## SUPPORTING INFORMATION

## Aminopiperidine complexes for lactide polymerisation

Paul McKeown, Matthew G. Davidson, John P. Lowe, Mary F. Mahon, Lynne H. Thomas, Timothy J. Woodman and Matthew D. Jones

| Characterisation of ligands and complexes: | 2-18  |
|--------------------------------------------|-------|
| Selected polymer characterisation          | 19-26 |
| Crystallographic parameters                | 27-28 |

## Characterisation of ligands and complexes



Figure SI1: <sup>1</sup>H NMR (CDCl<sub>3</sub> 400MHz) spectrum of aromatic region for  $1H_2$  precursor. Inset: ESI-TOF spectrum



Figure SI2: <sup>1</sup>H EXSY NMR (CDCl<sub>3</sub>, 500 MHz, mixing time 0.6 s) spectrum with blue cross peaks showing chemical exchange and red cross peaks showing NOE.



Figure SI3: <sup>1</sup>H NMR (CDCl<sub>3</sub> 400MHz) spectrum of 1H<sub>2</sub>



Figure SI4: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of **1**H<sub>2</sub>



Figure SI5: Solid state structure of 1H<sub>2</sub>. Ellipsoids are shown at the 30% probability level.



Figure SI6: <sup>1</sup>H NMR (CDCl<sub>3</sub> 400MHz) spectrum of **5**H.



Figure SI7: <sup>1</sup>H NMR (CDCl<sub>3</sub> 400MHz) spectrum of aromatic region for **5**H; Inset: ESI-TOF spectrum



Figure SI8: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub> 100MHz) spectrum (Red) of **5**H with <sup>13</sup>C Dept (Blue) overlaid.



Figure SI9: <sup>1</sup>H NMR (CDCl<sub>3</sub> 400MHz) spectrum of 7H<sub>2</sub>.



Figure SI10: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of 7H<sub>2</sub>.



Figure SI11: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of Zr(1)<sub>2</sub>.



Figure SI12: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of Zr(1)<sub>2</sub>



Figure SI13: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of Zr(*cis*-3)<sub>2</sub>.



Figure SI14: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of Zr(*cis*-3)<sub>2</sub>.



Figure SI15: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of  $Zr(trans-3)_2$ . Note: impurity of another unsymmetrical  $Zr(3)_2$  isomer.



Figure SI16: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectra comparing Zr(1-3)<sub>2</sub> and Hf(*trans*-3)<sub>2</sub>.







Figure SI20: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of  $Hf(trans-3)_{2}$ . Note: Impurity of another unsymmetrical  $Hf(3)_2$  isomer.





Figure SI22: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of  $Hf(cis-3)_2$ . Note: Impurity of  $Hf(trans-3)_2$  and another unsymmetrical  $Hf(3)_2$  isomer.



Figure SI23: DOSY NMR (CDCl<sub>3</sub>, 500MHz) spectrum of  $Hf(cis-3)_2$ . Major series ( $Hf(cis-3)_2$ ) diffusion coefficient =  $4.90 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ , minor series ( $Hf(trans-3)_2$ ) diffusion coefficient =  $4.78 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ .



Figure SI24: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of Hf(*cis*-3)<sub>2</sub>.





Figure SI26: <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 100MHz) spectrum of Ti(1)(O<sup>i</sup>Pr)<sub>2</sub>



Figure SI27: <sup>1</sup>H NMR (d<sub>8</sub>-toluene, 400MHz) spectrum of Al(1)Me



Figure SI29: <sup>1</sup>H NMR (d<sub>8</sub>-toluene, 400MHz) spectrum of Al(4)Me<sub>2</sub>



Figure SI30: <sup>13</sup>C{<sup>1</sup>H} NMR (d<sub>8</sub>-toluene, 100MHz) spectrum Al(4)Me<sub>2</sub>





Figure SI32: <sup>13</sup>C{<sup>1</sup>H} NMR (d<sub>6</sub>-benzene, 100MHz) spectrum Al(7)Me



Figure SI33: DOSY NMR (d<sub>8</sub>-toluene, 500MHz) spectrum of Al(7)Me

**Selected Polymer Characterisation** 



Figure SI34: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of heterotactic PLA synthesised from solution polymerisation with  $Zr(1)_2$  – table 2, entry 1.



