### Nitrogen-Rich 4,4'-Azobis(1,2,4-triazolone) Salts—Synthesis and Promising Properties of a New Family of High-Density Insensitive Materials

Jiaping Zhu,<sup>a</sup> Shaohua Jin,<sup>a</sup> Li Wan,<sup>a</sup> Lijie Li,<sup>a</sup> Chunyuan Zhang,<sup>a</sup> Shusen Chen<sup>a</sup>, Qinghai Shu<sup>a\*</sup>

<sup>a</sup> School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China. Tel: +86–10–68918535; E - mail: qhshu121@bit.edu.cn

| Figures                                                                  |   |
|--------------------------------------------------------------------------|---|
| 4.4'-azobis(1.2.4-triazolone). ZTO                                       |   |
| Figure S1. FTIR (KBr) spectrum of ZTO                                    |   |
| Figure S2. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of ZTO     |   |
| Figure S3. Pcking cell of ZTO                                            |   |
| Lithium salt (1)                                                         |   |
| Figure S4. FTIR (KBr) spectrum of salt 1                                 |   |
| Figure S5. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 1  |   |
| Figure S6. Negative (up) and Positive (down) ESI-MS of salt 1            | б |
| Sodium slat (2)                                                          | 7 |
| Figure S7. FTIR (KBr) spectrum of salt 2                                 | 7 |
| Figure S8. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 2  | 7 |
| Figure S9. Negative (up) and Positive (down) ESI-MS of salt 2            |   |
| Figure S10. Pcking cell of salt 2                                        |   |
| Potassium salt (3)                                                       |   |
| Figure S11. FTIR (KBr) spectrum of salt 3                                |   |
| Figure S12. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 3 |   |
| Figure S13. Negative (up) and Positive (down) ESI-MS of salt 3           |   |
| Figure S14. Packing cell of salt 3                                       |   |
| Caesium salt (4)                                                         |   |
| Figure S15. FTIR (KBr) spectrum of salt 4                                |   |
| Figure S16. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 4 |   |
| Figure S17. Negative (up) and Positive (down) ESI-MS of salt 4           |   |
| Figure S18. Packing cell of salt 4                                       |   |
| Hydrazine salt (5)                                                       |   |
| Figure S19. FTIR (KBr) spectrum of salt 5                                |   |
| Figure S20. 'H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 5             |   |
| Figure S21. Negative ESI–MS of salt 5                                    |   |
| Figure S22. Packing cell of salt 5                                       |   |
| Magnesium salt (6)                                                       |   |
| Figure S23. FTIR (KBr) spectrum of salt 6                                |   |
| Figure S24. <sup>1</sup> H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 6 |   |
| Figure S25. ESI–MS of salt 6                                             |   |
| Figure S26. Packing cell of salt 6                                       |   |
| Calcium salt (7)                                                         |   |
| Figure S27. FTIR (KBr) spectrum of salt 7                                |   |
| Figure S28. H NMR spectrum (400 MHz, $d_6$ –DMSO) of salt 7              |   |
| Figure 29. Negative (up) and Positive (down) ESI–MS of salt /            |   |
| Figure 550. Packing cell of salt /                                       |   |
| Strontium salt (8)                                                       |   |
| Figure S1. FIIK (KBF) spectrum (I Salt 8                                 |   |
| Figure 5.52. H NIVIK spectrum (400 MHZ, $a_6$ -DMSO) of salt 8           |   |
| Figure 55. Negative (up) and Positive (down) ESI-MIS OF salt 8           |   |
| Figure 534. Facking cell of salt 8                                       |   |
| Dallull Sall (9)                                                         |   |
| Figure S35. FTIK (KDI) spectrum ( $A00$ MHz $d_{\rm c}$ DMSO) of solt 0. |   |
| 1 μμις 5.50. Η μινικ ερουμμιι (400 μιπζ, $a_6$ –DμιδΟ) οι sait 9         |   |

| Positive (down) ESI–MS of salt 9                    |                                                                                                                     |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| t 9                                                 |                                                                                                                     |
|                                                     |                                                                                                                     |
| o) of ZTO at different heating rates                |                                                                                                                     |
| b) of 1 at different heating rates                  |                                                                                                                     |
| b) of 2 at different heating rates                  |                                                                                                                     |
| b) of 3 at different heating rates                  |                                                                                                                     |
| b) of 4 at different heating rates                  |                                                                                                                     |
| b) of 5 at different heating rates                  |                                                                                                                     |
| b) of 6 at different heating rates                  |                                                                                                                     |
| b) of 7 at different heating rates                  |                                                                                                                     |
| b) of 8 at different heating rates                  |                                                                                                                     |
| b) of 9 at different heating rates                  |                                                                                                                     |
|                                                     |                                                                                                                     |
| nd refinement for ZTO and its salts 2–9             |                                                                                                                     |
| A) of ZTO and its salts                             |                                                                                                                     |
| ) of ZTO and its salts                              |                                                                                                                     |
| ) and its salts                                     |                                                                                                                     |
| nd distances (Å) and angles ( ) of ZTO and its salt |                                                                                                                     |
| ak temperature of ZTO and its salts                 |                                                                                                                     |
| s obtained by the data in Table 6                   |                                                                                                                     |
| -                                                   |                                                                                                                     |
|                                                     | Positive (down) ESI–MS of salt 99.<br>99.<br>of ZTO at different heating rates9.<br>of 1 at different heating rates |

