Electronic Supplementary Information for

Oxidative Addition of Aromatic *ortho* C–H Bond of Tetraphosphine to Asymmetric Diiridium(I) Centers

Takayuki Nakajima,* Sayo Noda, Miyuki Sakamoto, Aya Matsui, Kanako Nakamae, Bunsho

Kure, Yasuyuki Ura, and Tomoaki Tanase*

Department of Chemistry, Faculty of Science, Nara Women's University,

Kitauoya-nishi-machi, Nara 630-8506, Japan

Synthesis and Structure of mononuclear iridium complex $[Ir_2(H)((dpmppp)-\kappa P^3)(^tBuNC)_2)]$ -(PF₆)₂ (**4**).

Table S1. Crystallographic Data of Complexes 1 and 2.

Table S2. Crystallographic Data of Complexes **3** and **4**.

 Table S3. Crystallographic Data of Complex 5 and 6.

Table S4. Crystallographic Data of Complex 8. CH₂Cl₂

 Table S5. Selected Bond Lengths (Å) and Angles (deg) for Complex 1.

 Table S6. Selected Bond Lengths (Å) and Angles (deg) for Complex 2.

 Table S7. Selected Bond Lengths (Å) and Angles (deg) for Complex 3.

 Table S8. Selected Bond Lengths (Å) and Angles (deg) for Complex 4.

 Table S9. Selected Bond Lengths (Å) and Angles (deg) for Complex 5.

Table S10. Selected Bond Lengths (Å) and Angles (deg) for Complex 6.

Table S11. Selected Bond Lengths (Å) and Angles (deg) for Complex 8.

Table S12. Thermodynamic Parameters Derived from DFT Calculations with B3LYP/lanl2dz for Ir/6-311+G(d,p) for Phenyl Group/6-31G(d) for Others on the Optimized (a) GS and (b) TS Model Structures with B3LYP/lanl2dz for Ir/6-31G(d) for Others.

Figure S1. ORTEP diagram for 4 with the atomic numbering scheme.

Figure S2. ORTEP diagram for 3 with the atomic numbering scheme.

Figure S3. ORTEP diagram for 5 with the atomic numbering scheme.

Figure S4. ORTEP diagram for 8 with the atomic numbering scheme.

Figure S5. ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectra of **1** in acetone-d₆ at room temperature. (a) Correlation for methylene protons. (b) Correlation for methylene proton and hydride.

Figure S6. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra of 2 for the methylene region.

Figure S7. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of 2.

Figure S8. ¹H-³¹P HMQC spectrum displaying correlation of the hydride peak and the phosphorous

peaks of 2.

Figure S9. ${}^{1}H^{-31}P$ HMBC spectrum of **2** in acetone-d₆ at room temperature.

Figure S10. ${}^{1}H-{}^{1}H$ COSY spectra of **2** in acetone-d₆ at room temperature. (a) Correlation for methylene protons. (b) Correlation for methylene proton and hydride.

Figure S11. ${}^{1}H-{}^{1}H$ ROESY spectrum of **2** in acetone-d₆ at room temperature.

Figure S12. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the methylene region of 3.

Figure S13. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of 3.

Figure S14. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of 4.

Figure S15. ¹H– ¹H COSY spectra of **4** in acetone-d₆ at room temperature.

Figure S16. ³¹P– ³¹P COSY spectra of **4** in acetone- d_6 at room temperature.

Figure S17. ESI-TOF mass spectra of 1 in MeOH.

Figure S18. ESI-TOF mass spectra of 2 in MeOH.

Figure S19. ESI–TOF mass spectra of 3 in MeOH.

Figure S20. ESI–TOF mass spectra of 4 in MeOH.

Figure S21. DFT optimized structures of (a) 1_{opt} and (b) 2*_{opt}.

Figure S22. Natural population analyses of 1_{opt} showing natural charge, Wiberg bond indices, and NBO analysis for Ir–Ir and Ir–H bonds.

Figure S23. Natural population analyses of $2*_{opt}$ showing natural charge, Wiberg bond indices, and NBO analysis for Ir–Ir and Ir–H bonds.

Figure S24. (a) DFT optimized structure of $6*_{opt}$. Natural population analyses of $6*_{opt}$ showing (b) natural charge and (c) Wiberg bond indices. (d) MO diagrams of $6*_{opt}$.

Figure S25. ³¹P{¹H} NMR spectra of (a) 5 and (b) 6 in CD_2Cl_2 at room temperature (121 MHz).

Figure S26. ³¹P–¹H HMBC Spectrum of 6 in CD₂Cl₂.

Figure S27. ESI-TOF mass spectra of 5 (a) and 6 (b) in MeOH.

Figure S28. ESI-TOF mass spectra of 7 in MeOH.

Figure S29. MO diagrams for the HOMOs of (a) M8 and (b) TS_{M8-C} .

Appendix 1. Cartesian coordinates of the optimized structure 1_{opt} .

Appendix 2. Cartesian coordinates of the optimized structure 2*opt.

Appendix 3. Cartesian coordinates of the optimized structure 6* opt.

Appendix 4. Cartesian coordinates of the optimized structure of M6.

Appendix 5. Cartesian coordinates of the optimized structure of M8.

Appendix 6. Cartesian coordinates of the optimized structure of M2.

Appendix 7. Cartesian coordinates of the optimized structure of A.

Appendix 8. Cartesian coordinates of the optimized structure of B.

Appendix 9. Cartesian coordinates of the optimized structure of C.

Appendix 10. Cartesian coordinates of the optimized structure of TS_{M6-M8}.

Appendix 11. Cartesian coordinates of the optimized structure of TS_{M8-B}.

Appendix 12. Cartesian coordinates of the optimized structure of TS_{M8-C} .

Appendix 13. Cartesian coordinates of the optimized structure of TS_{B-M2} .

Appendix 14. Cartesian coordinates of the optimized structure of TS_{C-M2} .

Synthesis and Structure of mononuclear iridium complex $[Ir_2(H)((dpmppp)-\kappa P^3)(^tBuNC)_2)](PF_6)_2$ (4).

A similar reaction using 'BuNC instead of the aromatic isocyanides gave only a mononuclear iridium(III) complex, $[Ir_2(H)((dpmppp)-\kappa P^3)(^tBuNC)_2)](PF_6)_2$ (4) in 18% yield; the ESI mass spectrum of the reaction solution did not show the formation of any diiridium hydride complex analogous to 2 and 3. The solid state structure of 4 was determined by X-ray crystallography (Fig. S1 and Table S8 in ESI). The iridium centre is six-coordinate with three P atoms of dpmppp in meridional mode, *cis*-disposed two 'BuNC, and a hydride to form a distorted octahedral geometry (Ir1-P1 = 2.325(3) Å, Ir1-P2 = 2.305(3) Å, Ir1-P3 = 2.335(3) Å, Ir-C1 = 1.985(10) Å, Ir-C2 = 2.046(9) Å, $P1-Ir1-P2 = 71.91(8)^{\circ}$, $P2-Ir1-P3 = 93.28(8)^{\circ}$, $C1-Ir1-C2 = 89.5(4)^{\circ}$). The distance of Ir-C1 bond is slightly shorter than that of Ir-C2 bond due to large trans influence of the hydride ligand, which was determined from difference Fourier maps (Ir1–H1 = 1.51(10) Å). The ³¹P{¹H} NMR spectrum of 4 showed four resonances at δ -25.7 (dd, J = 54 Hz, 6 Hz, 1P, P_D), -34.3 (ddd, J = 255 Hz, 54 Hz, 23 Hz, 1P, P_C), -52.3 (ddd, J = 256 Hz, 53 Hz, 6 Hz, 1P, P_A), and -70.2 (dd, J = 53 Hz, 23 Hz, 1P, P_B) (Fig. 3d), which were assignable as indicated in experimental section by the ${}^{31}P - {}^{31}P$ COSY spectrum (Fig. S16). In the ¹H NMR spectrum, the hydride peak was observed at δ –10.09 (q, J_{PH} = 16 Hz) (Fig. S14). The presence of two terminal 'BuNC ligands were confirmed by v(CN) frequency of 2224 and 2209 cm⁻¹ as well as the singlets of ¹H NMR spectrum at 0.89 and 1.50 ppm. The ESI mass spectrum in methanol showed monovalent parent peak at m/z 1161.348 (4), corresponding to $\{Ir(H)(dpmppp)(^{t}BuNC)_{2})(PF_{6})\}^{+}$ (*m*/*z* 1161.456) (Fig. S20).