Figure SI35: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of PLA synthesised from bulk polymerisation with  $Zr(1)_2$  – table 2, entry 3.



Figure SI36: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of atactic PLA synthesised from bulk polymerisation with  $Ti(1)(O^iPr)_2$  – table 2, entry 12.



Figure SI37: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of isotactic PLA synthesised from solution polymerisation with Al(7)Me table 3, entry 7.



Figure SI38: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) spectrum of PLA synthesised from bulk polymerisation with  $1H_2$ .



Figure SI39: Semi-logarithmic plot for the solution polymerisation of  $Zr(1)_2$ . Conditions: Toluene, 80°C, [LA]:[Zr(1)\_2]:[BnOH] = 100:1:1



Figure SI40:  $M_n$  and  $M_w/M_n$  against conversion for solution polymerisation of  $Zr(2)_2$ . Linear regression gave the equation of the line at  $y = 151 \times + 59$ .



Figure SI41: Semi-logarithmic plot for the solution polymerisation of  $Zr(2)_2$ . Conditions: Toluene, 80°C, [LA]:[Zr(1)\_2]:[BnOH] = 100:1:1



Figure SI42:  $M_n$  and  $M_w/M_n$  against conversion for solution polymerisation of Hf(1)<sub>2</sub>. Linear regression gave the equation of the line at  $y = 239 \times -1364(R^2 = 0.92)$ 



Figure SI43: Semi-logarithmic plot for the solution polymerisation of  $Hf(1)_2$  Conditions: Toluene, 80°C, [LA]:[Zr(1)\_2]:[BnOH] = 100:1:1



Figure SI44:  $M_n$  and  $M_w/M_n$  against conversion for solution polymerisation of Al(4)Me<sub>2</sub>. Linear regression gave the equation of the line at y =  $148 \times -799(R^2 = 0.99)$ .



Figure SI45: Semi-logarithmic plot for the solution polymerisation of  $Al(4)Me_2$ . Conditions: Toluene, 80°C, [LA]:[Zr(1)<sub>2</sub>]:[BnOH] = 100:1:1



Figure SI46: GPC trace of PLA prepared in solution with  $Zr(1)_2$  – table 2, entry 1.



Figure SI47: GPC trace of PLA prepared by bulk polymerisation with  $Zr(1)_2$  – table 2, entry 3.



Figure SI48: GPC trace of PLA prepared by solution polymerisation with  $Hf(1)_2$  – table 2, entry 7.



Figure SI49: GPC trace of PLA prepared by solution polymerisation with Al(9)Me – table 3, entry 9.



Figure SI50: GPC trace of PLA prepared by bulk polymerisation with  $1H_2$ 



Figure SI51: MALDI-ToF of PLA from solution polymerisation with  $Zr(1)_2$  - Table 2, Entry 1.



Figure SI52: MALDI-ToF of PLA from solution polymerisation with Al(2)Me - Table 3, Entry 2.



Figure SI53: MALDI-ToF of PLA from solution polymerisation with Al(4)Me $_2$  - Table 3, Entry 4.



Figure SI54: MALDI-ToF of PLA from solution polymerisation with Al(7)Me - Table 3, Entry 7.



Figure SI55: MALDI-ToF of PLA from bulk polymerisation with 1H<sub>2</sub>.



Figure SI56: Schematic to illustrate the potential mechanism for the ROP with the bis-ligated complexes.