# Figure





Figure S1. FTIR (KBr) spectrum of ZTO



**Figure S2.** <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of ZTO



Figure S3. Packing cell of ZTO

# Lithium salt (1)



Figure S4. FTIR (KBr) spectrum of salt 1



**Figure S5.** <sup>1</sup>H NMR spectrum (400 MHz, *d*<sub>6</sub>–DMSO) of salt **1** 



Figure S6. Negative (up) and Positive (down) ESI-MS of salt 1

## Sodium slat (2)



Figure S7. FTIR (KBr) spectrum of salt 2



Figure S8. <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt 2



Figure S9. Negative (up) and Positive (down) ESI–MS of salt  ${\bf 2}$ 



Figure S10. Packing cell of salt 2

## Potassium salt (3)



Figure S11. FTIR (KBr) spectrum of salt 3



Figure S12. <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt 3



Figure S13. Negative (up) and Positive (down) ESI-MS of salt 3



Figure S14. Packing cell of salt 3



Figure S15. FTIR (KBr) spectrum of salt 4



Figure S16. <sup>1</sup>H NMR spectrum (400 MHz, *d*<sub>6</sub>–DMSO) of salt 4



Figure S17. Negative (up) and Positive (down) ESI-MS of salt 4



Figure S18. Packing cell of salt 4



Figure S19. FTIR (KBr) spectrum of salt 5



**Figure S20.** <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt **5** 



Figure S21. Negative ESI–MS of salt 5



Figure S22. Packing cell of salt 5

### Magnesium salt (6)



Figure S23. FTIR (KBr) spectrum of salt 6



**Figure S24.** <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt 6.



Figure S25. ESI - MS of salt 6



Figure S26. Packing cell of salt 6



Figure S27. FTIR (KBr) spectrum of salt 7



**Figure S28.** <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt **7** 



Figure 29. Negative (up) and Positive (down) ESI-MS of salt 7



Figure S30. Packing cell of salt 7

### Strontium salt (8)



Figure 31. FTIR (KBr) spectrum of salt 8



Figure S32. <sup>1</sup>H NMR spectrum (400 MHz,  $d_6$ –DMSO) of salt 8



Figure 33. Negative (up) and Positive (down) ESI-MS of salt 8



Figure S34. Packing cell of salt 8



Figure S35. FTIR (KBr) spectrum of salt 9



Figure S36. <sup>1</sup>H NMR spectrum (400 MHz, d<sub>6</sub>–DMSO) of salt 9



Figure S37. Negative (up) and Positive (down) ESI–MS of salt 9



Figure S38. Packing cell of salt 9

### Thermal analysis



Figure S39. TG (a) and DTA (b) of ZTO at different heating rates



Figure S40. TG (a) and DTA (b) of 1 at different heating rates



Figure S41. TG (a) and DTA (b) of 2 at different heating rates



Figure S42. TG (a) and DTA (b) of 3 at different heating rates



Figure S43. TG (a) and DTA (b) of 4 at different heating rates



Figure S44. TG (a) and DTA (b) of 5 at different heating rates



Figure S45. TG (a) and DTA (b) of 6 at different heating rates



Figure S46. TG (a) and DTA (b) of 7 at different heating rates



Figure S47. TG (a) and DTA (b) of 8 at different heating rates



Figure S48. TG (a) and DTA (b) of 9 at different heating rates

# Table

|                                             | ZTO             | 2                  | 3                              | 4                              | 5                    | 6                         | 7                    | 8                    | 9                           |
|---------------------------------------------|-----------------|--------------------|--------------------------------|--------------------------------|----------------------|---------------------------|----------------------|----------------------|-----------------------------|
| Chemical formula                            | $C_4H_4N_8O_2$  | C4H7N8NaO4         | $C_8 H_{10} N_{16} K_2 O_6 \\$ | C4H5CsN8O3                     | $C_4 H_8 N_{10} O_2$ | $C_8H_{26}N_{16}O_{14}Mg$ | C8H26N16O14Ca        | $C_4H_{10}N_8O_6Sr$  | $C_8H_{20}N_{16}O_{12}Ba_2$ |
| $Mw/g mol^{-1}$                             | 196.15          | 254.17             | 504.52                         | 344.05                         | 228.20               | 594.76                    | 612.56               | 699.58               | 807.08                      |
| Crystal size /mm                            | 0.37×0.20×0.14  | 0.18×0.17×0.16     | 0.37×0.16×0.15                 | 0.21×0.20×0.19                 | 0.22×0.20×0.18       | 0.19×0.11×0.07            | 0.13×0.09×0.05       | 0.09×0.06×0.03       | 0.22×0.12×0.08              |
| Crystal system                              | Monoclinic      | Monoclinic         | Monoclinic                     | Orthorhombic                   | Triclinic            | Monoclinic                | Triclinic            | Triclinic            | Triclinic                   |
| Crystal group                               | $P2_{1}/c$      | C2/c               | $P2_{1}/c$                     | Pnna                           | <i>P</i> -1          | C2/c                      | <i>P</i> -1          | <i>P</i> -1          | <i>P</i> -1                 |
| <i>a</i> / Å                                | 7.581(3)        | 19.421(15)         | 14.345(4)                      | 6.8101(13)                     | 7.7212(5)            | 19.528(5)                 | 7.555(3)             | 7.603(3)             | 7.6249(18)                  |
| <i>b/</i> Å                                 | 6.325(3)        | 6.514(5)           | 10.332(3)                      | 13.764(3)                      | 8.2866(5)            | 10.445(3)                 | 7.692(3)             | 7.714(2)             | 7.8460(16)                  |
| c∕ Å                                        | 7.891(4)        | 15.382(12)         | 12.600(4)                      | 10.311(2)                      | 8.3755(5)            | 12.557(3)                 | 11.022(5)            | 11.324(4)            | 11.723(3)                   |
| α/ °                                        | 90              | 90                 | 90                             | 90                             | 62.6840(10)          | 90                        | 75.555(15)           | 73.482(16)           | 70.520(8)                   |
| β/ °                                        | 107.344(5)      | 93.234(16)         | 96.748(3)                      | 90                             | 71.5710(10)          | 110.294(2)                | 87.243(16)           | 86.381(18)           | 85.079(10)                  |
| γ/°                                         | 90              | 90                 | 90                             | 90                             | 83.2530(10)          | 90                        | 61.775(12)           | 63.029(9)            | 64.007(7)                   |
| v∕ Å <sup>3</sup>                           | 361.1(3)        | 1943(3)            | 1854.7(9)                      | 966.6(3)                       | 451.47(5)            | 2402(11)                  | 544.7(4)             | 565.8(3)             | 592.8(2)                    |
| z                                           | 2               | 8                  | 4                              | 4                              | 2                    | 4                         | 1                    | 2                    | 1                           |
| $\rho_{calc}$ . /g cm <sup>-3</sup>         | 1.804           | 1.738              | 1.807                          | 2.378                          | 1.679                | 1.644                     | 1.867                | 2.077                | 2.261                       |
| $\mu \text{ mm}^{-1}$                       | 0.150           | 0.187              | 0.584                          | 3.842                          | 0.138                | 0.173                     | 0.622                | 4.809                | 3.392                       |
| F(000)                                      | 200             | 1040               | 1024                           | 656                            | 236                  | 1240                      | 316                  | 352                  | 388                         |
| heta range / °                              | 2.81-31.51      | 2.10-24.86         | 2.56-31.48                     | 2.47-25.01                     | 2.77-25.14           | 3.06-31.49                | 3.07-31.53           | 3.09-31.49           | 2.98-31.50                  |
| Λ (Mokα)/Å                                  | 0.71073         | 0.71073            | 0.71073                        | 0.71073                        | 0.71073              | 0.71073                   | 0.71073              | 0.71073              | 0.71073                     |
| Temp. /K                                    | 153(2)          | 293(2)             | 153(2)                         | 296(2)                         | 296(2)               | 153(2)                    | 153(2)               | 153(2)               | 153(2)                      |
| Refl. collected                             | 3404            | 4338               | 22348                          | 5565                           | 2911                 | 11865                     | 8063                 | 8470                 | 8849                        |
| Refl. unique                                | 1194            | 1668               | 6095                           | 850                            | 1602                 | 3922                      | 3488                 | 3665                 | 3870                        |
| R (int)                                     | 0.0218          | 0.0669             | 0.0455                         | 0.0153                         | 0.0107               | 0.0256                    | 0.0811               | 0.0844               | 0.0310                      |
| Data /rest. /param.                         | 1194/0/68       | 1668/4/170         | 6095/0/314                     | 850/0/74                       | 1602/0/158           | 3922/0/222                | 3488/13/194          | 3665/12/190          | 3870/14/205                 |
| GOOF                                        | 1.003           | 1.091              | 1.003                          | 1.067                          | 1.048                | 1.002                     | 0.842                | 0.897                | 1.000                       |
| $R_1, wR_2[I > 2\sigma(I)]$                 | $R_1 = 0.0392$  | $R_1 = 0.0631$     | $R_1 = 0.0545$                 | $R_1 = 0.0133$                 | $R_1 = 0.0359$       | $R_1 = 0.0387$            | $R_1 = 0.0801$       | $R_1 = 0.0701$       | $R_1 = 0.0332$              |
|                                             | $wR_2 = 0.0968$ | $wR_2 = 0.1552$    | $wR_2 = 0.1371$                | $wR_2 = 0.0323$                | $wR_2 = 0.0962$      | $wR_2 = 0.0932$           | $wR_2 = 0.2191$      | $wR_2 = 0.1832$      | $wR_2 = 0.0734$             |
| R <sub>1</sub> , wR <sub>2</sub> (all data) | $R_1 = 0.0484$  | $R_1 = 0.0779$     | $R_1 = 0.0713$                 | $R_1 = 0.0149$                 | $R_1 = 0.0398$       | $R_1 = 0.0547$            | $R_1 = 0.1105$       | $R_1 = 0.0885$       | $R_1 = 0.0369$              |
|                                             | $wR_2 = 0.1040$ | $wR_2 = 0.1660$    | $wR_2 = 0.1515$                | $wR_2 = 0.0335$                | $wR_2 = 0.0998$      | $wR_2 = 0.1014$           | $wR_2 = 0.2421$      | $wR_2 = 0.1900$      | $wR_2 = 0.0762$             |
| Index range                                 | -11≤h≤11        | -22≤h≤22           | -19≤h≤20                       | $-7 \leq h \leq 8$             | –9≤h≤9               | $-28 \leq h \leq 28$      | –11≤h≤11             | -11≤h≤11             | -10≤h≤11                    |
|                                             | –9≪k≪5          | $-7 \leq k \leq 7$ | $-15 \leq k \leq 15$           | $-16 \leqslant k \leqslant 16$ | $-9 \leq k \leq 9$   | $-15 \leq k \leq 14$      | $-11 \leq k \leq 11$ | $-11 \leq k \leq 11$ | $-11 \leq k \leq 11$        |
|                                             | –11≤1≤11        | –12≤1≤17           | –18≤1≤15                       | -10≤1≤12                       | –9≤1≤9               | –18≤1≤18                  | –16≤1≤16             | –16≤1≤16             | –17≤1≤17                    |
| CCDC numbers                                | 1048057         | 1063734            | 1420716                        | 1420255                        | 1413030              | 1435798                   | 1439859              | 1440023              | 1415595                     |

 Table S1 Crystal structure solution and refinement for ZTO and its salts 2–9.

| Compound | Bond                       | length     | Bond                      | length     | Bond                      | length     |
|----------|----------------------------|------------|---------------------------|------------|---------------------------|------------|
| ZTO      | C(1)–N(1)                  | 1.2952     | C(2)–N(2)                 | 1.3596     | N(4)–N(4 <sup>#1</sup> )  | 1.2525     |
|          | C(1)–N(3)                  | 1.3760     | C(2)–N(3)                 | 1.4112     | C(2)–O(1)                 | 1.2144     |
|          | N(1)–N(2)                  | 1.3815     | N(3)–N(4)                 | 1.3707     |                           |            |
| 2        | Na(1)–O(4)                 | 2.319(4)   | N(1)-C(1)                 | 1.325(4)   | C(3)–N(6)                 | 1.392(4)   |
|          | Na(1)–O(1)                 | 2.329(3)   | N(1)–N(2)                 | 1.380(4)   | N(4)–N(5)                 | 1.236(4)   |
|          | Na(1)-O(1 <sup>#1</sup> )  | 2.392(3)   | C(1)–N(3)                 | 1.387(4)   | C(4)–N(8)                 | 1.277(5)   |
|          | Na(1)–O(3)                 | 2.419(4)   | O(2)–C(3)                 | 1.228(4)   | C(4)–N(6)                 | 1.365(5)   |
|          | Na(1)-N(8 <sup>#2</sup> )  | 2.527(3)   | N(2)–C(2)                 | 1.270(5)   | N(5)–N(6)                 | 1.355(4)   |
|          | Na(1)-Na(1 <sup>#1</sup> ) | 3.647(4)   | C(2)–N(3)                 | 1.369(4)   | N(7)–N(8)                 | 1.393(4)   |
|          | O(1)–C(1)                  | 1.221(4)   | N(3)–N(4)                 | 1.362(4)   | N(8)-Na(1#3)              | 2.527(3)   |
|          | O(1)-Na(1 <sup>#1</sup> )  | 2.392(3)   | C(3)–N(7)                 | 1.314(5)   |                           |            |
| 3        | K(1)–O(4 <sup>#1</sup> )   | 2.6811(15) | O(2)–K(1 <sup>#2</sup> )  | 2.6820(15) | N(7)–N(8)                 | 1.413(2)   |
|          | K(1)-O(2 <sup>#2</sup> )   | 2.6820(15) | O(3)–C(5)                 | 1.245(2)   | N(8)-C(4)                 | 1.302(2)   |
|          | K(1)–O(5)                  | 2.7302(19) | O(3)-K(2#4)               | 2.6643(15) | N(8)-K(2 <sup>#1</sup> )  | 2.8651(18) |
|          | K(1)–O(1)                  | 2.8063(18) | O(4)–C(7)                 | 1.226(2)   | N(9)-C(5)                 | 1.336(2)   |
|          | K(1)-N(10)                 | 2.9004(18) | O(4)-K(1 <sup>#5</sup> )  | 2.6811(15) | N(9)-N(10)                | 1.407(2)   |
|          | K(1)-N(2 <sup>#3</sup> )   | 2.9724(17) | N(1)-C(1)                 | 1.342(2)   | N(10)-C(6)                | 1.296(2)   |
|          | K(1)–C(1)                  | 3.408(2)   | N(1)–N(2)                 | 1.391(2)   | N(11)-N(12)               | 1.357(2)   |
|          | K(1)–K(2)                  | 4.1531(11) | N(2)–C(2)                 | 1.296(2)   | N(11)-C(6)                | 1.386(2)   |
|          | K(2)-O(3#4)                | 2.6642(15) | N(2)-K(1#3)               | 2.9724(17) | N(11)-C(5)                | 1.413(2)   |
|          | K(2)–O(1)                  | 2.7159(15) | N(3)–N(4)                 | 1.375(2)   | N(12)-N(13)               | 1.250(2)   |
|          | K(2)–O(6)                  | 2.7686(19) | N(3)–C(2)                 | 1.385(2)   | N(13)-N(14)               | 1.371(2)   |
|          | K(2)-N(8 <sup>#5</sup> )   | 2.8651(18) | N(3)–C(1)                 | 1.395(2)   | N(14)-C(8)                | 1.384(2)   |
|          | K(2)-N(16#6)               | 2.9789(18) | N(4)–N(5)                 | 1.248(2)   | N(14)-C(7)                | 1.405(2)   |
|          | K(2)–N(10)                 | 3.019(2)   | N(5)–N(6)                 | 1.360(2)   | N(15)-C(7)                | 1.345(2)   |
|          | K(2)–C(6)                  | 3.495(2)   | N(6)–C(4)                 | 1.382(2)   | N(15)-N(16)               | 1.395(2)   |
|          | O(1)–C(1)                  | 1.237(2)   | N(6)–C(3)                 | 1.410(2)   | N(16)-C(8)                | 1.302(2)   |
|          | O(2)–C(3)                  | 1.251(2)   | N(7)–C(3)                 | 1.334(2)   | N(16)-K(2#6)              | 2.9789(18) |
| 4        | O(1)–C(2)                  | 1.228(2)   | Cs(1)–N(1 <sup>#5</sup> ) | 3.2825(16) | N(1)–N(2)                 | 1.399(2)   |
|          | O(1)–Cs(1 <sup>#1</sup> )  | 3.0910(13) | Cs(1)-N(1 <sup>#6</sup> ) | 3.2825(16) | N(1)-Cs(1 <sup>#8</sup> ) | 3.2825(16) |
|          | O(1)–Cs(1)                 | 3.2208(14) | Cs(1)-O(2#7)              | 3.4169(7)  | N(2)–C(2)                 | 1.337(2)   |
|          | O(2)–Cs(1)                 | 3.4169(7)  | Cs(1)-N(4 <sup>#1</sup> ) | 3.5214(16) | N(3)–N(4)                 | 1.3684(19) |
|          | O(2)–Cs(1 <sup>#2</sup> )  | 3.4169(7)  | Cs(1)-N(4 <sup>#3</sup> ) | 3.5214(16) | N(3)-C(1)                 | 1.383(2)   |
|          | Cs(1)-O(1 <sup>#3</sup> )  | 3.0910(13) | Cs(1)–C(2)                | 3.7696(18) | N(3)-C(2)                 | 1.409(2)   |
|          | Cs(1)–O(1 <sup>#1</sup> )  | 3.0910(13) | Cs(1)-C(2 <sup>#4</sup> ) | 3.7696(18) | N(4)-N(4 <sup>#9</sup> )  | 1.253(3)   |
|          | Cs(1)-O(1 <sup>#4</sup> )  | 3.2208(14) | N(1)-C(1)                 | 1.286(2)   | N(4)-Cs(1 <sup>#1</sup> ) | 3.5214(16) |
| 5        | C(1) –O(1)                 | 1.2543(18) | C(3)–O(2)                 | 1.2225(19) | N(4)–N(5)                 | 1.2495(19) |
|          | C(1)–N(1)                  | 1.3268(19) | C(3)–N(8)                 | 1.345(2)   | N(5)–N(6)                 | 1.3767(17) |
|          | C(1)–N(3)                  | 1.4039(19) | C(3)–N(6)                 | 1.4039(19) | N(7)–N(8)                 | 1.3824(19) |
|          | C(2)–N(2)                  | 1.292(2)   | C(4)–N(7)                 | 1.282(2)   | N(9)–N(10)                | 1.439(2)   |
|          | C(2)–N(3)                  | 1.3758(19) | C(4)–N(6)                 | 1.378(2)   |                           |            |