Compound	1·CH ₂ Cl ₂	2 ·1.5CH ₂ Cl ₂
formula	$C_{44}H_{40}ClF_6Ir_2O_{18}P_5\cdot CH_2Cl_2$	$C_{77}H_{76}F_{12}Ir_2N_4P_6 \cdot 1.5CH_2Cl_2$
formula wt	1390.48	1983.14
cryst. syst	monoclinic	triclinic
space group	$P2_1/n$	<i>P</i> 1-
a, Å	15.512(5)	12.196(3)
b, Å	16.476(5)	17.953(5)
<i>c</i> , Å	19.316(6)	19.765(5)
lpha , deg		99.843(2)
β , deg	96.487(4)	96.204(3)
γ , deg		100.923(3)
V, Å ³	4905(3)	4142.2(19)
Ζ	4	2
temp, °C	-120	-120
D_{calcd} , g cm ⁻¹	1.883	1.590
μ , mm ⁻¹ (Mo K α)	5.824	3.502
2θ range, deg	6–55	6–55
R _{int}	0.028	0.026
no. of reflns collected	44785	39032
no. of unique reflns	11092	18411
no. of obsd reflns $(I > 2\sigma(I))$	10002	16036
no. of variables	609	997
$R1^a$	0.033	0.037
$wR2^b$	0.081	0.100
GOF	1.045	1.011

Table S1. Crystallographic Data of Complexes 1·CH₂Cl₂ and 2·1.5CH₂Cl₂

 $\frac{GOF}{a R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|} \text{ (for obsd. refs with } I > 2\sigma(I)\text{).}^{b} wR2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2} \text{ (for all refs).}$

Compound	3	4·3THF
formula	$C_{81}H_{84}F_{12}Ir_2N_4P_6$	$C_{51}H_{59}F_{12}IrN_2P_6\cdot 3THF$
formula wt	1911.85	1522.40
cryst. syst	monoclinic	orthorhombic
space group	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$
<i>a</i> , Å	12.103(2)	13.058(3)
b, Å	20.671(3)	18.478(4)
c, Å	34.721(5)	28.214(6)
α , deg		
β , deg	95.920(2)	
γ , deg		
V, Å ³	8640(2)	6808(3)
Ζ	4	4
temp, °C	-150	-120
D_{calcd} , g cm ⁻¹	1.470	1.485
μ , mm ⁻¹ (Mo K α)	3.266	2.185
2θ range, deg	6–55	6–55
R _{int}	0.063	0.071
no. of reflns collected	40205	79705
no. of unique reflns	19408	7049
no. of obsd reflns $(I > 2\sigma(I))$	14358	4943
no. of variables	952	787
$R1^a$	0.068	0.066
$wR2^b$	0.202	0.180
GOF	1.086	1.106

Table S2. Crystallographic Data of Complexes 3 and 4.3THF

^{*a*} $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ (for obsd. refs with $I > 2\sigma(I)$). ^{*b*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

Compound	5	6.0.5CH ₂ Cl ₂ ·2CH ₃ OH
formula	$C_{76}H_{78}N_3F_{12}P_6Ir_2$	$C_{79.5}H_{85}N_4F_{12}P_6ClIr_2$
formula wt	1832.74	1962.29
cryst. syst	triclinic	triclinic
space group	<i>P</i> 1-	<i>P</i> 1-
<i>a</i> , Å	12.672(2)	13.7832(17)
<i>b</i> , Å	16.834(3)	14.612(2)
<i>c</i> , Å	20.346(4)	21.817(3)
lpha , deg	75.827(10)	81.004(6)
β , deg	74.185(10)	74.071(5)
γ , deg	75.401(11)	81.207(6)
$V, Å^3$	3968.0(13)	4145.3(10)
Ζ	2	2
temp, °C	-120	-120
D_{calcd} , g cm ⁻¹	1.533	1.572
μ , mm ⁻¹ (Mo K α)	3.551	3.438
2θ range, deg	6–55	6–55
R _{int}	0.028	0.036
no. of reflns collected	48606	50204
no. of unique reflns	18075	18838
no. of obsd reflns $(I > 2\sigma(I))$	13852	14795
no. of variables	908	999
$R1^a$	0.052	0.057
$wR2^b$	0.139	0.177
GOF	1.106	1.081

Table S3. Crystallographic Data of Complexes 5 and 6.0.5CH₂Cl₂·2CH₃OH

 $\overline{{}^{a} R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|} \quad \text{(for obsd. refs with } I > 2\sigma(I)\text{).} \quad wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2} \text{(for all refs).}$

Compound	8·CH ₂ Cl ₂
formula	$C_{46}H_{42}Cl_3F_6Ir_2O_4P_5$
formula wt	1418.49
cryst. syst	triclinic
space group	<i>P</i> 1-
a, Å	12.621(3)
b, Å	14.450(3)
<i>c</i> , Å	14.580(3)
α , deg	67.321(8)
β , deg	85.710(8)
γ, deg	88.282(9)
<i>V</i> , Å ³	2446.6(10)
Ζ	2
temp, °C	-120
$D_{\text{calcd}}, \text{g cm}^{-1}$	1.925
μ , mm ⁻¹ (Mo K α)	5.842
2θ range, deg	6–55
$R_{\rm int}$	0.028
no. of reflns collected	17171
no. of unique reflns	10475
no. of obsd reflns $(I > 2\sigma(I))$	7617
no. of variables	585
$R1^a$	0.039
$wR2^b$	0.105
GOF	0.925

Table S4. Crystallographic Data of Complex 8·CH₂Cl₂

^{*a*} $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ (for obsd. refs with $I > 2\sigma(I)$). ^{*b*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

Table 55. Selected B	ond Denguis (11) and Tingles (
Ir1–Ir2	2.80444(17)	Ir1–Cl1	2.4559(10)
Ir1–P2	2.2701(9)	Ir1–P3	2.3570(9)
Ir1–C1	1.902(3)	Ir1-C10	2.123(3)
Ir2–P1	2.3073(10)	Ir2–P4	2.3388(10)
Ir2–C2	1.964(4)	Ir2–C3	1.934(3)
Ir2–H1	1.56(3)	C1-O1	1.123(4)
C2 –O2	1.128(4)	С3-О3	1.133(5)
P2-Ir1-P3	96.35(3)	P3-Ir1-C10	174.03(10)
P2-Ir1-Cl1	175.23(3)	Ir2–Ir1–Cl1	90.13(2)
Ir2–Ir1–C1	178.51(11)	P1–Ir2–P4	164.87(3)
C2-Ir2-H1	173.7(13)	Ir1-Ir2-C2	86.40(10)
Ir1–Ir2–C3	175.27(12)	Ir1-Ir2-H1	87.8(13)
Ir1-C1-O1	178.7(3)	Ir2-C2-O2	174.7(3)
Ir2-C3-O3	176.4(3)		

Table S5.	Selected Bone	l Lengths (Å) and Angles	(deg) for	Complex 1 ^a

^a The atomic numbering schemes are shown in Figure 1.

Table S6. Selected B	ond Lengths (A) and Angles (Table S6. Selected Bond Lengths (A) and Angles (deg) for Complex 2 "			
Ir1–Ir2	2.85685(18)	Ir1–P2	2.3416(9)		
Ir1–P3	2.3445(10)	Ir1–C1	1.963(3)		
Ir1–C2	1.973(3)	Ir1-C43	2.132(3)		
Ir2–P1	2.2904(10)	Ir2–P4	2.3160(10)		
Ir2–C3	2.014(3)	Ir2–C4	1.956(3)		
Ir2–H1	1.75(5)	C1-N1	1.133(4)		
C2-N2	1.153(4)	C3-N3	1.151(5)		
C4-N4	1.159(4)				
P2- Ir1-P3	96.33(3)	P3-Ir1-C43	176.51(11)		
P2-Ir1-C2	169.15(11)	Ir2–Ir1–C1	177.75(11)		
P1–Ir2–P4	165.15(3)	C3–Ir2–H1	171.2(15)		
Ir1–Ir2–C4	165.39(12)	Ir1-Ir2-H1	77.4(14)		
Ir1-C1-N1	175.4(3)	Ir1-C2-N2	172.2(3)		
Ir2-C3-N3	175.3(3)	Ir2-C4-N4	173.2(3)		

 Table S6. Selected Bond Lengths (Å) and Angles (deg) for Complex 2^a

Ir2-C3-N31/5.3(3)Ir2-a The atomic numbering schemes are shown in Figure 2.

Ir1-Ir2 $2.8527(7)$ Ir1-P2 $2.3383(18)$ Ir1-P3 $2.3410(17)$ Ir1-C1 $1.976(9)$ Ir1-C2 $1.973(8)$ Ir1-C47 $2.130(7)$ Ir2-P1 $2.2955(19)$ Ir2-P4 $2.3125(19)$ Ir2-C3 $2.010(8)$ Ir2-C4 $1.971(8)$ Ir2-H1 $1.56(6)$ C1-N1 $1.099(11)$ C2-N2 $1.172(10)$ C3-N3 $1.160(10)$ C4-N4 $1.140(10)$ $$	Table 57. Beleeted D	ond Delignis (11) and Thigles (
Ir1-P32.3410(17)Ir1-C11.976(9)Ir1-C21.973(8)Ir1-C472.130(7)Ir2-P12.2955(19)Ir2-P42.3125(19)Ir2-C32.010(8)Ir2-C41.971(8)Ir2-H11.56(6)C1-N11.099(11)C2-N21.172(10)C3-N31.160(10)C4-N41.140(10)P2-Ir1-P396.16(6)P3-Ir1-C47177.0(2)P2-Ir1-C2167.7(2)Ir2-Ir1-C1177.4(2)P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	Ir1–Ir2	2.8527(7)	Ir1–P2	2.3383(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ir1–P3	2.3410(17)	Ir1–C1	1.976(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ir1–C2	1.973(8)	Ir1-C47	2.130(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ir2–P1	2.2955(19)	Ir2–P4	2.3125(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ir2–C3	2.010(8)	Ir2–C4	1.971(8)
C2-N21.172(10)C3-N31.160(10)C4-N41.140(10)P3-Ir1-C47177.0(2)P2-Ir1-P396.16(6)P3-Ir1-C47177.0(2)P2-Ir1-C2167.7(2)Ir2-Ir1-C1177.4(2)P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	Ir2–H1	1.56(6)	C1-N1	1.099(11)
C4-N41.140(10)P2-Ir1-P396.16(6)P3-Ir1-C47177.0(2)P2-Ir1-C2167.7(2)Ir2-Ir1-C1177.4(2)P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	C2-N2	1.172(10)	C3-N3	1.160(10)
P2-Ir1-P396.16(6)P3-Ir1-C47177.0(2)P2-Ir1-C2167.7(2)Ir2-Ir1-C1177.4(2)P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	C4-N4	1.140(10)		
P2-Ir1-C2167.7(2)Ir2-Ir1-C1177.4(2)P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	P2- Ir1-P3	96.16(6)	P3-Ir1-C47	177.0(2)
P1-Ir2-P4165.07(7)C3-Ir2-H1172 (3)Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	P2–Ir1–C2	167.7(2)	Ir2–Ir1–C1	177.4(2)
Ir1-Ir2-C4165.7(2)Ir1-Ir2-H180(2)Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	P1–Ir2–P4	165.07(7)	C3–Ir2–H1	172 (3)
Ir1-C1-N1174.6(7)Ir1-C2-N2170.5(6)Ir2-C3-N3178.3(7)Ir2-C4-N4174.1(7)	Ir1-Ir2-C4	165.7(2)	Ir1-Ir2-H1	80(2)
Ir2–C3–N3 178.3(7) Ir2–C4–N4 174.1(7)	Ir1-C1-N1	174.6(7)	Ir1-C2-N2	170.5(6)
	Ir2-C3-N3	178.3(7)	Ir2-C4-N4	174.1(7)