## Table SI 1: Full X-ray crystallography parameters

| Compound reference                        | $1 H_2$                    | Al(1)Me                    | Al(2)Me                    | Al(4)Me <sub>2</sub> | $Al(5)Me_2$              | $Al(6)Me_2$                                        | Al(7)Me      | Al(8)Me                |
|-------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------|--------------------------|----------------------------------------------------|--------------|------------------------|
| Chemical formula                          | $C_{28}H_{38}Cl_2N_2O_2\\$ | $C_{32}H_{46}AlCl_2N_2O_2$ | $C_{35}H_{46}AlBr_2N_2O_2$ | C23H39AlN2O          | $C_{34}H_{54}Al_2N_4O_2$ | C <sub>26</sub> H <sub>39</sub> AlN <sub>2</sub> O | C37H57AlN2O2 | $C_{31}H_{45}AlN_2O_2$ |
| Formula Mass                              | 505.50                     | 588.59                     | 713.54                     | 386.54               | 604.77                   | 422.57                                             | 588.82       | 504.67                 |
| Crystal system                            | Triclinic                  | Triclinic                  | Monoclinic                 | Monoclinic           | Monoclinic               | Monoclinic                                         | Monoclinic   | Triclinic              |
| a/Å                                       | 10.7434(9)                 | 8.7940(8)                  | 17.4539(4)                 | 15.1677(3)           | 19.9805(11)              | 7.4788(3)                                          | 17.6460(7)   | 8.3422(8)              |
| b/Å                                       | 11.2767(11)                | 12.2980(8)                 | 8.5772(2)                  | 11.97470(10)         | 8.6659(5)                | 14.4657(6)                                         | 10.2930(5)   | 9.3504(7)              |
| c/Å                                       | 11.9090(11)                | 15.3990(8)                 | 23.1237(6)                 | 14.1461(2)           | 20.6358(14)              | 21.7312(11)                                        | 19.4100(8)   | 19.2341(18)            |
| $a/^{\circ}$                              | 85.543(8)                  | 74.378(3)                  | 90                         | 90                   | 90                       | 90                                                 | 90           | 100.197(7)             |
| $eta/^{\circ}$                            | 87.130(7)                  | 87.933(5)                  | 107.060(3)                 | 115.389(2)           | 107.033(6)               | 97.752(4)                                          | 93.839(3)    | 101.412(8)             |
| γ/°                                       | 70.262(8)                  | 79.786(3)                  | 90                         | 90                   | 90                       | 90                                                 | 90           | 94.028(7)              |
| Unit cell volume/Å <sup>3</sup>           | 1353.5(2)                  | 1578.3(2)                  | 3309.42(15)                | 2321.18(7)           | 3416.3(4)                | 2329.53(18)                                        | 3517.5(3)    | 1438.8(2)              |
| Temperature/K                             | 150(2)                     | 150(2)                     | 150(2)                     | 150(2)               | 150(2)                   | 150(2)                                             | 150(2)       | 150(2)                 |
| Space group                               | PError!                    | PError!                    | $P2_{1}/n$                 | $P2_{1}/c$           | $P2_{1}/n$               | $P2_{1}/c$                                         | $P2_{1}/n$   | PError!                |
| No. of formula units per unit cell, $Z$   | 2                          | 2                          | 4                          | 4                    | 4                        | 4                                                  | 4            | 2                      |
| No. of reflections measured               | 12476                      | 33901                      | 28073                      | 27262                | 14360                    | 4091                                               | 30288        | 8567                   |
| No. of independent reflections            | 6195                       | 7167                       | 8618                       | 4548                 | 6007                     | 4091                                               | 6145         | 8567                   |
| R <sub>int</sub>                          | 0.0212                     | 0.0446                     | 0.0352                     | 0.0381               | 0.0564                   | -                                                  | 0.0845       | -                      |
| Final $R_I$ values $(I > 2\sigma(I))$     | 0.0398                     | 0.0367                     | 0.0402                     | 0.0391               | 0.1095                   | 0.0970                                             | 0.1175       | 0.0942                 |
| Final $wR(F^2)$ values $(I > 2\sigma(I))$ | 0.0916                     | 0.0946                     | 0.0841                     | 0.1008               | 0.2669                   | 0.2046                                             | 0.2944       | 0.2368                 |
| Final $R_1$ values (all data)             | 0.0503                     | 0.0465                     | 0.0633                     | 0.0447               | 0.1477                   | 0.1215                                             | 0.1606       | 0.1234                 |
| Final $wR(F^2)$ values (all data)         | 0.0973                     | 0.1011                     | 0.0926                     | 0.1043               | 0.2973                   | 0.2156                                             | 0.3381       | 0.2628                 |
| Goodness of fit on $F^2$                  | 1.025                      | 1.061                      | 1.022                      | 1.020                | 1.041                    | 1.120                                              | 1.067        | 1.076                  |