 Table S2. Selected bond distances (Å) of ZTO and its salts

| Compound | Bond                       | length     | Bond         | length     | Bond                      | length     |
|----------|----------------------------|------------|--------------|------------|---------------------------|------------|
| 6        | Mg(1)–O(5)                 | 2.0575(10) | O(2)–C(3)    | 1.2640(15) | N(4)–N(5)                 | 1.2526(14) |
|          | Mg(1)-O(5 <sup>#1</sup> )  | 2.0576(10) | N(1)-C(1)    | 1.3455(15) | N(5)–N(6)                 | 1.3676(13) |
|          | Mg(1)–O(4)                 | 2.0593(10) | N(1)-N(2)    | 1.3860(14) | N(6)–C(4)                 | 1.3794(14) |
|          | Mg(1)–O(4 <sup>#1</sup> )  | 2.0594(10) | N(2)-C(2)    | 1.2948(16) | N(6)-C(3)                 | 1.4046(14) |
|          | Mg(1)–O(3 <sup>#1</sup> )  | 2.1023(10) | N(3)–N(4)    | 1.3789(13) | N(7)–C(3)                 | 1.3289(15) |
|          | Mg(1)–O(3)                 | 2.1023(10) | N(3)–C(2)    | 1.3816(15) | N(7)–N(8)                 | 1.4071(14) |
|          | O(1)–C(1)                  | 1.2388(15) | N(3)–C(1)    | 1.3938(14) | N(8)–C(4)                 | 1.2966(15) |
| 7        | Ca(1)–O(1)                 | 2.404(3)   | O(1)–C(1)    | 1.258(4)   | N(3)–C(1)                 | 1.409(4)   |
|          | Ca(1)–O(5)                 | 2.426(3)   | O(2)–C(3)    | 1.259(4)   | N(4)–N(5)                 | 1.257(4)   |
|          | Ca(1)–O(6)                 | 2.429(3)   | O(3)-Ca(1)#1 | 2.523(3)   | N(5)–N(6)                 | 1.369(4)   |
|          | Ca(1)–O(3)                 | 2.511(3)   | O(4)-Ca(1)#2 | 2.584(3)   | N(6)–C(4)                 | 1.390(4)   |
|          | Ca(1)–O(3)#1               | 2.523(3)   | N(1)–C(1)    | 1.342(4)   | N(6)–C(3)                 | 1.404(4)   |
|          | Ca(1)–O(4)                 | 2.577(3)   | N(1)–N(2)    | 1.404(4)   | N(7)–C(3)                 | 1.324(4)   |
|          | Ca(1)-O(4)#2               | 2.584(3)   | N(1)-Ca(1)#1 | 2.591(3)   | N(7)–N(8)                 | 1.408(4)   |
|          | Ca(1)-N(1)#1               | 2.591(3)   | N(2)–C(2)    | 1.300(5)   | N(8)–C(4)                 | 1.298(5)   |
|          | Ca(1)-Ca(1)#1              | 4.0521(18) | N(3)-C(2)    | 1.367(4)   |                           |            |
|          | Ca(1)–Ca(1)#2              | 4.2154(19) | N(3)–N(4)    | 1.385(4)   |                           |            |
| 8        | Sr(1) - O(1)#1             | 2.540(4)   | N(1) - C(1)  | 1.338(7)   | N(7) - C(3)               | 1.334(7)   |
|          | Sr(1) - O(5)               | 2.578(4)   | N(1) - N(2)  | 1.397(6)   | N(7) - N(8)               | 1.403(6)   |
|          | Sr(1) - O(3)#1             | 2.591(4)   | N(2) - C(2)  | 1.309(7)   | N(8) - C(4)               | 1.303(7)   |
|          | Sr(1) - O(6)               | 2.607(5)   | N(3) - N(4)  | 1.380(6)   | C(1) - O(1)               | 1.263(7)   |
|          | Sr(1) - O(4)#2             | 2.643(4)   | N(3) - C(2)  | 1.383(7)   | C(3) - O(2)               | 1.261(6)   |
|          | Sr(1) - O(3)               | 2.661(4)   | N(3) - C(1)  | 1.420(7)   | O(1) - Sr(1)#1            | 2.540(4)   |
|          | Sr(1) - O(4)               | 2.671(4)   | N(4) - N(5)  | 1.239(6)   | O(3) - Sr(1)#1            | 2.591(4)   |
|          | Sr(1) - N(1)               | 2.747(5)   | N(5) - N(6)  | 1.376(6)   | O(4) - Sr(1)#2            | 2.643(4)   |
|          | Sr(1) - Sr(1)#1            | 4.2239(15) | N(6) - C(4)  | 1.388(7)   |                           |            |
|          | Sr(1) - Sr(1)#2            | 4.2894(17) | N(6) - C(3)  | 1.392(7)   |                           |            |
| 9        | Ba(1)–O(3 <sup>#1</sup> )  | 2.708(2)   | C(1)–O(1)    | 1.261(4)   | N(1)-N(2)                 | 1.410(4)   |
|          | Ba(1)–O(2)                 | 2.709(2)   | C(1)–N(1)    | 1.332(4)   | N(2)–C(2)                 | 1.297(4)   |
|          | Ba(1)–O(4)                 | 2.724(2)   | C(1)–N(3)    | 1.392(4)   | N(8)–C(3)                 | 1.339(4)   |
|          | Ba(1)–O(6)                 | 2.766(2)   | C(4)–N(7)    | 1.300(4)   | N(8)–N(7)                 | 1.411(4)   |
|          | Ba(1)-O(4 <sup>#2</sup> )  | 2.796(2)   | C(4)–N(6)    | 1.378(4)   | N(8)-Ba(1 <sup>#1)</sup>  | 2.915(3)   |
|          | Ba(1)–O(3)                 | 2.827(2)   | O(2)–C(3)    | 1.255(4)   | O(3)-Ba(1 <sup>#1</sup> ) | 2.708(2)   |
|          | Ba(1)–O(5)                 | 2.895(3)   | N(5)-N(4)    | 1.248(3)   | O(4)-Ba(1#2)              | 2.796(2)   |
|          | Ba(1)-N(8 <sup>#1</sup> )  | 2.915(3)   | N(5)-N(6)    | 1.370(3)   | O(5)-Ba(1 <sup>#3</sup> ) | 3.175(3)   |
|          | Ba(1)-O(5 <sup>#3</sup> )  | 3.175(3)   | N(4)-N(3)    | 1.377(3)   | N(1)–N(2)                 | 1.4049(18) |
|          | Ba(1)-Ba(1#2)              | 4.3889(10) | N(3)-C(2)    | 1.380(4)   | N(3)–N(4)                 | 1.3698(17) |
|          | Ba(1)-Ba(1 <sup>#1</sup> ) | 4.4470(9)  | N(6)-C(3)    | 1.411(4)   |                           |            |

#### Table S2 (continued)

| Table S3. | The selected | bond angle ( | ( ) of ZTO | and its salts |
|-----------|--------------|--------------|------------|---------------|
|-----------|--------------|--------------|------------|---------------|