Table S7. Selected Bond Lengths (Å) and Angles (deg) for Complex 3 a

^a The atomic numbering schemes are shown in Figure S2.

Tuble 50. Selected E	ond Delignis (11) and Thigles (
Ir1–P1	2.325(3)	Ir1–P2	2.305(3)
Ir1–P3	2.335(3)	Ir1–C1	1.985(10)
Ir1–C2	2.046(9)	Ir1–H1	1.51(10)
C1-N1	1.168(12)	C2-N2	1.138(12)
P1-Ir1-P2	71.91(8)	P1–Ir1–P3	158.50(8)
P1-Ir1-C1	97.3(3)	P1–Ir1–C2	95.0(3)
P1–Ir1–H1	85(4)	P2–Ir1–P3	93.28(8)
P2–Ir1–C1	167.9(3)	P2–Ir1–C2	96.8(3)
P2–Ir1–H1	87(4)	P3-Ir1-C1	95.5(3)
P3-Ir1-C2	102.3(3)	P3-Ir1-H1	79(4)
Ir1-C1-N1	176.7(8)	Ir1-C2-N2	174.5(8)

Table S8. Selected Bond Lengths (Å) and Angles (deg) for Complex 4^a

^a The atomic numbering schemes are shown in Figure S1.

	0 ()	0 (0)	
Ir1–P1	2.3287(17)	Ir1–P2	2.2999(14)
Ir1–P3	2.3542(14)	Ir1–C4	2.264(5)
Ir1–C5	2.265(6)	Ir1–C8	2.181(8)
Ir1-C9	2.173(8)	Ir2-P4	2.3321(15)
Ir2–C1	1.957(5)	Ir2–C2	1.944(6)
Ir2–C3	1.937(6)	C1-N1	1.155(7)
C2-N2	1.155(8)	C3-N3	1.157(8)
P1-Ir1-P2	71.60(5)	P1–Ir1–P3	107.28(6)
P2–Ir1–P3	94.22(5)	P4–Ir2–C1	97.43(16)
P4-Ir2-C2	178.4(2)	P4–Ir2–C3	90.79(18)
C1–Ir2–C2	84.0(2)	C1–Ir2–C3	168.5(2)
C2–Ir2–C3	87.7(2)		

Table S9. Selected Bond Lengths (Å) and Angles (deg) for 5 a

^a The atomic numbering schemes are shown in Figure S3.

Table S10. S	Table S10. Selected Bond Lengths (Å) and Angles (deg) for 6 a				
Ir1–Ir2	2.7990(5)	Ir1–P2	2.322(2)		
Ir1–P3	2.3334(14)	Ir1–C1	2.023(7)		
Ir1–C2	1.982(8)	Ir1–C3	1.997(5)		
Ir2–P1	2.2893(18)	Ir2–P4	2.2928(14)		
Ir2–C4	1.876(8)	C1-N1	1.082(9)		
C2-N2	1.155(11)	C3-N3	1.138(7)		
C4-N4	1.109(10)				
P2– Ir1–P3	93.65(6)	Ir2–Ir1–C1	175.54(16)		
P2–Ir1–C2	162.22(19)	P3-Ir1-C3	175.1(2)		
P1–Ir2–P4	168.89(6)	Ir1–Ir2–C4	174.1(2)		
Ir1-C1-N1	176.3(8)	Ir1-C2-N2	175.1(5)		
Ir2-C3-N3	171.2(6)	Ir2-C4-N4	176.1(8)		

^a The atomicnumbering schemes are shown in Figure 8.

Table 511. Selected	and Anglis (A) and Angl	ies (deg) for complex a)
Ir1–Ir2	2.8894(2)		
Ir1–P2	2.324(2)	Ir1–P3	2.361(2)
Ir1–C1	2.611(6)	Ir1–C3	1.912(8)
Ir1–C4	1.904(7)	Ir2–Cl1	2.439(1)
Ir2–P1	2.348(2)	Ir2–P4	2.345(2)
Ir2–C1	1.881(7)	Ir2–C2	2.002(5)
Ir2-Ir1-C3	113.4(2)	Ir2-Ir1-C4	112.3(2)
P2-Ir1-P3	94.34(5)	P2–Ir1–C3	158.5(2)
P2-Ir1-C4	85.6(2)	P3–Ir1–C3	87.7(2)
P3-Ir1-C4	159.8(2)	C3–Ir1–C4	85.2(3)
Ir2–Ir2–C1	62.2(2)	Ir1–Ir2–C2	163.5(2)
Cl1–Ir2–P1	86.12(5)	Cl1–Ir2–P4	85.05(5)
Cl1–Ir2–C1	158.0(2)	Cl1–Ir2–C2	100.6(2)
P1–Ir2–P4	168.57(4)	P1-Ir2-C1	92.8(2)
P1-Ir2-C2	93.2(2)	P4-Ir2-C1	92.7(2)
P4-Ir2-C2	95.6(2)	C1–Ir2–C2	101.3(2)

Table S11. Selected Bond Lengths (Å	A) and Angles (deg) for Complex 8 ^a
-------------------------------------	--

^a The atomic numbering schemes are shown in Figure S4.

Table S12. Thermodynamic Parameters Derived from DFT Calculations with B3LYP/lanl2dz for Ir/6-311+G(d,p) for Phenyl Group/6-31G(d) for Others on the Optimized (a) GS and (b) TS Model Structures with B3LYP/lanl2dz for Ir/6-31G(d) for Others.

stable structures		M6	M8	M2	Α	В	С
	Hartree	-2379.150151	-2379.159121	-2379.164819	-2379.082107	-2379.12822	-2379.141284
$E_{elec} + ZPE$	kcal/mol	-1492939.322	-1492944.95	-1492948.526	-1492896.623	-1492925.56	-1492933.758
⊿E	kcal/mol		-5.6	-9.2	42.7	13.8	5.6
E (corrected thermal energies)	Hartree	-2379.117986	-2379.126468	-2379.133661	-2379.050277	-2379.096439	-2379.110158
	kcal/mol	-1492919.138	-1492924.46	-1492928.974	-1492876.65	-1492905.617	-1492914.226
⊿E	kcal/mol		-5.3	-9.8	42.5	13.5	4.9
H (corrected onthelpice)	Hartree	-2379.117042	-2379.125524	-2379.132716	-2379.049332	-2379.095495	-2379.109213
H (corrected enthalples)	kcal/mol	-1492918.545	-1492923.868	-1492928.381	-1492876.057	-1492905.025	-1492913.633
ΔH	kcal/mol		-5.3	-9.8	42.5	13.5	4.9
C (corrected Cibbs's free energies)	Hartree	-2379.213463	-2379.225251	-2379.224329	-2379.144922	-2379.190695	-2379.202573
G (corrected Gibbs's free energies)	kcal/mol	-1492979.051	-1492986.448	-1492985.869	-1492936.04	-1492964.763	-1492972.217
⊿G	kcal/mol		-7.4	-6.8	43.0	14.3	6.8

(a) For the GS structures

(b) For the TS Structures

transition states		TS-M6-to-M8	TS-M8-to-B	TS-B-to-M2	TS-M8-to-C	TS-C-to-M2
E 17DE	Hartree	-2379.142643	-2379.090095	-2379.083809	-2379.103068	-2379.130102
$E_{elec} + ZPE$	kcal/mol	-1492934.61	-1492901.636	-1492897.691	-1492909.777	-1492926.741
⊿E	kcal/mol	4.7	37.7	41.6	29.5	12.6
E (composed of the second seco	Hartree	-2379.111341	-2379.058317	-2379.052657	-2379.072201	-2379.099514
E (corrected thermal energies)	kcal/mol	-1492914.968	-1492881.695	-1492878.143	-1492890.407	-1492907.546
⊿E	kcal/mol	4.2	37.4	41.0	28.7	11.6
II (compared onthe laise)	Hartree	-2379.110397	-2379.057373	-2379.051713	-2379.071257	-2379.09857
H (corrected enthalples)	kcal/mol	-1492914.376	-1492881.103	-1492877.551	-1492889.815	-1492906.954
ΔH	kcal/mol	4.2	37.4	41.0	28.7	11.6
C (competed Cibbels for emergine)	Hartree	-2379.204291	-2379.152045	-2379.143954	-2379.163104	-2379.189523
G (corrected Globs's free energies)	kcal/mol	-1492973.295	-1492940.51	-1492935.433	-1492947.45	-1492964.028
∠G	kcal/mol	5.8	38.5	43.6	31.6	15.0

Figure S1. ORTEP diagram for **4** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the C–H hydrogen atoms are omitted for clarity.

