N}(1)-\mathrm{Eu}(1)-\mathrm{N}(4) \quad 64.1(1) \quad \mathrm{N}(8)-\mathrm{Eu}(2)-\mathrm{N}(11) \quad 63.5(1)$
$\mathrm{N}(2)-\mathrm{Eu}(1)-\mathrm{N}(3) \quad 63.4(1) \quad \mathrm{N}(9)-\mathrm{Eu}(2)-\mathrm{N}(10) \quad 63.2(1)$
$\mathrm{N}(2)-\mathrm{Eu}(1)-\mathrm{N}(4) \quad 121.4(1) \quad \mathrm{N}(9)-\mathrm{Eu}(2)-\mathrm{N}(11) \quad 125.5(1)$
$\mathrm{N}(3)-\mathrm{Eu}(1)-\mathrm{N}(4) \quad 151.3(1) \quad \mathrm{N}(10)-\mathrm{Eu}(2)-\mathrm{N}(11) \quad 152.3(1)$

Table S2

Estimated intrinsic quantum yields

On the basis of: i) the observed emission lifetimes reported in our previous work (F. Piccinelli, M. Bettinelli, A. Melchior, C. Grazioli, and M. Tolazzi, Dalt. Trans., 2015, 44, 182-192) for the triflate complexes $\left[\mathrm{EuL} 1=0.45 \mathrm{~ms}, \operatorname{EuL2}=0.52 \mathrm{~ms}, \operatorname{Eu}(\mathbf{L} 1)_{2}=0.72 \mathrm{~ms}\right.$ and $\left.\operatorname{Eu}(\mathbf{L} 2)_{2}=0.65 \mathrm{~ms}\right] ;$ ii) $\phi=$ $\tau_{\text {obs }} / \tau_{\text {rad }}$ and the equation reported by Werts et al. for $\tau_{\text {rad }}$ [M. H. V. Werts, R. T. F. Jukes, J. W. Verhoeven Phys. Chem. Chem. Phys., 2002, 4, 1542-1548], the estimated intrinsic quantum yields are: $6 \%(\mathrm{EuL1}), 4.7 \%(\mathrm{EuL2}), 18 \%\left[\mathrm{Eu}(\mathbf{L} 1)_{2}\right]$ and $13 \%\left[\mathrm{Eu}(\mathbf{L 2})_{2}\right]$.

DFT calculations

DFT calculations on the complexes $\left[\mathrm{Eu}(\mathbf{L 1 - 2})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{3+}$ have been carried out in ref. 38 . Additional Natural Bond Orbital analysis has been carried out here to obtain the Natural charges on each atom. The NBO charges give an estimate of the charge transfer from the ligand donor atoms to the metal cation.

Table S3. Natural Charges calculated on the Eu center and on the coordinating atoms of $\mathbf{L} 1$ and $\mathbf{L 2}$ for structures of the complexes optimized in ref. 38.
$\left[\mathrm{Eu}(\mathbf{L} 1)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{3+}$ [