| ZTO | D C(1) - N(1) - N(2)                                 | 105.48(8)            | C(1)-N(3)-C(2)                                    | 109.10(9)             | O(1)-C(2)-N(3)                                      | 127.92(9)  |
|-----|------------------------------------------------------|----------------------|---------------------------------------------------|-----------------------|-----------------------------------------------------|------------|
|     | C(2) - N(2) - N(1)                                   | 113.56(9)            | $N(4^{\#1}) - N(4) - N(3)$                        | 110.12(11)            | N(2)-C(2)-N(3)                                      | 101.42(9)  |
|     | N(4)-N(3)-C(1)                                       | 130.70(8)            | N(1)-C(1)-N(3)                                    | 110.43(9)             |                                                     |            |
|     | N(4) - N(3) - C(2)                                   | 120,19(9)            | O(1)-C(2)-N(2)                                    | 130.66(10)            |                                                     |            |
| 2   | O(4) - Na(1) - O(1)                                  | 110 68(12)           | O(1) - Na(1) - O(3)                               | 88 37(11)             | N(2)-C(2)-N(3)                                      | 109 9(3)   |
| -   | $O(4) - Na(1) - O(1^{\#1})$                          | 100.88(12)           | $O(1^{\#1}) - Na(1) - O(3)$                       | 123 31(11)            | N(4) - N(3) - C(2)                                  | 129 3(3)   |
|     | $O(1) - Na(1) - O(1^{\#1})$                          | 77 48(11)            | $O(4) - Na(1) - N(8^{#2})$                        | 84.06(12)             | N(4) - N(3) - C(1)                                  | 122.7(3)   |
|     | O(4) - Na(1) - O(3)                                  | 135 05(13)           | $O(1) - Na(1) - N(8^{\#2})$                       | 164 98(12)            | C(2) = N(3) = C(1)                                  | 107 9(3)   |
|     | O(1) - Na(1) - O(3)                                  | 88 37(11)            | $O(1^{\#1}) - Na(1) - N(8^{\#2})$                 | 10323(12)             | O(2) - C(3) - N(7)                                  | 130 2(3)   |
|     | $O(1^{\#1})-Na(1)-O(3)$                              | 123.31(11)           | $O(3)-Na(1)-N(8^{#2})$                            | 78.68(11)             | O(2)-C(3)-N(6)                                      | 124.6(3)   |
|     | $O(4) - Na(1) - N(8^{\#2})$                          | 84.06(12)            | $O(4) - Na(1) - Na(1^{\#1})$                      | 118 16(9)             | N(7) - C(3) - N(6)                                  | 105 2(3)   |
|     | $O(1) - Na(1) - N(8^{\#2})$                          | 164 98(12)           | $O(1) - Na(1) - Na(1^{\#1})$                      | 40.06(7)              | N(5) - N(4) - N(3)                                  | 109.2(3)   |
|     | $O(1^{\#1}) - Na(1) - N(8^{\#2})$                    | 103.23(12)           | $O(1^{\#1}) - Na(1) - Na(1^{\#1})$                | 38 80(7)              | N(8)-C(4)-N(6)                                      | 109.7(3)   |
|     | $O(3) - Na(1) - N(8^{\#2})$                          | 78 68(11)            | $O(3) - Na(1) - Na(1^{\#1})$                      | 102 77(8)             | N(4) - N(5) - N(6)                                  | 113 2(3)   |
|     | $O(4) - Na(1) - Na(1^{\#1})$                         | 118 16(9)            | $N(8^{#2}) - Na(1) - Na(1^{#1})$                  | 135 70(10)            | N(5) - N(6) - C(4)                                  | 132 6(3)   |
|     | O(4) = Na(1) = Na(1) #1                              | 40.06(7)             | C(1) = O(1) = Na(1)                               | 132 4(2)              | N(5) - N(6) - C(3)                                  | 119 7(3)   |
|     | $O(1)^{H1} Na(1) Na(1)^{H1}$                         | 40.00(7)<br>38 80(7) | $C(1) = O(1) = Na(1^{\#1})$                       | 132.4(2)              | $\Gamma(3) = \Gamma(6) - \Gamma(3)$                 | 107.7(3)   |
|     | O(1) = Na(1) = Na(1)<br>$O(3) Na(1) Na(1^{\#1})$     | 102 77(8)            | $N_{2}(1) = O(1) = N_{2}(1^{+1})$                 | 101 14(11)            | C(4) = N(0) = C(3)<br>C(3) = N(7) = N(8)            | 110.3(3)   |
|     | $N(8^{\#2})$ No(1) No(1 <sup>#1</sup> )              | 135 70(10)           | Na(1) = O(1) = Na(1)                              | 111 2(3)              | C(3) = N(7) = N(8)<br>C(4) = N(8) = N(7)            | 107.2(3)   |
|     | N(6) = Na(1) = Na(1)                                 | 110.68(12)           | O(1) - N(1) - N(2)                                | 120.2(3)              | C(4) = N(8) = N(7)                                  | 135 8(3)   |
|     | O(4) = Na(1) = O(1)                                  | 100.88(12)           | O(1) - C(1) - N(1)<br>O(1) C(1) N(3)              | 129.5(3)              | $N(7) = N(8) = Na(1^{+3})$                          | 115.8(3)   |
|     | $O(4) = Na(1) = O(1^{*1})$                           | 77 48(11)            | N(1) = C(1) = N(3)                                | 120.0(3)              | $\ln(7) - \ln(6) - \ln(1)$                          | 113.9(2)   |
|     | O(1) = Na(1) = O(1)                                  | 125.05(12)           | N(1) - C(1) - N(3)                                | 104.1(3)              |                                                     |            |
|     | O(4) = Na(1) = O(3)                                  | 155.05(15)           | V(2) = N(2) = N(1)                                | 101.14(5)             | Q(2#4) K(2) N(10)                                   | 02.22(5)   |
| 3   | $O(4^{\#1}) - K(1) - O(2^{\#1})$                     | 84.33(3)             | N(10) - K(1) - C(1)<br>$N(2^{\#3}) - K(1) - C(1)$ | 101.14(3)<br>76.00(5) | O(3) = K(2) = N(10)                                 | 92.22(3)   |
|     | $O(4^{2}) - K(1) - O(5)$                             | 85.81(5)             | N(2) - K(1) - C(1)                                | 70.00(3)              | O(1) - K(2) - N(10)                                 | 171.04(5)  |
|     | $O(2^{\#1}) K(1) O(3)$                               | 90.01(5)             | $O(4^{2})-K(1)-K(2)$                              | 85.02(4)              | V(0) - K(2) - N(10)<br>$V(0)^{\#5} K(2) N(10)$      | 82 20(5)   |
|     | $O(4^{2}) - K(1) - O(1)$                             | 78.47(5)<br>82.22(5) | O(2) = K(1) = K(2)                                | 125.73(4)             | N(0) - K(2) - N(10)<br>$N(16^{\#6}) - K(2) - N(10)$ | 83.20(3)   |
|     | O(2) = K(1) = O(1)                                   | 83.33( <i>3</i> )    | O(3) - K(1) - K(2)                                | 130.03(4)             | N(10) = K(2) = N(10)<br>$O(2^{\#4}) = K(2) = O(6)$  | 106 55(5)  |
|     | O(3) - K(1) - O(1)                                   | 04.20(5)             | O(1) - K(1) - K(2)                                | 40.41(3)              | O(3) = K(2) = C(0)                                  | 100.33(3)  |
|     | $O(4^{2}) - K(1) - N(10)$<br>$O(2^{\#2}) K(1) N(10)$ | 94.30(3)             | N(10) - K(1) - K(2)                               | 46.62(4)              | O(1) - K(2) - C(6)                                  | 102.76(3)  |
|     | O(2) = K(1) = N(10)                                  | 170.34(3)            | N(2) = K(1) = K(2)                                | 86.12(4)              | U(0) - K(2) - U(0)                                  | 137.30(3)  |
|     | O(5) - K(1) - N(10)                                  | 92.74(5)             | C(1) - K(1) - K(2)                                | 55.92(4)              | $N(8^{-})-K(2)-C(6)$                                | 68.93(5)   |
|     | O(1) - K(1) - N(10)                                  | 87.02(5)             | O(3) - K(2) - O(1)                                | 86.65(5)              | $N(10^{-1})-K(2)-C(0)$                              | 62.12(5)   |
|     | $O(4^{+})-K(1)-N(2^{+})$                             | 167.51(5)            | O(3) = K(2) = O(6)                                | 93.88(5)              | N(10) - K(2) - C(6)                                 | 21.38(4)   |
|     | O(2) = K(1) = N(2)                                   | 95.52(5)             | O(1) - K(2) = O(0)                                | 87.43(3)              | O(3) = K(2) = K(1)                                  | 89.72(4)   |
|     | $O(5) - K(1) - N(2^{+3})$                            | 108.66(5)            | $O(3) - K(2) - N(8^{+5})$                         | 175.40(5)             | O(1) - K(2) - K(1)                                  | 42.06(3)   |
|     | $O(1) - K(1) - N(2^{-1})$                            | 89.08(5)             | $O(1) - K(2) - N(8^{+5})$                         | 93.48(5)              | U(0) - K(2) - K(1)                                  | 129.11(4)  |
|     | $N(10)-K(1)-N(2^{+})$                                | 85.95(5)             | $O(6) - K(2) - N(8^{-1})$                         | 90.73(5)              | $N(8^{-})-K(2)-K(1)$                                | 87.31(4)   |
|     | $O(4^{2}) - K(1) - C(1)$                             | 91.73(3)             | O(3) = K(2) = N(10)                               | 95.27(5)              | N(10) = K(2) = K(1)                                 | 122.17(4)  |
|     | O(2) = K(1) = C(1)                                   | 69.40(5)             | O(1) - K(2) - N(16)                               | 164.21(5)             | N(10) - K(2) - K(1)                                 | 44.29(4)   |
|     | O(5) - K(1) - C(1)                                   | 165.72(5)            | $U(6) - K(2) - N(16^{-1})$                        | 108.30(5)             | C(6) - K(2) - K(1)                                  | 61.78(4)   |
|     | O(1) - K(1) - C(1)                                   | 20.13(4)             | $N(0) - N(2) - N(10^{-1})$                        | 65.55(5)              | U(1) = U(1) = K(2)                                  | 127.55(12) |
|     | C(1) = O(1) = K(1)                                   | 108.54(12)           | $C(2) = N(2) = K(1^{-1})$                         | 141.44(13)            | N(9) - N(10) - K(2)                                 | 101.50(11) |
|     | K(2) = O(1) = K(1)                                   | 97.53(5)             | N(7) - N(8) - K(2) = 1                            | 109.46(11)            | $\mathbf{K}(1) = \mathbf{N}(10) = \mathbf{K}(2)$    | 89.09(5)   |
|     | $U(3) = U(2) = K(1^{-1})$                            | 133.39(12)           | C(5) = N(9) = N(10)                               | 109.20(15)            | U(1) - U(1) - N(3)                                  | 126.72(17) |
|     | $C(5) = O(3) = K(2^{-1})$                            | 133.70(12)           | C(6) = N(10) = N(9)                               | 108.46(16)            | N(1) - C(1) - N(3)                                  | 103.20(15) |
|     | $C(1) = O(4) = K(1^{-1})$                            | 130.79(12)           | U(0) - N(10) - K(1)                               | 138./1(14)            | U(1) - U(1) - K(1)                                  | 51.53(10)  |
|     | C(1) = N(1) = N(2)                                   | 112.66(15)           | N(9) - N(10) - K(1)                               | 108.72(11)            | N(1) - C(1) - K(1)                                  | 110.96(12) |
|     | C(2)-N(2)-N(1)                                       | 105.58(16)           | C(6)-N(10)-K(2)                                   | 100.51(13)            | N(3)-C(1)-K(1)                                      | 113.86(12) |