Figure S2. ORTEP diagram for **3** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the C–H hydrogen atoms are omitted for clarity.

Figure S3. ORTEP diagram for **5** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the C–H hydrogen atoms are omitted for clarity.

Figure S4. ORTEP diagram for **8** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the C–H hydrogen atoms are omitted for clarity.

Figure S5. ${}^{1}H-{}^{1}H$ COSY spectra of 1 in acetone-d₆ at room temperature. (a) Correlation for methylene protons. (b) Correlation for methylene proton and hydride.

Figure S6. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the methylene region of **2** in acetone-d₆ at room temperature.

Figure S7. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of **2** in acetone-d₆ at room temperature.

Figure S8. ${}^{1}H-{}^{31}P$ HMQC spectrum displaying correlation of the hydride peak and the phosphorous peaks of **2** in acetone-d₆ at room temperature.

Figure S9. ${}^{1}\text{H}-{}^{31}\text{P}$ HMBC spectrum of **2** in acetone-d₆ at room temperature.

Figure S10. ${}^{1}H{-}^{1}H$ COSY spectra of **2** in acetone-d₆ at room temperature. (a) Correlation for methylene protons. (b) Correlation for methylene proton and hydride.

Figure S11. ${}^{1}H-{}^{1}H$ ROESY spectrum of **2** in acetone-d₆ at room temperature.

Figure S12. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the methylene region of **3** in acetone-d₆ at room temperature.

Figure S13. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of **3** in acetone-d₆ at room temperature.

Figure S14. (a) ${}^{1}H{}^{31}P{}$ NMR and (b) ${}^{1}H$ NMR spectra for the hydride peak of **4** in acetone-d₆ at room temperature.

Figure S15. $^{1}H- {}^{1}H$ COSY spectra of **4** in acetone-d₆ at room temperature.

Figure S16. ${}^{31}P - {}^{31}P$ COSY spectra of **4** in acetone-d₆ at room temperature.

Figure S17. ESI–TOF mass spectra of 1 in MeOH.

Figure S18. ESI–TOF mass spectra of 2 in MeOH.

Figure S19. ESI–TOF mass spectra of 3 in MeOH.

Figure S20. ESI-TOF mass spectra of 4 in MeOH.

Figure S21. DFT optimized structures of (a) 1_{opt} and (b) $2*_{opt}$ using B3LYP functionals and lanl2dz basis set.

Figure S22. Natural population analyses of 1_{opt} showing natural charge, Wiberg bond indices, and NBO analysis for Ir–Ir and Ir–H bonds.

Natural Charge

Natural Bond Orbital Analysis

Ir1-Ir2 (1.569) Ir1 (41.7%) (s 11.9, p 50.5, d 37.6%) Ir2 (58.3%) (s 10.5, p 50.3, d 39.2%) Ir2-H55 (1.786)

Ir2-H55 (1.786) Ir2 (51.3%) (s 14.2, p 49.6, d 36.2%) H88 (48.7%) (s 100%) Figure S23. Natural population analyses of $2*_{opt}$ showing natural charge, Wiberg bond indices, and NBO analysis for Ir–Ir and Ir–H bonds.

Natural Charge

Wiberg Bond Index

Natural Bond Orbital Analysis

Ir1-Ir2 (1.552) Ir1 (50.5%) (s 12.1, p 49.6, d 38.3%) Ir2 (49.5%) (s 10.6, p 50.8, d 38.6%) Ir2-H88 (1.780) Ir2 (50.3%) (s 14.5, p 49.5, d 36.0%) H88 (49.8%) (s 100%) Figure S24. (a) DFT optimized structure of $6*_{opt}$ using B3LYP functionals and lanl2dz basis set. Natural population analyses of $6*_{opt}$ showing (b) natural charge and (c) Wiberg bond indices. (d) MO diagrams of $6*_{opt}$.

Figure S25. ³¹P{¹H} NMR spectra of (a) **5** and (b) **6** in CD_2Cl_2 at room temperature (121 MHz). Peaks with asterisk correspond to **6** as impurity.

Figure S29. MO diagrams for the HOMOs of (a) M8 and (b) TS_{M8-C} .

Appendix 1. Cartesian coordinates of the optimized structure of $1*_{opt}$.

Ir 0	11.203130	3.579772	6.309703	C 0	7.256268	0.487556	3.560233
Ir 0	8.884625	3.782899	4.628590	C 0	6.403089	-0.615672	3.360650
Cl 0	12.735048	4.161730	4.393827	C 0	6.768621	-1.641527	2.470690
P 0	8.306124	5.207360	6.486459	C 0	7.991726	-1.559643	1.774946
P 0	9.708519	3.048648	8.105946	C 0	8.842167	-0.458059	1.969657
P 0	11.427552	1.213904	5.574992	Н 0	8.310536	2.564525	5.553159
P 0	9.671450	2.011245	3.114029	Н 0	7.277639	3.548056	8.025401
O 0	13.724803	3.441665	8.076028	Н 0	8.153100	4.812171	8.937218
O 0	6.122088	4.063549	3.201805	Н 0	8.540216	1.169289	9.142726
O 0	10.353527	6.117746	3.148375	Н 0	8.104701	1.342177	7.440380
C 0	12.759951	3.485775	7.408988	Н 0	9.385150	-0.789128	8.093158
C 0	9.852154	5.220182	3.703803	Н 0	10.828901	0.185398	8.306629
C 0	7.171749	3.926958	3.711668	Н 0	9.204051	0.194896	5.687145
C 0	8.176676	4.170616	8.052556	Н 0	10.445964	-1.012953	5.977499
C 0	8.950012	1.311035	8.135356	Н 0	12.107439	1.661506	3.287603
C 0	9.879492	0.132614	7.756403	Н 0	11.247371	0.099941	3.344196
C 0	10.132631	0.005142	6.233521	Н 0	13.157604	6.037944	6.802328
C 0	11.243442	1.135359	3.698020	Н 0	12.954284	8.432907	7.308791
C 0	9.764660	6.299027	6.824530	Н 0	10.706244	9.511002	7.520231
C 0	11.020119	5.645446	6.723623	Н 0	8.651151	8.135247	7.177552
C 0	12.164313	6.463015	6.907493	Н 0	5.909160	5.575691	8.297125
C 0	12.051963	7.838180	7.187301	Н 0	3.890075	6.986849	8.119767
C 0	10.788556	8.449449	7.303738	Н 0	3.564340	8.483165	6.147474
C 0	9.633315	7.673004	7.115831	Н 0	5.289547	8.550187	4.340132
C 0	6.760284	6.247707	6.405206	Н 0	7.313186	7.133679	4.493436
C 0	5.787243	6.213850	7.426535	Н 0	10.332284	1.230346	10.457773
C 0	4.636320	7.018768	7.330551	Н 0	11.304327	1.653380	12.681599
C 0	4.453493	7.862749	6.219682	Н 0	11.955934	3.967265	13.358890
C 0	5.425330	7.900633	5.200289	Н 0	11.634808	5.863400	11.761256
C 0	6.573017	7.094592	5.289559	Н 0	10.685642	5.458041	9.516212
C 0	10.416971	3.317157	9.822783	Н 0	14.203855	1.993274	4.974198
C 0	10.605807	2.247276	10.723197	Н 0	16.410269	0.920100	5.298074
C 0	11.160275	2.483631	11.995471	Н 0	16.577806	-1.318827	6.399884
C 0	11.528158	3.786682	12.376496	Н 0	14.501988	-2.475529	7.170511
C 0	11.345432	4.855384	11.477370	Н 0	12.296807	-1.438438	6.835228
C 0	10.798411	4.623840	10.203666	H 0	8.131976	1.977350	0.551742
C 0	13.079655	0.354625	5.862875	H 0	8.590725	2.860662	-1.712624
C 0	14.257960	1.012054	5.439285	H 0	10.766169	3.986837	-2.211145
C 0	15.512164	0.405583	5.628912	H 0	12.468189	4.251265	-0.398854
C 0	15.606763	-0.854127	6.251025	H 0	12.011305	3.415898	1.878259
C 0	14.437668	-1.505465	6.684448	H 0	6.964597	1.269803	4.253199
C 0	13.178402	-0.906288	6.490596	H 0	5.457581	-0.667259	3.893996
C 0	10.051523	2.601844	1.371806	H 0	6.108909	-2.490957	2.314997
C 0	9.080570	2.469272	0.354885	H 0	8.278009	-2.344263	1.079804
C 0	9.341092	2.968559	-0.934033	H 0	9.771149	-0.400456	1.406706
C 0	10.565939	3.603813	-1.214036				
C 0	11.526690	3.748628	-0.195360				
C 0	11.271490	3.257505	1.097974				
C 0	8.479343	0.573700	2.867512				