| Compound reference                        | $Hf(1)_2$                                      | $Hf(2)_2$                              | $\mathrm{Hf}(3)_2$           | $Ti(1)(O^iPr)_2$           | Zr(1) <sub>2</sub>         | $Zr(2)_2$                  | $Zr(3)_2$                 |
|-------------------------------------------|------------------------------------------------|----------------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|
| Chemical formula                          | $C_{30\cdot 25}H_{39}Cl_3Hf_{0\cdot 50}N_2O_2$ | $C_{57\cdot 50}H_{75}Br_4Cl_3HfN_4O_4$ | $C_{68}H_{100}HfI_4N_4O_4\\$ | $C_{34}H_{49}Cl_2N_2O_4Ti$ | $C_{62}H_{86}Cl_4N_4O_4Zr$ | $C_{61}H_{84}Br_4N_4O_4Zr$ | $C_{62}H_{86}I_4N_4O_4Zr$ |
| Formula Mass                              | 658.23                                         | 1490.69                                | 1723.60                      | 668.55                     | 1184.36                    | 1348.18                    | 1550.16                   |
| Crystal system                            | Triclinic                                      | Triclinic                              | Orthorhombic                 | Triclinic                  | Triclinic                  | Triclinic                  | Monoclinic                |
| a/Å                                       | 10.3949(2)                                     | 10.3957(5)                             | 54.9146(5)                   | 10.6236(5)                 | 13.9740(8)                 | 13.8853(9)                 | 19.5802(5)                |
| b/Å                                       | 13.7142(3)                                     | 13.6050(5)                             | 35.8227(3)                   | 11.1469(8)                 | 14.3110(7)                 | 14.3894(6)                 | 18.0805(3)                |
| $c/{ m \AA}$                              | 22.8673(3)                                     | 22.9024(11)                            | 13.38270(10)                 | 16.0773(9)                 | 17.2770(6)                 | 17.4919(8)                 | 19.3122(5)                |
| $\alpha / ^{\circ}$                       | 91.0520(10)                                    | 89.912(3)                              | 90                           | 101.894(6)                 | 74.900(3)                  | 74.488(4)                  | 90                        |
| $eta/^{\circ}$                            | 96.1700(10)                                    | 84.053(4)                              | 90                           | 102.235(4)                 | 87.307(3)                  | 86.590(5)                  | 108.576(3)                |
| $\gamma/^{\circ}$                         | 109.546(2)                                     | 69.887(4)                              | 90                           | 102.233(5)                 | 73.892(2)                  | 74.048(5)                  | 90                        |
| Unit cell volume/Å3                       | 3049.12(10)                                    | 3023.2(2)                              | 26326.3(4)                   | 1754.47(19)                | 3203.6(3)                  | 3237.5(3)                  | 6480.7(3)                 |
| Temperature/K                             | 150(2)                                         | 150(2)                                 | 150(2)                       | 150(2)                     | 150(2)                     | 150(2)                     | 150(2)                    |
| Space group                               | PError!                                        | PError!                                | Fdd2                         | PError!                    | PError!                    | PError!                    | $P2_{1}/c$                |
| No. of formula units per unit cell, $Z$   | 4                                              | 2                                      | 16                           | 2                          | 2                          | 2                          | 4                         |
| No. of reflections measured               | 22737                                          | 18821                                  | 51826                        | 11314                      | 31292                      | 14806                      | 62477                     |
| No. of independent reflections            | 11721                                          | 12294                                  | 14439                        | 6173                       | 31292                      | 14806                      | 12703                     |
| $R_{int}$                                 | 0.0241                                         | 0.0295                                 | 0.0337                       | 0.0481                     | -                          | 0.0205                     | 0.0838                    |
| Final $R_I$ values $(I > 2\sigma(I))$     | 0.0329                                         | 0.0401                                 | 0.0186                       | 0.0749                     | 0.1065                     | 0.0640                     | 0.0529                    |
| Final $wR(F^2)$ values $(I > 2\sigma(I))$ | 0.0840                                         | 0.0945                                 | 0.0374                       | 0.2023                     | 0.2707                     | 0.1458                     | 0.1328                    |
| Final $R_i$ values (all data)             | 0.0333                                         | 0.0530                                 | 0.0216                       | 0.0798                     | 0.1794                     | 0.1054                     | 0.0639                    |
| Final $wR(F^2)$ values (all data)         | 0.0843                                         | 0.1015                                 | 0.0377                       | 0.2097                     | 0.3112                     | 0.1685                     | 0.1423                    |
| Goodness of fit on $F^2$                  | 1.061                                          | 1.065                                  | 0.990                        | 1.036                      | 1.003                      | 1.028                      | 1.018                     |