|   | N(2)-C(2)-N(3)                                | 110.04(17) | C(4)-N(8)-N(7)                                | 107.64(16) | O(1)-C(1)-N(1)                                | 130.07(17) |
|---|-----------------------------------------------|------------|-----------------------------------------------|------------|-----------------------------------------------|------------|
|   | O(2)–C(3)–N(7)                                | 129.53(17) | C(4)-N(8)-K(2)#1                              | 141.36(14) | N(7)-C(3)-N(6)                                | 106.34(16) |
|   | O(2)–C(3)–N(6)                                | 124.13(16) | N(12)-N(11)-C(6)                              | 131.35(15) | N(8)-C(4)-N(6)                                | 109.71(17) |
|   | N(1)-N(2)-K(1 <sup>#3</sup> )                 | 112.12(11) | N(12)-N(11)-C(5)                              | 121.02(15) | O(3)-C(5)-N(9)                                | 130.42(17) |
|   | N(4)-N(3)-C(2)                                | 131.62(15) | C(6)–N(11)–C(5)                               | 107.48(15) | O(3)-C(5)-N(11)                               | 123.75(16) |
|   | N(4)-N(3)-C(1)                                | 119.74(15) | N(13)-N(12)-N(11)                             | 111.44(15) | N(9)-C(5)-N(11)                               | 105.83(16) |
|   | C(2)–N(3)–C(1)                                | 108.51(15) | N(12)-N(13)-N(14)                             | 110.92(15) | N(10)-C(6)-N(11)                              | 109.03(17) |
|   | N(5)-N(4)-N(3)                                | 110.89(15) | N(13)-N(14)-C(8)                              | 131.78(15) | N(10)-C(6)-K(2)                               | 58.12(11)  |
|   | N(4)-N(5)-N(6)                                | 111.78(15) | N(13)-N(14)-C(7)                              | 119.31(15) | N(11)-C(6)-K(2)                               | 113.12(12) |
|   | N(5)–N(6)–C(4)                                | 131.88(15) | C(8)–N(14)–C(7)                               | 108.89(15) | O(4)-C(7)-N(15)                               | 130.68(17) |
|   | N(5)-N(6)-C(3)                                | 120.90(15) | C(7)-N(15)-N(16)                              | 113.05(15) | O(4)-C(7)-N(14)                               | 126.70(17) |
|   | C(4)-N(6)-C(3)                                | 107.11(15) | C(8)-N(16)-K(2 <sup>#6</sup> )                | 142.09(13) | N(15)-C(7)-N(14)                              | 102.62(15) |
|   | C(3)-N(7)-N(8)                                | 109.18(15) | N(15)-N(16)-K(2 <sup>#6</sup> )               | 112.39(11) | N(16)-C(8)-N(14)                              | 109.97(16) |
| 4 | C(2)–O(1)–Cs(1 <sup>#1</sup> )                | 129.08(11) | O(1)-Cs(1)-O(2)                               | 50.82(4)   | N(1 <sup>#5</sup> )-Cs(1)-N(4 <sup>#3</sup> ) | 107.26(4)  |
|   | C(2)–O(1)–Cs(1)                               | 107.11(11) | N(1 <sup>#5</sup> )-Cs(1)-O(2)                | 105.60(4)  | N(1 <sup>#6</sup> )-Cs(1)-N(4 <sup>#3</sup> ) | 68.57(4)   |
|   | Cs(1 <sup>#1</sup> )-O(1)-Cs(1)               | 110.65(4)  | N(1 <sup>#6</sup> ) -Cs(1)-O(2)               | 66.93(4)   | O(2)-Cs(1)-N(4 <sup>#3</sup> )                | 120.74(3)  |
|   | Cs(1)-O(2)-Cs(1 <sup>#2</sup> )               | 170.45(7)  | O(1 <sup>#3</sup> )-Cs(1)-O(2 <sup>#7</sup> ) | 70.49(4)   | O(2 <sup>#7</sup> )-Cs(1)-N(4 <sup>#3</sup> ) | 58.74(3)   |
|   | $O(1^{#3})-Cs(1)-O(1^{#1})$                   | 85.53(5)   | O(1 <sup>#1</sup> )-Cs(1)-O(2 <sup>#7</sup> ) | 117.14(4)  | N(4 <sup>#1</sup> )-Cs(1)-N(4 <sup>#3</sup> ) | 174.66(5)  |
|   | O(1 <sup>#3</sup> )-Cs(1)-O(1 <sup>#4</sup> ) | 69.35(4)   | O(1 <sup>#4</sup> )-Cs(1)-O(2 <sup>#7</sup> ) | 50.82(4)   | O(1 <sup>#3</sup> )-Cs(1)-C(2)                | 56.00(4)   |
|   | $O(1^{#1})-Cs(1)-O(1^{#4})$                   | 66.47(2)   | O(1)-Cs(1)-O(2 <sup>#7</sup> )                | 135.81(3)  | O(1 <sup>#1</sup> )-Cs(1)-C(2)                | 84.50(4)   |
|   | O(1 <sup>#3</sup> )–Cs(1)–O(1)                | 66.47(2)   | N(1#5)-Cs(1)-O(2#7)                           | 66.93(4)   | O(1 <sup>#4</sup> )-Cs(1)-C(2)                | 119.57(4)  |
|   | O(1 <sup>#1</sup> )–Cs(1)–O(1)                | 69.35(4)   | N(1 <sup>#6</sup> )-Cs(1)-O(2 <sup>#7</sup> ) | 105.60(4)  | O(1)–Cs(1)–C(2)                               | 18.15(4)   |
|   | O(1 <sup>#4</sup> ) -Cs(1)-O(1)               | 118.40(5)  | O(2)-Cs(1)-O(2 <sup>#7</sup> )                | 170.45(7)  | N(1 <sup>#5</sup> )-Cs(1)-C(2)                | 158.84(4)  |
|   | O(1 <sup>#3</sup> )–Cs(1)–N(1 <sup>#5</sup> ) | 137.25(4)  | O(1 <sup>#3</sup> )-Cs(1)-N(4 <sup>#1</sup> ) | 135.26(3)  | N(1 <sup>#6</sup> )-Cs(1)-C(2)                | 74.09(4)   |
|   | O(1 <sup>#1</sup> )-Cs(1)-N(1 <sup>#5</sup> ) | 110.44(4)  | O(1 <sup>#1</sup> )-Cs(1)-N(4 <sup>#1</sup> ) | 50.07(3)   | O(2)–Cs(1)–C(2)                               | 64.30(3)   |
|   | O(1 <sup>#4</sup> )-Cs(1)-N(1 <sup>#5</sup> ) | 80.94(4)   | O(1 <sup>#4</sup> )-Cs(1)-N(4 <sup>#1</sup> ) | 85.49(4)   | O(2 <sup>#7</sup> )–Cs(1)–C(2)                | 120.53(3)  |
|   | O(1)-Cs(1)-N(1 <sup>#5</sup> )                | 155.95(4)  | O(1)-Cs(1)-N(4 <sup>#1</sup> )                | 97.26(4)   | N(4 <sup>#1</sup> )-Cs(1)-C(2)                | 115.23(4)  |
|   | $O(1^{#3})$ -Cs(1)-N(1 <sup>#6</sup> )        | 110.44(4)  | N(1 <sup>#5</sup> )-Cs(1)-N(4 <sup>#1</sup> ) | 68.57(4)   | $N(4^{\#3})$ -Cs(1)-C(2)                      | 67.37(4)   |
|   | $O(1^{\#1})$ -Cs(1)-N(1^{\#6})                | 137.25(4)  | N(1 <sup>#6</sup> )-Cs(1)-N(4 <sup>#1</sup> ) | 107.26(4)  | $O(1^{#3})-Cs(1)-C(2^{#4})$                   | 84.50(4)   |
|   | $O(1)^{#4}$ -Cs(1)-N(1) <sup>#6</sup>         | 155.95(4)  | $O(2)-Cs(1)-N(4^{\#1})$                       | 58.74(3)   | $O(1^{\#1})-Cs(1)-C(2^{\#4})$                 | 56.00(4)   |
|   | $O(1)-Cs(1)-N(1)^{\#6}$                       | 80.94(4)   | $O(2^{\#7})$ -Cs(1)-N(4^{\#1})                | 120.74(3)  | $O(1^{#4})-Cs(1)-C(2^{#4})$                   | 18.15(4)   |
|   | $N(1)^{\#5}$ -Cs(1)-N(1) <sup>\#6</sup>       | 84.88(6)   | $O(1^{\#3})$ -Cs(1)-N(4 <sup>\#3</sup> )      | 50.07(3)   | $O(1)-Cs(1)-C(2^{\#4})$                       | 119.57(4)  |
|   | $O(1)^{\#3}$ -Cs(1)-O(2)                      | 117.14(4)  | $O(1^{\#1})-Cs(1)-N(4^{\#3})$                 | 135.26(3)  | $N(1^{\#5})-Cs(1)-C(2^{\#4})$                 | 74.09(4)   |
|   | $O(1)^{\#1}$ -Cs(1)-O(2)                      | 70.49(4)   | $O(1^{#4})-Cs(1)-N(4^{#3})$                   | 97.25(4)   | $N(1^{\#6})-Cs(1)-C(2^{\#4})$                 | 158.84(4)  |
|   | $O(1)^{\#4}$ -Cs(1)-O(2)                      | 135.81(3)  | $O(1)-Cs(1)-N(4^{\#3})$                       | 85.49(4)   | $O(2)-Cs(1)-C(2^{\#4})$                       | 120.53(3)  |
|   | $O(2^{\#7})-Cs(1)-C(2^{\#4})$                 | 64.30(3)   | N(4)–N(3)–C(1)                                | 131.30(15) | O(1)-C(2)-N(2)                                | 130.38(17) |
|   | $N(4^{\#1})-Cs(1)-C(2^{\#4})$                 | 67.37(4)   | N(4)–N(3)–C(2)                                | 120.68(15) | O(1)-C(2)-N(3)                                | 125.31(16) |
|   | $N(4^{\#3})$ -Cs(1)-C(2 <sup>#4</sup> )       | 115.23(4)  | C(1)-N(3)-C(2)                                | 107.65(14) | N(2)-C(2)-N(3)                                | 104.30(16) |
|   | C(1)-N(1)-N(2)                                | 106.95(15) | $N(4^{\#9})-N(4)-N(3)$                        | 110.65(19) | O(1)-C(2)-Cs(1)                               | 54.75(9)   |
|   | $C(1)-N(1)-Cs(1^{\#8})$                       | 141.34(13) | $N(4^{\#9}) - N(4) - Cs(1^{\#1})$             | 128.45(11) | N(2)-C(2)-Cs(1)                               | 93.35(10)  |
|   | $N(2)-N(1)-Cs(1^{\#8})$                       | 110.93(10) | $N(3)-N(4)-Cs(1^{\#1})$                       | 110.64(10) | N(3)-C(2)-Cs(1)                               | 133.28(11) |
|   | C(2)-N(2)-N(1)                                | 111.02(14) | N(1)-C(1)-N(3)                                | 110.07(16) | N(4) - N(5) - N(6)                            | 109.57(12) |
| 5 | O(1)-C(1)-N(1)                                | 130.10(14) | N(7)-C(4)-N(6)                                | 110.61(14) | N(5)–N(6)–C(4)                                | 130.40(12) |
|   | O(1)-C(1)-N(3)                                | 123.39(13) | C(1)-N(1)-N(2)                                | 108.57(12) | N(5)-N(6)-C(3)                                | 121.31(12) |
|   | N(1)-C(1)-N(3)                                | 106.51(13) | C(2)-N(2)-N(1)                                | 108.55(12) | C(4) - N(6) - C(3)                            | 108.27(12) |
|   | N(2)-C(2)-N(3)                                | 109.07(14) | N(4)-N(3)-C(2)                                | 131.88(12) | C(4) - N(7) - N(8)                            | 105.77(12) |
|   | O(2)-C(3)-N(8)                                | 130.30(14) | N(4)-N(3)-C(1)                                | 120.77(12) | C(3)-N(8)-N(7)                                | 112.91(13) |
|   | O(2)-C(3)-N(6)                                | 127.27(14) | C(2)-N(3)-C(1)                                | 107.30(12) |                                               |            |
|   | N(8)-C(3)-N(6)                                | 102.42(13) | N(5)-N(4)-N(3)                                | 111.21(12) |                                               |            |
|   |                                               |            |                                               |            |                                               |            |