Ir 0	9.553891	1.916981	6.366312	C 0	13.596282	-1.249032	1.513978
Ir 0	8.490851	0.930014	3.893936	C 0	13.169080	-0.884500	0.224725
P 0	6.861168	2.591850	4.493922	C 0	11.826786	-0.522076	0.012119
P 0	7.297808	1.486157	7.299498	C 0	10.918910	-0.519344	1.084165
P 0	10.301345	-0.402666	6.864422	H 0	7.655895	-0.071695	4.877394
P 0	10.069090	-0.936491	3.759562	Н0	10.926687	3.275202	10.070696
N 0	10.597080	2.949095	9.181278	Н0	13.076066	2.937757	4.515515
N 0	12.220588	2.627083	4.929810	Н0	10.676390	3.689899	1.633744
N 0	10.181270	3.020466	2.188654	Н0	6.133269	-0.389643	0.731002
N 0	6.738045	-0.095575	1.474129	Н0	5.381313	2.860587	6.472926
C 0	10.187936	2.559046	8.145046	Н0	5.315256	1.192841	5.840262
C 0	11.203705	2.315795	5.454922	Н0	5.901681	-0.301426	8.215525
C 0	9.578656	2.235918	2.842864	Н0	6.560164	-0.736930	6.636934
C 0	7.433529	0.265258	2.363297	Н0	8.283934	-0.718410	9.184974
C 0	5.971930	2.040307	6.056412	Н0	7.359359	-2.110586	8.658576
C 0	6.818313	-0.319640	7.614973	Н0	8.578833	-2.092869	6.434881
C 0	7.878646	-1.214163	8.294443	Н0	9.561015	-2.523738	7.836446
C 0	9.012884	-1.702884	7.360356	Н0	12.026337	-0.504518	5.161036
C 0	11.127985	-1.103928	5.321007	Н0	11.424605	-2.146887	5.473763
C 0	7.757380	4.116324	5.054081	Н0	10.525729	4.908149	6.869742
C 0	8.914259	3.875923	5.839374	Н0	9.777478	7.177837	6.290624
C 0	9.626844	5.022020	6.269537	Н0	7.704496	7.533486	4.938607
C 0	9.202093	6.324450	5.945059	H 0	6.411090	5.560919	4.143559
C 0	8.036836	6.528843	5.183122	H 0	6.986760	3.708752	1.779853
C 0	7.309260	5.415452	4.737295	H 0	5.276800	4.375945	0.114182
C 0	5.542292	3.079603	3.272175	H 0	2.854668	4.120263	0.632650
C 0	5.935466	3.593687	2.018397	H 0	2.154814	3.204567	2.841428
C 0	4.968830	3.970041	1.071207	H 0	3.842190	2.554673	4.521407
C 0	3.602014	3.827717	1.364346	H 0	7.119308	4.364945	7.959990
C 0	3.207425	3.311557	2.609200	Н 0	6.523455	5.619968	10.003697
C 0	4.173350	2.938734	3.562383	Н 0	5.947232	4.406480	12.111034
C 0	6.857827	2.405044	8.874824	H 0	5.959689	1.911487	12.145014
C 0	6.861290	3.818109	8.862878	H 0	6.520224	0.639455	10.113274
C 0	6.530934	4.534629	10.026160	H 0	10.328281	-1.296655	9.733853
C 0	6.206073	3.850787	11.214409	H 0	12.083016	-1.450252	11.450403
C 0	6.212435	2.445344	11.233192	Н 0	14.443932	-0.839091	10.908730
C 0	6.535306	1.723495	10.068762	Н 0	15.018444	-0.067298	8.605684
C 0	11.658407	-0.582066	8.160612	Н 0	13.279489	0.104102	6.873762
C 0	11.341572	-1.012287	9.468409	Н 0	7.272320	-2.033542	4.033267
C 0	12.340960	-1.104400	10.453969	Н 0	6.318510	-4.317408	3.819593
C 0	13.670794	-0.762032	10.149234	Н 0	7.792258	-6.240494	3.223792
C 0	13.993394	-0.327237	8.851504	Н 0	10.229298	-5.858897	2.833268
C 0	12.994408	-0.233894	7.865150	Н 0	11.186155	-3.588932	3.022848
C 0	9.298573	-2.647785	3.571345	Н 0	13.041637	-1.565295	3.565857
C 0	7.921939	-2.864866	3.782416	Н 0	14.626647	-1.543306	1.682610
C 0	7.381504	-4.159044	3.659436	H 0	13.868919	-0.892216	-0.605017
C 0	8.210711	-5.242987	3.323115	H 0	11.488939	-0.249494	-0.983484
C 0	9.585273	-5.027984	3.103866	H 0	9.885787	-0.242843	0.902209
C 0	10.128427	-3.737137	3.223589				
C 0	11.342732	-0.883368	2.380167				
C 0	12.687461	-1.253675	2.587377				

Appendix 2. Cartesian coordinates of the optimized structure of $2*_{opt}$.

Appendix	3.	Cartesian	coordinates	of	the
optimized s	truc	ture of 6* _{opt}	t٠		

C 0

0.832734 -3.983430 -2.140632

Арр	endix 3. C	Cartesian co	ordinates of the	C 0	1.139809	-4.811231	-3.237467
optin	nized structur	re of 6* _{opt} .		C 0	2.479495	-5.140910	-3.523341
-				C 0	3.511980	-4.643259	-2.703811
Ir 0	0.706809	1.236178	-0.924484	C 0	3.206517	-3.821742	-1.601415
Ir 0	-0.676143	-1.150028	-0.044907	H 0	2.874670	4.741253	-1.936551
P 0	-2.758159	0.057805	0.114631	H 0	2.160663	-1.436534	-3.715635
P 0	-0.646413	2.287432	0.843439	H 0	-2.309858	1.829281	-3.680661
P 0	2.423810	0.517924	0.695576	H 0	-2.705405	-4.513928	1.050572
P 0	1.385377	-2.398589	0.145096	ΗÖ	-2.862963	2.531427	-0.188945
N 0	2 353703	3 917714	-1 692672	HO	-3 027493	2 118617	1 521552
N 0	1 895224	-0 710886	-3 074265	HO	-0 906407	2 347091	3 274050
N 0	-1 547902	1 786531	-3 027424	HO	-0 683722	0.696247	2 669294
N 0	-2.219188	-3 705310	0 718198	HÔ	1 668908	2.681389	2,758133
C_{0}	1 754304	2 948001	-1 379742	H 0	1 206736	1 705511	4 140220
	1 447010	-0.013012	-2 226999	HO	1 406946	-0 394539	2 706742
	-0 735820	1 556731	-2 197852	HO	2 924879	0.354355	3 081376
	-1.612405	-2 709006	0.454105	но Н	3 52/353	-1 20/530	-0.528603
	2 480655	-2.709900	0.434193	но ПО	3 526120	1 637705	1 210243
	-2.480033	1.001030	0.003233		2 202225	-1.037703	2 110243
	-0.301029	1.720775	2.000177		-2.803833	0.189097	3.110/13
	1.185110	1./38493	3.042002		-4.309387	-0.044/52	4.828094
	1.982148	0.519888	2.531233	HU	-6.431962	-1.886109	4.158816
	2.914084	-1.2/6534	0.377612	HU	-6.912311	-2.2/441/	1./38119
	-3.9/3//4	-0.545005	1.424258	HO	-5.366/10	-1.424537	0.003666
CO	-3.699/83	-0.338715	2.793968	HO	-5.1090/6	1.759223	-0.742599
C 0	-4.583938	-0.817731	3.776830	H O	-6.452305	1.841791	-2.822042
C 0	-5.746251	-1.518931	3.400291	H 0	-5.975198	0.258424	-4.694392
C 0	-6.016465	-1.736867	2.036819	H 0	-4.135382	-1.417053	-4.468560
C 0	-5.135024	-1.252968	1.050643	H 0	-2.743459	-1.471897	-2.393266
C 0	-3.812926	0.150146	-1.438078	H 0	-0.153508	4.377054	3.020598
C 0	-4.867177	1.082396	-1.559242	H 0	-0.228802	6.837433	3.008879
C 0	-5.638500	1.127018	-2.736031	H 0	-0.785271	8.079480	0.916306
C 0	-5.370320	0.231214	-3.792102	H 0	-1.252494	6.816305	-1.188543
C 0	-4.331207	-0.712373	-3.664781	H 0	-1.149884	4.346315	-1.210397
C 0	-3.552750	-0.751826	-2.491102	H 0	4.366031	0.839456	-1.511870
C 0	-0.650584	4.167430	0.904335	H 0	6.552901	1.968397	-1.729418
C 0	-0.386789	4.885707	2.090171	H 0	7.514131	3.240415	0.195143
C 0	-0.430781	6.293559	2.090300	H 0	6.261922	3.357293	2.351973
C 0	-0.743273	6.993955	0.911166	H 0	4.096558	2.212346	2.604526
C 0	-1.005596	6.280998	-0.275679	H 0	0.029146	-2.366672	2.762889
C 0	-0.953062	4.876403	-0.280630	H 0	0.219858	-3.741488	4.831218
C 0	4.065864	1.426868	0.567656	Η 0	1.745909	-5.719034	4.883218
C 0	4.771255	1.376669	-0.656397	H 0	3.079342	-6.309684	2.856655
C 0	6.011190	2.025210	-0.789148	H 0	2.913430	-4.938955	0.806845
C 0	6.553857	2.742512	0.295899	H 0	-0.201583	-3.724310	-1.930934
C 0	5.848867	2.806585	1.511448	H 0	0.339446	-5.200352	-3.861021
C 0	4.610025	2.150377	1.649707	H 0	2.715769	-5.783657	-4.366867
C 0	1.490752	-3.524361	1.655871	H 0	4.546113	-4.904279	-2.911681
C 0	0.721838	-3.204598	2.796014	H 0	4.021229	-3.463923	-0.976198
C 0	0.818008	-3.990951	3.958624				
C 0	1.674910	-5.107920	3.987594				
C 0	2.428941	-5.439357	2.845698				
C 0	2.338986	-4.651908	1.682180				
C 0	1 864489	-3 483169	-1 316027				

Appendix 4. Cartesian coordinates of the optimized structure of M6.