| 6 | O(5)-Mg(1)-O(5 <sup>#1</sup> )   | 180.0      | O(4)-Mg(1)-O(3)       | 88.41(4)   | C(4)-N(6)-C(3)    | 107.32(9)  |
|---|----------------------------------|------------|-----------------------|------------|-------------------|------------|
|   | O(5)-Mg(1)-O(4)                  | 87.30(4)   | O(4)#1-Mg(1)-O(3)     | 91.59(4)   | C(3)-N(7)-N(8)    | 108.48(9)  |
|   | O(5 <sup>#1</sup> ) -Mg(1)-O(4)  | 92.70(4)   | O(3)#1-Mg(1)-O(3)     | 180.00(5)  | C(4)-N(8)-N(7)    | 108.62(9)  |
|   | O(5)-Mg(1)-O(4 <sup>#1</sup> )   | 92.70(4)   | C(1)-N(1)-N(2)        | 111.91(9)  | O(1)-C(1)-N(1)    | 130.75(10) |
|   | $O(5^{#1}) - Mg(1) - O(4^{#1})$  | 87.30(4)   | C(2)-N(2)-N(1)        | 106.40(9)  | O(1)-C(1)-N(3)    | 125.80(10) |
|   | O(4)-Mg(1)-O(4 <sup>#1</sup> )   | 180.00(5)  | N(4)-N(3)-C(2)        | 131.80(9)  | N(1)-C(1)-N(3)    | 103.45(10) |
|   | O(5)-Mg(1)-O(3 <sup>#1</sup> )   | 89.70(4)   | N(4)-N(3)-C(1)        | 119.54(9)  | N(2)-C(2)-N(3)    | 109.64(10) |
|   | $O(5^{#1}) - Mg(1) - O(3^{#1})$  | 90.30(4)   | C(2)-N(3)-C(1)        | 108.59(9)  | O(2)-C(3)-N(7)    | 130.75(10) |
|   | O(4)-Mg(1)-O(3 <sup>#1</sup> )   | 91.59(4)   | N(5)-N(4)-N(3)        | 110.60(9)  | O(2)-C(3)-N(6)    | 122.58(10) |
|   | O(4)#1-Mg(1)-O(3 <sup>#1</sup> ) | 88.41(4)   | N(4)-N(5)-N(6)        | 110.84(9)  | N(7)-C(3)-N(6)    | 106.66(10) |
|   | O(5)-Mg(1)-O(3)                  | 90.30(4)   | N(5)-N(6)-C(4)        | 131.75(9)  | N(8)-C(4)-N(6)    | 108.91(10) |
|   | O(5)#1-Mg(1)-O(3)                | 89.70(4)   | N(5)-N(6)-C(3)        | 120.75(9)  |                   |            |
| 7 | O(1)-Ca(1)-O(5)                  | 118.21(10) | O(3)-Ca(1)-N(1)#1     | 69.31(9)   | C(1)-N(1)-N(2)    | 107.7(3)   |
|   | O(1)-Ca(1)-O(6)                  | 143.96(9)  | O(3)#1-Ca(1)-N(1)#1   | 73.56(9)   | C(1)-N(1)-Ca(1)#1 | 134.8(2)   |
|   | O(5)-Ca(1)-O(6)                  | 74.60(10)  | O(4)-Ca(1)-N(1)#1     | 106.52(10) | N(2)-N(1)-Ca(1)#1 | 117.2(2)   |
|   | O(1)-Ca(1)-O(3)                  | 74.61(9)   | O(4)#2-Ca(1)-N(1)#1   | 140.93(9)  | C(2)-N(2)-N(1)    | 109.4(3)   |
|   | O(5)-Ca(1)-O(3)                  | 139.92(9)  | O(1)-Ca(1)-Ca(1)#1    | 73.26(7)   | C(2)-N(3)-N(4)    | 129.0(3)   |
|   | O(6)–Ca(1)–O(3)                  | 118.83(10) | O(5)-Ca(1)-Ca(1)#1    | 107.14(7)  | C(2)-N(3)-C(1)    | 108.0(3)   |
|   | O(1)-Ca(1)-O(3)#1                | 78.55(9)   | O(6)-Ca(1)-Ca(1)#1    | 138.44(8)  | N(4)-N(3)-C(1)    | 123.0(3)   |
|   | O(5)-Ca(1)-O(3)#1                | 73.26(9)   | O(3)-Ca(1)-Ca(1)#1    | 36.50(6)   | N(5)-N(4)-N(3)    | 109.5(3)   |
|   | O(6)-Ca(1)-O(3)#1                | 136.20(9)  | O(3)#1-Ca(1)-Ca(1)#1  | 36.29(6)   | N(4)-N(5)-N(6)    | 111.7(3)   |
|   | O(3)-Ca(1)-O(3)#1                | 72.79(9)   | O(4)-Ca(1)-Ca(1)#1    | 114.60(7)  | N(5)-N(6)-C(4)    | 131.7(3)   |
|   | O(1)-Ca(1)-O(4)                  | 83.61(9)   | O(4)#2-Ca(1)-Ca(1)#1  | 151.39(7)  | N(5)-N(6)-C(3)    | 121.8(3)   |
|   | O(5)-Ca(1)-O(4)                  | 137.20(9)  | N(1)#1-Ca(1)-Ca(1)#1  | 66.73(7)   | C(4)-N(6)-C(3)    | 106.4(3)   |
|   | O(6)-Ca(1)-O(4)                  | 68.26(9)   | O(1)-Ca(1)-Ca(1)#2    | 79.75(7)   | C(3)-N(7)-N(8)    | 108.2(3)   |
|   | O(3)-Ca(1)-O(4)                  | 78.80(8)   | O(5)-Ca(1)-Ca(1)#2    | 108.47(7)  | C(4)-N(8)-N(7)    | 108.7(3)   |
|   | O(3)#1-Ca(1)-O(4)                | 149.54(8)  | O(6)-Ca(1)-Ca(1)#2    | 64.24(7)   | O(1)-C(1)-N(1)    | 129.8(3)   |
|   | O(1)-Ca(1)-O(4)#2                | 79.68(9)   | O(3)-Ca(1)-Ca(1)#2    | 111.25(6)  | O(1)-C(1)-N(3)    | 123.9(3)   |
|   | O(5)-Ca(1)-O(4)#2                | 77.59(9)   | O(3)#1-Ca(1)-Ca(1)#2  | 155.85(7)  | N(1)-C(1)-N(3)    | 106.3(3)   |
|   | O(6)-Ca(1)-O(4)#2                | 70.16(9)   | O(4)-Ca(1)-Ca(1)#2    | 35.30(6)   | N(2)-C(2)-N(3)    | 108.6(3)   |
|   | O(3)-Ca(1)-O(4)#2                | 141.73(9)  | O(4)#2-Ca(1)-Ca(1)#2  | 35.19(6)   | O(2)-C(3)-N(7)    | 129.1(3)   |
|   | O(3)#1-Ca(1)-O(4)#2              | 128.96(9)  | N(1)#1-Ca(1)-Ca(1)#2  | 130.53(7)  | O(2)-C(3)-N(6)    | 123.2(3)   |
|   | O(4)-Ca(1)-O(4)#2                | 70.50(10)  | Ca(1)#1-Ca(1)-Ca(1)#2 | 142.45(4)  | N(7)-C(3)-N(6)    | 107.6(3)   |
|   | O(1)-Ca(1)-N(1)#1                | 139.38(9)  | C(1)-O(1)-Ca(1)       | 133.8(2)   | N(8)-C(4)-N(6)    | 109.0(3)   |
|   | O(5)-Ca(1)-N(1)#1                | 81.16(10)  | Ca(1)-O(3)-Ca(1)#1    | 107.21(9)  |                   |            |
|   | O(6)-Ca(1)-N(1)#1                | 72.78(10)  | Ca(1)-O(4)-Ca(1)#2    | 109.50(10) |                   |            |
| 8 | O(1)#1-Sr(1)-O(5)                | 144.78(13) | O(6)–Sr(1)–N(1)       | 81.19(16)  | C(2)-N(2)-N(1)    | 109.4(4)   |
|   | O(1)#1-Sr(1)-O(3)#1              | 80.25(13)  | O(4)#2-Sr(1)-N(1)     | 138.62(13) | N(4)-N(3)-C(2)    | 129.8(5)   |
|   | O(5)-Sr(1)-O(3)#1                | 134.97(13) | O(3)–Sr(1)–N(1)       | 68.82(13)  | N(4)-N(3)-C(1)    | 122.8(4)   |
|   | O(1)#1-Sr(1)-O(6)                | 124.66(16) | O(4)–Sr(1)–N(1)       | 101.99(14) | C(2)–N(3)–C(1)    | 107.3(4)   |
|   | O(5)-Sr(1)-O(6)                  | 74.27(15)  | O(1)#1-Sr(1)-Sr(1)#1  | 71.85(9)   | N(5)-N(4)-N(3)    | 110.2(4)   |
|   | O(3)#1-Sr(1)-O(6)                | 75.64(13)  | O(5)-Sr(1)-Sr(1)#1    | 134.18(10) | N(4)-N(5)-N(6)    | 111.6(5)   |
|   | O(1)#1-Sr(1)-O(4)#2              | 84.41(13)  | O(3)#1-Sr(1)-Sr(1)#1  | 37.03(9)   | N(5)–N(6)–C(4)    | 132.0(5)   |
|   | O(5)-Sr(1)-O(4)#2                | 70.08(13)  | O(6)-Sr(1)-Sr(1)#1    | 109.94(10) | N(5)–N(6)–C(3)    | 121.3(5)   |
|   | O(3)#1-Sr(1)-O(4)#2              | 133.57(13) | O(4)#2-Sr(1)-Sr(1)#1  | 155.34(9)  | C(4)–N(6)–C(3)    | 106.7(4)   |
|   | O(6)-Sr(1)-O(4)#2                | 77.94(14)  | O(3)-Sr(1)-Sr(1)#1    | 35.89(8)   | C(3)–N(7)–N(8)    | 108.1(4)   |
|   | O(1)#1-Sr(1)-O(3)                | 70.75(13)  | O(4)-Sr(1)-Sr(1)#1    | 109.62(9)  | C(4)-N(8)-N(7)    | 108.4(5)   |
|   | O(5)-Sr(1)-O(3)                  | 114.72(14) | N(1)-Sr(1)-Sr(1)#1    | 65.92(10)  | O(1)–C(1)–N(1)    | 130.7(5)   |
|   | O(3)#1-Sr(1)-O(3)                | 72.92(14)  | O(1)#1-Sr(1)-Sr(1)#2  | 81.47(9)   | O(1)-C(1)-N(3)    | 123.0(5)   |