Appendix 5. Cartesian coordinates of the optimized structure of M8.

Ir 0	-1.238983	-1.037442	-0.404389	Ir 0	0.702520	1.184495	-0.534469
Ir 0	0.435257	1.307241	-0.119359	Ir 0	-1.836019	-1.138789	-0.055094
P 0	2.018181	0.150413	1.155139	P 0	2.164429	0.060531	0.935353
P 0	-0.525671	-1.339877	1.858449	P 0	-0.505414	-1.245922	1.914578
P 0	-2.925593	0.519097	0.279416	P 0	-2.821200	0.922255	0.577515
P 0	-1.218013	2.566305	-1.150236	P 0	-1.096741	2.148267	-1.693880
N 0	-3.105507	-3.667102	-0.401795	C 0	1.330911	-1.439980	1.663990
N 0	-1.803604	-0.377271	-3.423199	C 0	-0.703220	0.030718	3.249334
N 0	1.385819	-2.399719	-1.441464	C 0	-2.109264	0.656206	3.338848
N 0	2.043290	3.870800	0.387493	C 0	-2.406777	1.675465	2.221605
C 0	-2.447066	-2.704679	-0.389237	C 0	-2.635407	2.316328	-0.656436
C 0	-1.600976	-0.591767	-2.293166	C 0	3.823209	-0.467357	0.408816
C 0	0.433324	-1.855516	-1.026519	C 0	4.358233	0.057203	-0.778889
C 0	1.459053	2.871444	0.137543	C 0	5.651588	-0.290015	-1.172807
C 0	1.310953	-1.354635	2.028232	C 0	6.411238	-1.160419	-0.389158
C 0	-1.123427	-0.198780	3.182429	C 0	5.883198	-1.682815	0.795750
C 0	-2.611110	0.184645	3.110704	C 0	4.595142	-1.337272	1.199715
C 0	-2.924338	1.198241	1.996975	C 0	-3.071037	-1.221348	-1.550767
C Û	-2 975818	2 009632	-0.816537	N 0	-3 824336	-1 288845	-2 448039
C Û	3.581860	-0.417527	0.397795	C 0	-1.191306	-2.916418	-0.508481
C Û	4 559863	-1 077097	1 161653	N 0	-0.820518	-3 997137	-0 775512
C Û	5 744008	-1 504329	0 560734	C 0	0.968977	-0 163385	-1 947195
C Û	5 962739	-1 274625	-0 800942	N 0	1 189964	-0.883856	-2.843041
C Û	4 999274	-0.609223	-1 563825	C 0	0 881280	2 786437	0.546637
C Û	3 810940	-0 178038	-0.967950	N 0	1 043382	3 775814	1 164381
ΗÔ	2.472489	0.884550	2.271795	HO	2.403111	0.805336	2.110159
H 0	-0.884207	-2.601713	2.384062	HO	-0.774577	-2.434291	2.627962
H 0	-4.247064	0.031306	0.166000	HO	-4.227310	0.836614	0.657414
Н0	-1.285434	3.939764	-0.838423	Н0	-0.978520	3.444714	-2.239351
Н0	-1.225810	2.676761	-2.559884	Н0	-1.567369	1.458964	-2.827366
Н0	-3.655081	-4.507643	-0.441124	Н0	1.809258	-1.718891	2.609049
H 0	-1.965688	-0.287263	-4.409785	HO	1.470032	-2.268412	0.960917
H 0	2.341439	-2.490789	-1.745857	H 0	0.038003	0.820814	3.083697
Н0	2.725226	4.586360	0.209402	Н0	-0.446680	-0.453112	4.197857
Н0	1.691752	-2.259461	1.544699	Н0	-2.175312	1.184869	4.296203
H 0	1.601920	-1.393764	3.083175	Н0	-2.881412	-0.122716	3.374857
H 0	-0.905319	-0.695687	4.134926	Н0	-1.544445	2.336250	2.081072
H 0	-0.505103	0.704722	3.130340	Н0	-3.255300	2.307822	2.504478
Н0	-3.246694	-0.706549	3.025825	Н0	-2.598584	3.272214	-0.122649
Н0	-2.879490	0.648760	4.065961	Н0	-3.513628	2.343199	-1.309327
H 0	-2.190608	2.012468	2.020356	Н0	3.771762	0.743918	-1.383009
H 0	-3.915121	1.640176	2.153431	Н0	6.065703	0.122405	-2.087856
H 0	-3.567177	2.807928	-0.356148	Н0	7.417371	-1.428937	-0.696573
H 0	-3.467081	1.738774	-1.755861	Н0	6.477468	-2.353763	1.408389
H 0	4.410972	-1.251183	2.224525	Н0	4.206803	-1.740745	2.130912
H 0	6.498685	-2.008993	1.156168	Н0	-4.571622	-1.513180	-3.079193
H 0	6.888370	-1.603901	-1.263317	Н0	-0.722728	-4.983777	-0.930027
Н0	5.179587	-0.411310	-2.616547	Н 0	1.488113	-1.413035	-3.640559
H 0	3.067066	0.359685	-1.551175	Н 0	1.433094	4.655498	1.455581

Appendix 6. Cartesian coordinates of the optimized structure of M2.

Appendix 7. Cartesian coordinates of the optimized structure of **A**.

Ir 0	1.377366	-0.968037	0.050944	Ir 0	2.485158	0.422802	-0.315924
Ir 0	-0.841861	0.840569	-0.349993	Ir 0	-1.839674	-0.710845	0.031174
P 0	-0.243503	-1.736761	1.551206	P 0	-1.826155	0.839474	1.802592
P 0	-0.790601	1.113175	2.027334	P 0	1.343050	0.606745	1.878686
P 0	0.822107	2.551880	-0.673326	P 0	1.540063	-1.724787	-0.721629
ΡÔ	2.805559	0.326327	-1.317610	P 0	-1.309594	-1.453787	-2.124526
C 0	-0.517157	-0.504846	2.904156	C 0	4.170561	-0.490772	0.146451
C 0	0.398318	2.305454	2.811312	C 0	1.592604	1.166532	-1.864895
C 0	0.726868	3.567881	1.993561	C 0	3.412925	2.136984	-0.098756
C 0	1.662177	3.307744	0.795699	C 0	-3.394041	-1.888667	0.576783
C 0	2.185972	2.011653	-1.807452	C 0	-0.202325	1.661713	2.166526
C 0	-1.853533	-1.888183	0.765564	C 0	1.002292	-0.992659	2.806876
C 0	-2.204375	-0.794167	-0.053894	C 0	1.397330	-2.288192	2.074197
C 0	-3.466828	-0.853275	-0.662677	C 0	0.681496	-2.523013	0.724788
C 0	-4.323655	-1.943204	-0.469234	C 0	0.440952	-2.117706	-2.181091
C 0	-3.950590	-3.010184	0.349848	C 0	-2.938635	1.778689	0.727916
C 0	-2.707335	-2.980859	0.978630		-3 641527	2 983908	0 786587
C_0	-0.836179	0.342250	-2.238242		-4 457666	3 307474	-0 300519
N 0	-0.875707	0.074235	-3 377687		-4 561116	2 441141	-1 395072
CO	-2.367971	2 101123	-0 524999		-3 855248	1 227814	-1 449087
N 0	-3 261250	2 846949	-0.631158		-3 040760	0.910000	-0.371216
C_0	0.767650	-2 235759	-1 384365	N O	-4 319379	-2 531693	0.881410
N 0	0 447641	-3 011042	-2 199144	N 0	1.009699	1 650116	-2 789962
CO	2.856582	-2.121639	0 697895	N 0	3 967194	3 154657	0.039649
N 0	3 711566	-2.795986	1 120525	N 0	5 175989	-1 031848	0 444998
H 0	1 813100	0 105634	1 209492	HO	-0 627811	0 287438	-0 419698
H 0	-0.034487	-2 948590	2 245430	HO	-2 404094	0.649756	3 074765
H 0	-2 027151	1 540085	2 552653	HO	2 170812	1 268874	2 810855
H 0	0.377298	3.707975	-1.353788	HO	2.537929	-2.693706	-0.954990
H 0	4.056712	0.616990	-0.740592	HO	-2.005658	-2.456116	-2.832761
H 0	3 244908	-0 194433	-2 552433	HO	-1 297795	-0 430255	-3 086987
H 0	0 368734	-0 437614	3 543279	HO	-0.121012	2 529011	1 503115
H 0	-1.379678	-0.781286	3.517686	HO	-0.207461	2.024742	3.199359
H 0	1.320665	1.751932	3.018069	HO	1.540172	-0.944706	3.758980
H 0	-0.031850	2.584214	3.779698	HO	-0.064856	-1.035046	3.054981
H 0	1.233978	4.269443	2.665047	HO	2.483870	-2.323064	1.929696
H 0	-0.189938	4.078923	1.671210	H 0	1.156314	-3.125972	2.737613
H 0	2.478951	2.642958	1.100015	Н0	-0.367501	-2.152671	0.808427
H 0	2.117795	4.246017	0.460848	Н0	0.594159	-3.594572	0.512788
H 0	3.002222	2.739932	-1.858908	Н0	0.378291	-3.209615	-2.244879
H 0	1.750187	1.928321	-2.808893	Н0	0.940454	-1.767823	-3.089997
H 0	-3.804737	-0.046577	-1.307346	Н0	-3.567401	3.645463	1.645000
H 0	-5.291697	-1.954930	-0.962634	Н0	-5.022629	4.234141	-0.292946
H 0	-4.618715	-3.852768	0.497490	Н0	-5.208030	2.708385	-2.225997
H 0	-2.403585	-3.804659	1.620072	Н0	-3.969783	0.572108	-2.306861
H 0	-1.069484	-0.139086	-4.337552	Н0	-5.129578	-3.069278	1.130701
H 0	-4.058851	3.448358	-0.727274	Н0	1.197821	1.861835	-3.761408
H 0	0.189273	-3.750198	-2.824957	Н0	4.505942	3.999923	0.067511
H 0	4.443604	-3.377953	1.483524	Н 0	6.099552	-1.382317	0.252072

Appendix 8. Cartesian coordinates of the optimized structure of **B**.