| 8 | O(4)#2-Sr(1)-O(3)                             | 140.49(12) | O(3)#1-Sr(1)-Sr(1)#2                           | 160.28(9)  | N(2)-C(2)-N(3)                                  | 108.4(5)    |
|---|-----------------------------------------------|------------|------------------------------------------------|------------|-------------------------------------------------|-------------|
|   | O(1)#1-Sr(1)-O(4)                             | 81.85(13)  | O(6)-Sr(1)-Sr(1)#2                             | 109.39(10) | O(2)–C(3)–N(7)                                  | 128.4(5)    |
|   | O(5)-Sr(1)-O(4)                               | 67.75(14)  | O(4)#2-Sr(1)-Sr(1)#2                           | 36.40(9)   | O(2)-C(3)-N(6)                                  | 124.0(5)    |
|   | O(3)#1-Sr(1)-O(4)                             | 146.07(12) | O(3)-Sr(1)-Sr(1)#2                             | 107.72(8)  | N(7)-C(3)-N(6)                                  | 107.7(5)    |
|   | O(6)-Sr(1)-O(4)                               | 137.73(13) | O(4)-Sr(1)-Sr(1)#2                             | 35.96(9)   | N(8)-C(4)-N(6)                                  | 109.1(5)    |
|   | O(4)#2-Sr(1)-O(4)                             | 72.35(15)  | N(1)-Sr(1)-Sr(1)#2                             | 126.28(11) | C(1)-O(1)-Sr(1)#1                               | 133.8(4)    |
|   | O(3)-Sr(1)-O(4)                               | 74.05(12)  | Sr(1)#1-Sr(1)-Sr(1)#2                          | 140.27(3)  | Sr(1)#1–O(3)–Sr(1)                              | 107.08(14)  |
|   | O(1)#1-Sr(1)-N(1)                             | 136.36(14) | C(1)-N(1)-N(2)                                 | 108.6(4)   | Sr(1)#2-O(4)-Sr(1)                              | 107.65(15)  |
|   | O(5)-Sr(1)-N(1)                               | 70.03(14)  | C(1)–N(1)–Sr(1)                                | 133.6(4)   |                                                 |             |
|   | O(3)#1-Sr(1)-N(1)                             | 72.89(13)  | N(2)-N(1)-Sr(1)                                | 116.8(3)   |                                                 |             |
| 9 | O(3 <sup>#1</sup> )-Ba(1)-O(2)                | 82.47(7)   | O(5)-Ba(1)-N(8 <sup>#1</sup> )                 | 81.32(8)   | Ba(1 <sup>#2</sup> )-Ba(1)-Ba(1 <sup>#1</sup> ) | 136.302(10) |
|   | O(3 <sup>#1</sup> )-Ba(1)-O(4)                | 141.87(7)  | O(3 <sup>#1</sup> )-Ba(1)-O(5 <sup>#3</sup> )  | 74.69(6)   | O(1)-C(1)-N(1)                                  | 128.5(3)    |
|   | O(2)-Ba(1)-O(4)                               | 92.60(7)   | O(2)-Ba(1)-O(5 <sup>#3</sup> )                 | 67.27(7)   | O(1)-C(1)-N(3)                                  | 124.2(3)    |
|   | O(3 <sup>#1</sup> ) -Ba(1)-O(6)               | 132.96(7)  | O(4)-Ba(1)-O(5 <sup>#3</sup> )                 | 68.64(6)   | N(1)-C(1)-N(3)                                  | 107.4(2)    |
|   | O(2)-Ba(1)-O(6)                               | 142.32(8)  | O(6)-Ba(1)-O(5 <sup>#3</sup> )                 | 126.62(7)  | N(7)-C(4)-N(6)                                  | 109.0(3)    |
|   | O(4)-Ba(1)-O(6)                               | 67.57(7)   | O(4 <sup>#2</sup> )-Ba(1)-O(5 <sup>#3</sup> )  | 127.01(6)  | C(3)–O(2)–Ba(1)                                 | 133.3(2)    |
|   | O(3 <sup>#1</sup> )-Ba(1)-O(4 <sup>#2</sup> ) | 139.42(6)  | O(3)-Ba(1)-O(5 <sup>#3</sup> )                 | 124.53(6)  | N(4)-N(5)-N(6)                                  | 110.5(2)    |
|   | O(2)-Ba(1)-O(4 <sup>#2</sup> )                | 77.90(7)   | O(5)-Ba(1)-O(5 <sup>#3</sup> )                 | 66.36(8)   | N(5)-N(4)-N(3)                                  | 111.2(2)    |
|   | O(4)-Ba(1)-O(4 <sup>#2</sup> )                | 74.66(7)   | N(8 <sup>#1</sup> )-Ba(1)-O(5 <sup>#3</sup> )  | 136.18(7)  | N(4)-N(3)-C(2)                                  | 132.9(3)    |
|   | O(6)-Ba(1)-O(4 <sup>#2</sup> )                | 66.30(8)   | O(3 <sup>#1</sup> )-Ba(1)-Ba(1 <sup>#2</sup> ) | 166.39(5)  | N(4)-N(3)-C(1)                                  | 120.2(2)    |
|   | O(3 <sup>#1</sup> )-Ba(1)-O(3)                | 73.08(8)   | O(2)-Ba(1)-Ba(1#2)                             | 83.95(5)   | C(2)–N(3)–C(1)                                  | 106.9(2)    |
|   | O(2)-Ba(1)-O(3)                               | 64.75(7)   | O(4)-Ba(1)-Ba(1#2)                             | 37.90(5)   | N(5)-N(6)-C(4)                                  | 131.2(3)    |
|   | O(4)-Ba(1)-O(3)                               | 137.96(7)  | O(6)-Ba(1)-Ba(1 <sup>#2</sup> )                | 60.47(6)   | N(5)-N(6)-C(3)                                  | 121.6(2)    |
|   | O(6)-Ba(1)-O(3)                               | 108.36(8)  | O(4 <sup>#2</sup> )-Ba(1)-Ba(1 <sup>#2</sup> ) | 36.76(4)   | C(4)–N(6)–C(3)                                  | 107.1(2)    |
|   | O(4 <sup>#2</sup> )-Ba(1)-O(3)                | 66.46(6)   | O(3)-Ba(1)-Ba(1 <sup>#2</sup> )                | 101.91(5)  | C(1)-N(1)-N(2)                                  | 108.2(2)    |
|   | O(3 <sup>#1</sup> )-Ba(1)-O(5)                | 79.03(7)   | O(5)-Ba(1)-Ba(1 <sup>#2</sup> )                | 109.91(5)  | C(2)–N(2)–N(1)                                  | 108.0(2)    |
|   | O(2)–Ba(1)–O(5)                               | 133.09(7)  | N(8 <sup>#1</sup> )-Ba(1)-Ba(1 <sup>#2</sup> ) | 120.03(6)  | C(3)–N(8)–N(7)                                  | 107.7(2)    |
|   | O(4)–Ba(1)–O(5)                               | 77.12(7)   | O(5 <sup>#3</sup> )-Ba(1)-Ba(1 <sup>#2</sup> ) | 99.06(4)   | C(3)–N(8)–Ba(1 <sup>#1</sup> )                  | 133.2(2)    |
|   | O(6)-Ba(1)-O(5)                               | 75.40(8)   | O(3 <sup>#1</sup> )-Ba(1)-Ba(1 <sup>#1</sup> ) | 37.45(5)   | N(7)-N(8)-Ba(1 <sup>#1</sup> )                  | 117.71(17)  |
|   | O(4 <sup>#2</sup> )-Ba(1)-O(5)                | 138.74(6)  | O(2)-Ba(1)-Ba(1 <sup>#1</sup> )                | 69.46(5)   | C(4)-N(7)-N(8)                                  | 109.1(3)    |
|   | O(3)-Ba(1)-O(5)                               | 144.33(6)  | O(4)-Ba(1)-Ba(1 <sup>#1</sup> )                | 161.99(5)  | O(2)-C(3)-N(8)                                  | 130.2(3)    |
|   | O(3 <sup>#1</sup> )-Ba(1)-N(8 <sup>#1</sup> ) | 70.59(7)   | O(6)-Ba(1)-Ba(1 <sup>#1</sup> )                | 127.96(5)  | O(2)-C(3)-N(6)                                  | 122.9(3)    |
|   | O(2)-Ba(1)-N(8 <sup>#1</sup> )                | 131.27(7)  | $O(4^{#2}) - Ba(1) - Ba(1^{#1})$               | 102.04(4)  | N(8)-C(3)-N(6)                                  | 107.0(2)    |
|   | O(4)-Ba(1)-N(8 <sup>#1</sup> )                | 133.22(7)  | O(3)-Ba(1)-Ba(1 <sup>#1</sup> )                | 35.63(5)   | N(2)-C(2)-N(3)                                  | 109.5(3)    |
|   | O(6)-Ba(1)-N(8 <sup>#1</sup> )                | 67.01(7)   | O(5)-Ba(1)-Ba(1 <sup>#1</sup> )                | 113.61(5)  | Ba(1 <sup>#1</sup> )-O(3)-Ba(1)                 | 106.92(8)   |
|   | O(4 <sup>#2</sup> )-Ba(1)-N(8 <sup>#1</sup> ) | 96.80(7)   | N(8 <sup>#1</sup> )-Ba(1)-Ba(1 <sup>#1</sup> ) | 64.40(5)   | Ba(1)-O(4)-Ba(1#2)                              | 105.34(7)   |
|   | O(3)-Ba(1)-N(8 <sup>#1</sup> )                | 68.81(7)   | O(5 <sup>#3</sup> )-Ba(1)-Ba(1 <sup>#1</sup> ) | 101.51(4)  | Ba(1)-O(5)-Ba(1#3)                              | 113.64(8)   |
|   |                                               |            |                                                |            |                                                 |             |