Appendix 9. Cartesian coordinates of the optimized structure of **C**.

Ir 0	-2.260111	-0.144376	0.057926	Ir 0	1.676461	-1.017152	-0.103756
Ir 0	2.133078	0.002713	0.007391	Ir 0	-1.149711	0.823531	-0.323761
P 0	1.212975	0.916112	-1.988316	P 0	0.095372	-1.933447	1.392376
P 0	-1.276375	-1.082854	-1.887832	P 0	-0.617225	0.919071	2.016647
P 0	-1.154559	-1.681301	1.497346	P 0	0.506249	2.506620	-0.894591
P 0	1.868639	-0.806356	2.195575	P 0	2.841715	0.442058	-1.524339
C 0	-0.066522	-0.071188	-2.906094	C 0	-0.156310	-0.718966	2.774609
C 0	-0.530792	-2.786960	-1.769728	C 0	0.633300	2.151116	2.613966
C 0	-1.056960	-3.636312	-0.594290	C 0	0.694944	3.465625	1.810841
C 0	-0.469180	-3.260414	0.781643	C 0	1.448004	3.349171	0.470563
C 0	0.107276	-1.051407	2.742514	C 0	1.799400	1.891732	-2.094495
C 0	0.496223	2.173984	-0.921158	C 0	-1.592651	-2.095051	0.737120
C 0	0.923147	1.721187	0.347611	C 0	-2.220774	-0.980604	0.127588
C 0	0.582170	2.501445	1.456238	C 0	-3.563369	-1.140222	-0.243279
C 0	-0.156662	3.678880	1.277754	C 0	-4.250469	-2.342199	-0.042205
C 0	-0.562842	4.102760	0.005628	C 0	-3.609652	-3.432097	0.544222
C 0	-0.233263	3.347889	-1.121416	C 0	-2.280760	-3.303523	0.942459
C 0	3.234498	-1.547068	-0.636645	C 0	-1.632463	0.510243	-2.207392
N 0	3.873816	-2.442762	-1.029384	N 0	-1.932137	0.306865	-3.315486
C 0	3.747131	1.208815	0.231416	C 0	-2.723457	2.012406	0.001320
N 0	4.657654	1.923472	0.366053	N 0	-3.661485	2.685633	0.169073
C 0	-3.219094	0.534701	1.605069	C 0	1.436270	-2.433434	-1.454020
N 0	-3.810727	0.942080	2.530340	N 0	1.365320	-3.309215	-2.233157
C 0	-3.390271	0.943829	-1.084019	C 0	2.850328	-0.553092	1.331299
N 0	-4.094823	1.584121	-1.767310	N 0	3.595660	-0.269717	2.225643
Η0	0.774512	-0.871176	-0.159776	Н 0	0.099019	-0.246428	-0.693783
Η0	1.944114	1.479594	-3.056709	Н 0	0.317324	-3.149007	2.070450
Η0	-2.243742	-1.284107	-2.894753	Н 0	-1.761414	1.274233	2.756937
Η0	-2.081003	-2.191245	2.431442	Н 0	0.025500	3.608327	-1.635866
Η0	2.440534	-2.065816	2.465866	Н 0	3.977261	1.083227	-0.991235
Η0	2.387561	-0.078611	3.286036	Н 0	3.377343	0.017262	-2.757877
Η0	0.447891	-0.736936	-3.610061	Н 0	0.762269	-0.604700	3.358081
Η0	-0.657119	0.632944	-3.504255	Н 0	-0.956353	-1.063123	3.436821
Η0	0.557192	-2.684717	-1.703519	H 0	1.612986	1.661508	2.608315
Η0	-0.748881	-3.292731	-2.716360	H 0	0.385882	2.361552	3.660446
Η0	-0.784351	-4.679110	-0.792952	H 0	1.230669	4.198435	2.424157
Η0	-2.153286	-3.613444	-0.561864	Н 0	-0.308671	3.883845	1.659869
Η0	0.619599	-3.172548	0.703272	Н 0	2.385320	2.801898	0.623997
H 0	-0.675625	-4.057818	1.502984	H 0	1.720780	4.345304	0.106225
Η0	0.115936	-1.715658	3.613383	H 0	2.453233	2.715841	-2.401211
Η0	-0.263895	-0.075907	3.073358	H 0	1.256090	1.557148	-2.985393
Η0	0.908661	2.236675	2.459846	H 0	-4.099530	-0.316809	-0.707096
Η0	-0.403761	4.288858	2.142645	H 0	-5.290114	-2.422509	-0.347046
Η0	-1.116314	5.030244	-0.104636	H 0	-4.136670	-4.368348	0.698065
Η0	-0.521542	3.680852	-2.115136	Н 0	-1.781568	-4.146294	1.414116
Η0	4.496407	-3.150663	-1.373302	Н 0	-2.262753	0.078566	-4.235231
Η0	5.435598	2.547516	0.478005	Н 0	-4.489122	3.238630	0.301727
Η0	-4.437835	1.252493	3.247938	Н 0	1.526956	-4.157733	-2.744403
H 0	-4.829876	2.036084	-2.277503	H 0	4.438568	-0.638127	2.649277

Appendix 10. Cartesian coordinates of the optimized structure of TS_{M6-M8} .

Appendix 11. Cartesian coordinates of the optimized structure of TS_{M8-B} .

Ir 0	9.297355	11.204205	4.777526	Ir 0	9.055670	11.655718	4.725951
Ir 0	11.596605	9.494751	5.777770	Ir 0	11.901915	9.660528	5.564652
P 0	10.663206	13.029929	4.171868	P 0	10.802549	13.114066	4.008991
ΡO	12.579775	11.641756	6.114029	P 0	12.616884	11.834943	6.234200
ΡO	10.301765	9.659941	7.822392	P 0	10.540229	9.371000	7.504144
ΡO	8.025922	9.513991	5.798465	P 0	8.148529	9.636785	5.523706
C 0	12.446316	12,735473	4.625750	C 0	12.360121	13.241905	5.027574
C 0	12.078527	12.694912	7.555978	C 0	12.037944	12.516284	7.856540
C 0	11.702067	11.933701	8.841114	C 0	11.867483	11.461421	8.967907
C 0	10.323664	11.247563	8.775999	C 0	10.564808	10.647589	8.854994
C 0	8.490314	9.260053	7.584771	C 0	8.722108	9.037983	7.193835
C 0	10.657094	13.733349	2.497240	C 0	10.995502	12.013134	2.583407
C 0	11.272316	14.974385	2.253163	C 0	10.173153	10.906248	2.912483
C 0	11.276109	15.504718	0.964794	C 0	9.990493	9.892760	1.970944
C 0	10.665980	14.806690	-0.082350	C 0	10.608192	10.011088	0.718054
C 0	10.046525	13.578403	0.157265	C 0	11.395656	11.122430	0.397357
C 0	10.039063	13.039930	1.444678	C 0	11.590217	12.147934	1.332810
C 0	7.729990	12.328103	4.562168	C 0	8.570568	12.559505	6.352626
N 0	6.770079	12.969679	4.368760	N 0	8.298214	13.141350	7.354495
C 0	10.675612	9.935381	3.898004	C 0	7.541483	12.315829	3.522295
N 0	10.917316	9.469405	2.800670	N 0	6.669513	12.678761	2.836175
C 0	11.036636	7.619868	5.640625	C 0	13.277885	9.694344	4.197645
N 0	10.739897	6.493066	5.547535	N 0	14.123452	9.698412	3.384743
C 0	13.341382	8.921927	5.139425	C 0	11.603215	7.790689	5.159288
N 0	14.388696	8.580649	4.739019	N 0	11.426001	6.656232	4.907210
H 0	10.374557	14.150217	4.980149	H 0	10.648545	14.438142	3.547918
H 0	13.977823	11.565580	6.278881	H 0	14.018543	11.920596	6.377999
Η0	10.656199	8.722720	8.816840	H 0	10.876390	8.199646	8.214604
Η0	6.624104	9.648600	5.869875	H 0	6.749569	9.499767	5.649649
Η0	8.099801	8.210560	5.265033	H 0	8.423477	8.531562	4.696002
Η0	12.976821	13.682242	4.773456	H 0	12.332303	14.187930	5.581524
Η0	12.919259	12.206064	3.791240	H 0	13.217574	13.291811	4.346967
Η0	11.233136	13.316770	7.239875	H 0	11.088914	13.035117	7.684807
Η0	12.916407	13.372794	7.753450	H 0	12.770529	13.271452	8.161784
Η0	11.670711	12.664571	9.656567	H 0	11.839946	11.991053	9.926723
Η0	12.486170	11.216253	9.114830	H 0	12.740878	10.798930	9.017808
Η0	9.591166	11.916281	8.308196	H 0	9.720606	11.325243	8.692902
Η0	9.964947	11.023564	9.786491	H 0	10.373674	10.114398	9.792529
Η0	7.875064	9.913477	8.212680	H 0	8.125804	9.542089	7.962170
Η0	8.286924	8.228801	7.889727	H 0	8.522342	7.964717	7.281974
H 0	11.739317	15.532048	3.061241	H 0	9.375807	9.024044	2.188843
H 0	11.748571	16.464184	0.778392	H 0	10.461706	9.230865	-0.023512
H 0	10.668973	15.225391	-1.084098	H 0	11.853597	11.194943	-0.584227
H 0	9.565584	13.043213	-0.655845	H 0	12.179044	13.023927	1.073807
Η0	9.543553	12.092339	1.635928	H 0	7.665939	13.807198	7.774724
Η0	5.956757	13.504694	4.126288	H 0	5.919949	12.987668	2.243938
Η0	10.418727	9.614577	1.926619	H 0	14.956242	9.547388	2.846612
Η0	10.613169	5.501506	5.459950	H 0	11.570306	5.666290	4.820189
Η0	15.306873	8.200435	4.601875	H 0	10.436989	10.525316	4.281893

0.008332 -0.292452 1.996498 2.027109 -0.957400 -2.047184 3.074111 2.526979 1.574127 0.309330 -1.981475 1.102501 -0.160425 -1.180064 -0.906436 0.374628 1.387707 0.567758 0.917142 -0.825322 -1.279214 -2.170632 -3.311722 0.145883 0.399493 0.680105 2.909990 2.720329 -1.862795 -2.669531 -3.109385 3.669465 3.765222 2.621702 3.530270 2.114439 1.313155 0.589365 -0.190897 -1.526737 -2.994822 -2.192266 -1.709304 0.566312 2.366425 1.224504 -1.653981 -4.192751 0.511182

Appendix 12. Cartesian coordinates of the optimized structure of TS_{M8-C} .

Appendix 13. Cartesian coordinates of the optimized structure of TS_{B-M2} .

Ir 0	1.058558	-1.422949	-0.122191	Ir 0	-1.464238	-0.866812
Ir 0	-0.700157	1.148519	-0.312429	Ir 0	1.378770	0.620061
P 0	-0.555752	-1.835388	1.546755	P 0	-1.476184	0.416962
P 0	-0.237807	1.087863	2.053645	P 0	1.559743	0.082279
P 0	1.456585	2.050165	-0.789986	P 0	2.125864	-1.552386
P 0	2.632365	-0.662483	-1.681393	P 0	-0.726685	-1.797050
C 0	-0.380528	-0.574813	2.889415	C 0	0.006863	0.186317
C 0	1.343984	1.811127	2.706217	C 0	2.294585	-1.549634
C 0	1.985211	2.932070	1.870367	C 0	3.366418	-2.110105
C 0	2.649190	2.428138	0.574613	C 0	2.773138	-2.754202
C 0	2.426418	1.143808	-2.097954	C 0	0.938843	-2.600144
C 0	-2.213605	-1.504863	0.886332	C 0	-1.366389	1.958560
C 0	-2.301847	-0.462422	-0.064662	C 0	-0.801115	1.633353
C 0	-3.538386	-0.249930	-0.695006	C 0	-0.992950	2.584952
C 0	-4.653571	-1.017931	-0.351570	C 0	-1.594222	3.817055
C 0	-4.559457	-2.020082	0.617160	C 0	-2.061723	4.138191
C 0	-3.333363	-2.269608	1.234698	C 0	-1.977126	3.183818
C 0	-1.083176	1.211771	-2.238299	C 0	-2.470199	-2.430824
N 0	-1.324006	1.258640	-3.380132	N 0	-3.076707	-3.365129
C 0	-1.810818	2.777729	0.023624	C 0	-3.091515	0.063357
N 0	-2.495847	3.709478	0.190146	N 0	-4.050005	0.546361
C 0	0.264696	-2.708237	-1.378793	C 0	1.545320	1.076343
N 0	-0.167740	-3.510759	-2.128265	N 0	1.660205	1.334801
C 0	2.424909	-1.341182	1.200770	C 0	2.253702	2.300869
N 0	3.289932	-1.290551	2.037744	N 0	2.770781	3.329569
H 0	-0.996725	-0.566860	-0.652400	Н 0	-0.191883	-1.611347
H 0	-0.679962	-3.053507	2.245618	Н 0	-2.550497	0.451142
H 0	-1.207141	1.832600	2.756167	Н 0	2.389256	0.985492
H 0	1.366946	3.312377	-1.419643	H 0	3.206717	-1.499875
H 0	3.985085	-0.733729	-1.295797	H 0	-1.520609	-2.785454
Η0	2.721312	-1.252126	-2.958210	H 0	-0.616878	-0.880814
Η0	0.523194	-0.764895	3.477235	H 0	-0.105072	-0.726492
Η0	-1.246028	-0.592417	3.558720	H 0	0.077956	1.033026
Η0	2.055465	0.986379	2.817880	Н 0	1.472245	-2.268807
Η0	1.114298	2.176839	3.713267	H 0	2.711360	-1.409108
Η0	2.767345	3.388746	2.486904	H 0	3.919929	-2.886270
Η0	1.267453	3.735249	1.660028	H 0	4.102301	-1.339755
Η0	3.233541	1.526371	0.786598	H 0	1.948275	-3.420227
Η0	3.342124	3.182610	0.185927	H 0	3.525695	-3.372748
Η0	3.389995	1.628158	-2.294026	H 0	0.817750	-3.588921
Η0	1.834407	1.203385	-3.017606	H 0	1.324176	-2.749147
Η0	-3.650474	0.523560	-1.447249	H 0	-0.654636	2.391284
Η0	-5.603117	-0.830446	-0.844390	H 0	-1.698336	4.542488
Η0	-5.428265	-2.617681	0.874310	H 0	-2.520080	5.103098
H 0	-3.248825	-3.072221	1.962691	H 0	-2.409325	3.377630
H 0	-1.615885	1.311592	-4.339017	H 0	-3.630901	-4.142965
Η0	-3.107616	4.494279	0.323575	H 0	-4.864775	0.997091
Η0	-0.237311	-4.424435	-2.542513	H 0	2.005161	1.669020
H 0	3.958126	-1.966177	2.394406	Н 0	3.530507	3.977739

Appendix 14. Cartesian coordinates of the optimized structure of TS_{C-M2} .

Ir 0	1.382489	-1.187978	-0.037570
Ir 0	-0.874798	0.933079	-0.337731
P 0	-0.256033	-1.773412	1.544938
P 0	-0.705000	1.214050	2.033045
P 0	0.925084	2.477236	-0.862486
P 0	2.802873	-0.008287	-1.496791
C 0	-0.389529	-0.438529	2.845518
C 0	0.612397	2.351658	2.682827
C 0	0.974968	3.556244	1.790316
C 0	1.852889	3.203223	0.569475
C 0	2.193934	1.702399	-1.986235
C 0	-1.917651	-1.785690	0.849006
C 0	-2.280913	-0.653890	0.086608
C 0	-3.585306	-0.638330	-0.427154
C 0	-4.478398	-1.691669	-0.197732
C 0	-4.095248	-2.798158	0.559265
C 0	-2.807643	-2.843401	1 090224
C 0	-0.948311	0 227994	-2.178255
N 0	-1 078209	-0 164547	-3 270397
C	-2 348783	2 205711	-0 582347
N O	-3 198032	2.203711	-0 716279
C_0	0.828197	-2 542836	-1 373208
N O	0.510867	-3 345532	-2 179944
C_0	2 779389	-1 315603	1 278373
N O	3 625271	-1 351709	2 117781
HO	0 748836	0 344601	0 340280
HO	-0 161912	-2 943091	2 326999
HO	-1 881854	1 666127	2.520999
HO	0 590932	3 620267	-1 620270
HO	4 098584	0 274742	-1 020270
HO	3 137413	-0 527506	-2 764358
HO	0 538070	-0.327500	3 422928
HO	-1 208923	-0.682053	3 528752
HO	1 505303	1 739659	2 854091
HO	0 274575	2 700886	3 664771
HO	1 545572	4 255563	2 411136
HO	0.074578	4 103178	1 482097
HO	2 628642	2 486440	0.864174
HO	2.020042	4 098472	0.205148
HO	3.050092	2 373430	-2 117476
HO	1 709685	1 604587	-2.11/4/0
HO	-3 931630	0 196986	-1 028099
но	-5.951050	-1 641754	-0.615705
но	-1 788273	-3 61/593	0.735700
но	-4.788273	-3 700578	1 682274
но	-2.490052	-0.602370	-4 156073
но	-3.953/17	3 645577	-0.83/276
но	0 567029	_A 250481	-2 616300
HO	4 358529	-1 945453	2.010309
11 U	1.22024/	1.7 10 100	