Table S4. Torsion angles ( °) for ZTO and its salts

| ZT | O C(1)–N(1)–N(2)–C(2)                               | -0.14(13)   | N(4)-N(3)-C(1)-N(1)                                | -179.72(10) | N(4)-N(3)-C(2)-O(1)                 | -0.34(16)   |
|----|-----------------------------------------------------|-------------|----------------------------------------------------|-------------|-------------------------------------|-------------|
|    | C(1)-N(3)-N(4)-N(4 <sup>#1</sup> )                  | -1.07(18)   | C(2)-N(3)-C(1)-N(1)                                | 0.47(13)    | C(1)-N(3)-C(2)-O(1)                 | 179.49(11)  |
|    | C(2)-N(3)-N(4)-N(4 <sup>#1</sup> )                  | 178.72(11)  | N(1)-N(2)-C(2)-O(1)                                | -179.60(11) | N(4)-N(3)-C(2)-N(2)                 | 179.66(9)   |
|    | N(2)-N(1)-C(1)-N(3)                                 | -0.21(12)   | N(1)-N(2)-C(2)-N(3)                                | 0.40(12)    | C(1)-N(3)-C(2)-N(2)                 | -0.50(11)   |
| 2  | O(4)-Na(1)-O(1)-C(1)                                | -77.9(3)    | N(2)-N(1)-C(1)-N(3)                                | -0.7(4)     | N(8)-C(4)-N(6)-N(5)                 | 179.4(3)    |
|    | O(1 <sup>#1</sup> )-Na(1)-O(1)-C(1)                 | -175.0(3)   | C(1)-N(1)-N(2)-C(2)                                | 0.5(4)      | N(8)-C(4)-N(6)-C(3)                 | -0.7(4)     |
|    | O(3)–Na(1)–O(1)–C(1)                                | 60.3(3)     | N(1)-N(2)-C(2)-N(3)                                | 0.0(4)      | O(2)-C(3)-N(6)-N(5)                 | 1.3(5)      |
|    | N(8 <sup>#2</sup> )-Na(1)-O(1)-C(1)                 | 90.6(5)     | N(2)-C(2)-N(3)-N(4)                                | 176.3(3)    | N(7)-C(3)-N(6)-N(5)                 | -179.5(3)   |
|    | Na(1 <sup>#1</sup> )-Na(1)-O(1)-C(1)                | 172.5(4)    | N(2)-C(2)-N(3)-C(1)                                | -0.5(4)     | O(2)-C(3)-N(6)-C(4)                 | -178.6(3)   |
|    | O(4)-Na(1)-O(1)-Na(1 <sup>#1</sup> )                | 109.57(13)  | O(1)-C(1)-N(3)-N(4)                                | 2.0(5)      | N(7)-C(3)-N(6)-C(4)                 | 0.6(4)      |
|    | O(1 <sup>#1</sup> )-Na(1)-O(1)-Na(1 <sup>#1</sup> ) | 12.51(15)   | N(1)-C(1)-N(3)-N(4)                                | -176.3(3)   | O(2)-C(3)-N(7)-N(8)                 | 178.8(3)    |
|    | O(3)-Na(1)-O(1)-Na(1 <sup>#1</sup> )                | -112.18(12) | O(1)-C(1)-N(3)-C(2)                                | 179.0(3)    | N(6)-C(3)-N(7)-N(8)                 | -0.4(4)     |
|    | N(8 <sup>#2</sup> )-Na(1)-O(1)-Na(1 <sup>#1</sup> ) | -81.9(4)    | N(1)-C(1)-N(3)-C(2)                                | 0.7(4)      | N(6)-C(4)-N(8)-N(7)                 | 0.5(4)      |
|    | Na(1)–O(1)–C(1)–N(1)                                | -160.8(3)   | C(2)-N(3)-N(4)-N(5)                                | 1.0(5)      | N(6)-C(4)-N(8)-Na(1 <sup>#3</sup> ) | -165.9(3)   |
|    | Na(1 <sup>#1</sup> ) -O(1)-C(1)-N(1)                | 10.1(5)     | C(1)-N(3)-N(4)-N(5)                                | 177.3(3)    | C(3)-N(7)-N(8)-C(4)                 | -0.1(4)     |
|    | Na(1)–O(1)–C(1)–N(3)                                | 21.3(5)     | N(3)-N(4)-N(5)-N(6)                                | 179.9(3)    | C(3)–N(7)–N(8)–Na(1 <sup>#3</sup> ) | 169.5(2)    |
|    | Na(1 <sup>#1</sup> )-O(1)-C(1)-N(3)                 | -167.8(3)   | N(4)-N(5)-N(6)-C(4)                                | 0.3(5)      | O(6)-K(2)-O(1)-C(1)                 | -52.27(16)  |
|    | N(2)-N(1)-C(1)-O(1)                                 | -179.0(3)   | N(4)-N(5)-N(6)-C(3)                                | -179.5(3)   | N(8 <sup>#5</sup> )-K(2)-O(1)-C(1)  | 38.31(16)   |
| 3  | $O(4^{#1})-K(1)-K(2)-O(3^{#4})$                     | -7.26(5)    | N(10)-K(1)-K(2)-N(16 <sup>#6</sup> )               | -0.23(6)    | N(2 <sup>#3</sup> )-K(1)-O(1)-C(1)  | -48.74(12)  |
|    | O(2 <sup>#2</sup> )-K(1)-K(2)-O(3 <sup>#4</sup> )   | -87.04(6)   | N(2 <sup>#3</sup> )-K(1)-K(2)-N(16 <sup>#6</sup> ) | 87.86(6)    | K(2)-K(1)-O(1)-C(1)                 | -133.84(13) |
|    | O(5)-K(1)-K(2)-O(3 <sup>#4</sup> )                  | 68.26(7)    | C(1)-K(1)-K(2)-N(16 <sup>#6</sup> )                | 163.56(5)   | O(4 <sup>#1</sup> )-K(1)-O(1)-K(2)  | -95.90(5)   |
|    | O(1)-K(1)-K(2)-O(3 <sup>#4</sup> )                  | -85.31(6)   | O(4 <sup>#1</sup> )-K(1)-K(2)-N(10)                | -100.72(6)  | O(2 <sup>#2</sup> )-K(1)-O(1)-K(2)  | 178.55(5)   |
|    | N(10)-K(1)-K(2)-O(3#4)                              | 93.46(6)    | O(2 <sup>#2</sup> )-K(1)-K(2)-N(10)                | 179.50(6)   | O(5)-K(1)-O(1)-K(2)                 | -90.58(16)  |
|    | N(2 <sup>#3</sup> )-K(1)-K(2)-O(3 <sup>#4</sup> )   | -178.45(5)  | O(5)-K(1)-K(2)-N(10)                               | -25.20(7)   | N(10)-K(1)-O(1)-K(2)                | -0.90(5)    |
|    | C(1)-K(1)-K(2)-O(3 <sup>#4</sup> )                  | -102.75(5)  | O(1)-K(1)-K(2)-N(10)                               | -178.77(6)  | N(2 <sup>#3</sup> )-K(1)-O(1)-K(2)  | 85.10(5)    |
|    | O(4 <sup>#1</sup> )-K(1)-K(2)-O(1)                  | 78.05(6)    | N(2 <sup>#3</sup> )-K(1)-K(2)-N(10)                | 88.09(6)    | C(1)-K(1)-O(1)-K(2)                 | 133.84(13)  |
|    | O(2 <sup>#2</sup> )-K(1)-K(2)-O(1)                  | -1.73(6)    | C(1)-K(1)-K(2)-N(10)                               | 163.79(6)   | C(1)-N(1)-N(2)-C(2)                 | -0.3(2)     |
|    | O(5)-K(1)-K(2)-O(1)                                 | 153.57(7)   | O(4 <sup>#1</sup> )-K(1)-K(2)-C(6)                 | -116.28(5)  | C(1)-N(1)-N(2)-K(1 <sup>#3</sup> )  | 171.42(12)  |
|    | N(10)-K(1)-K(2)-O(1)                                | 178.77(6)   | O(2 <sup>#2</sup> )-K(1)-K(2)-C(6)                 | 163.94(5)   | C(2)-N(3)-N(4)-N(5)                 | -5.4(3)     |
|    | N(2 <sup>#3</sup> )-K(1)-K(2)-O(1)                  | -93.14(6)   | O(5)-K(1)-K(2)-C(6)                                | -40.75(7)   | C(1)-N(3)-N(4)-N(5)                 | 179.25(16)  |
|    | C(1)-K(1)-K(2)-O(1)                                 | -17.44(6)   | O(1)-K(1)-K(2)-C(6)                                | 165.67(6)   | N(3)-N(4)-N(5)-N(6)                 | -179.94(15) |
|    | O(4 <sup>#1</sup> )-K(1)-K(2)-O(6)                  | 87.51(6)    | N(10)-K(1)-K(2)-C(6)                               | -15.56(6)   | N(4)-N(5)-N(6)-C(4)                 | -1.3(3)     |
|    | O(2 <sup>#2</sup> )-K(1)-K(2)-O(6)                  | 7.73(6)     | N(2 <sup>#3</sup> )-K(1)-K(2)-C(6)                 | 72.53(5)    | N(4)-N(5)-N(6)-C(3)                 | -177.07(16) |
|    | O(5)-K(1)-K(2)-O(6)                                 | 163.03(7)   | C(1)-K(1)-K(2)-C(6)                                | 148.24(5)   | C(3)-N(7)-N(8)-C(4)                 | 0.2(2)      |
|    | O(1)-K(1)-K(2)-O(6)                                 | 9.46(6)     | O(3 <sup>#4</sup> ) -K(2)-O(1)-C(1)                | -146.30(16) | C(3)-N(7)-N(8)-K(2 <sup>#1</sup> )  | -168.81(12) |
|    | N(10)-K(1)-K(2)-O(6)                                | -171.77(7)  | N(16 <sup>#6</sup> )-K(2)-O(1)-C(1)                | 123.5(2)    | C(5)-N(9)-N(10)-C(6)                | -0.3(2)     |
|    | N(2 <sup>#3</sup> )-K(1)-K(2)-O(6)                  | -83.68(6)   | N(10)-K(2)-O(1)-C(1)                               | 121.26(16)  | C(5)-N(9)-N(10)-K(1)                | -162.02(13) |
|    | C(1)-K(1)-K(2)-O(6)                                 | -7.98(6)    | C(6)-K(2)-O(1)-C(1)                                | 107.48(16)  | C(5)-N(9)-N(10)-K(2)                | 105.00(14)  |
|    | O(4 <sup>#1</sup> )-K(1)-K(2)-N(8 <sup>#5</sup> )   | 176.25(5)   | K(1)-K(2)-O(1)-C(1)                                | 120.40(17)  | O(4 <sup>#1</sup> )-K(1)-N(10)-C(6) | -176.0(2)   |
|    | O(2 <sup>#2</sup> )-K(1)-K(2)-N(8 <sup>#5</sup> )   | 96.48(6)    | O(3 <sup>#4</sup> )-K(2)-O(1)-K(1)                 | 93.30(5)    | O(2 <sup>#2</sup> )-K(1)-N(10)-C(6) | 102.5(3)    |
|    | O(5)-K(1)-K(2)-N(8 <sup>#5</sup> )                  | -108.22(7)  | O(6)-K(2)-O(1)-K(1)                                | -172.66(5)  | O(5)-K(1)-N(10)-C(6)                | -92.0(2)    |
|    | O(1)-K(1)-K(2)-N(8 <sup>#5</sup> )                  | 98.21(6)    | N(8 <sup>#5</sup> )-K(2)-O(1)-K(1)                 | -82.09(5)   | O(1)-K(1)-N(10)-C(6)                | 105.8(2)    |
|    | N(10)-K(1)-K(2)-N(8 <sup>#5</sup> )                 | -83.02(6)   | N(16 <sup>#6</sup> )-K(2)-O(1)-K(1)                | 3.11(19)    | N(2 <sup>#3</sup> )-K(1)-N(10)-C(6) | 16.5(2)     |
|    | N(2 <sup>#3</sup> )-K(1)-K(2)-N(8 <sup>#5</sup> )   | 5.07(5)     | N(10)-K(2)-O(1)-K(1)                               | 0.86(5)     | C(1)-K(1)-N(10)-C(6)                | 91.3(2)     |
|    | C(1)-K(1)-K(2)-N(8 <sup>#5</sup> )                  | 80.77(5)    | C(6)-K(2)-O(1)-K(1)                                | -12.92(5)   | K(2)-K(1)-N(10)-C(6)                | 105.0(2)    |
|    | O(4 <sup>#1</sup> )-K(1)-K(2)-N(16 <sup>#6</sup> )  | -100.95(6)  | O(4 <sup>#1</sup> )-K(1)-O(1)-C(1)                 | 130.26(12)  | O(4 <sup>#1</sup> )-K(1)-N(10)-N(9) | -22.86(13)  |
|    | O(2 <sup>#2</sup> )-K(1)-K(2)-N(16 <sup>#6</sup> )  | 179.27(5)   | O(2 <sup>#2</sup> )-K(1)-O(1)-C(1)                 | 44.71(12)   | O(2 <sup>#2</sup> )-K(1)-N(10)-N(9) | -104.3(3)   |
|    | O(5)-K(1)-K(2)-N(16 <sup>#6</sup> )                 | -25.43(7)   | O(5)-K(1)-O(1)-C(1)                                | 135.58(17)  | O(5)-K(1)-N(10)-N(9)                | 61.14(12)   |
|    | O(1)-K(1)-K(2)-N(16 <sup>#6</sup> )                 | -179.00(6)  | N(10)-K(1)-O(1)-C(1)                               | -134.73(12) | O(1)-K(1)-N(10)-N(9)                | -101.05(12) |
|    |                                                     |             |                                                    |             |                                     |             |

| 3 | $N(2^{#3})-K(1)-N(10)-N(9)$           | 169.67(13)               | N(4)-N(3)-C(1)-O(1)                                                                      | -5.2(3)                 | $K(2^{#4})-O(3)-C(5)-N(11)$                     | -170.74(13)                |
|---|---------------------------------------|--------------------------|------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|----------------------------|
|   | C(1)-K(1)-N(10)-N(9)                  | -115.47(12)              | C(2)-N(3)-C(1)-O(1)                                                                      | 178.38(19)              | N(10)-N(9)-C(5)-O(3)                            | 179.3(2)                   |
|   | K(2)-K(1)-N(10)-N(9)                  | -101.84(13)              | N(4)-N(3)-C(1)-N(1)                                                                      | 175.88(16)              | N(10)-N(9)-C(5)-N(11)                           | 0.4(2)                     |
|   | O(4 <sup>#1</sup> )-K(1)-N(10)-K(2)   | 78.99(5)                 | C(2)-N(3)-C(1)-N(1)                                                                      | -0.5(2)                 | N(12)-N(11)-C(5)-O(3)                           | 4.6(3)                     |
|   | O(2 <sup>#2</sup> )-K(1)-N(10)-K(2)   | -2.5(3)                  | N(4)-N(3)-C(1)-K(1)                                                                      | -63.75(18)              | C(6)-N(11)-C(5)-O(3)                            | -179.38(18)                |
|   | O(5)-K(1)-N(10)-K(2)                  | 162.98(5)                | C(2)-N(3)-C(1)-K(1)                                                                      | 119.87(13)              | N(12)-N(11)-C(5)-N(9)                           | -176.38(16)                |
|   | O(1)-K(1)-N(10)-K(2)                  | 0.80(4)                  | O(4 <sup>#1</sup> )-K(1)-C(1)-O(1)                                                       | -48.43(12)              | C(6)-N(11)-C(5)-N(9)                            | -0.4(2)                    |
|   | N(2 <sup>#3</sup> )-K(1)-N(10)-K(2)   | -88.49(5)                | O(2 <sup>#2</sup> )-K(1)-C(1)-O(1)                                                       | -131.71(12)             | N(9)-N(10)-C(6)-N(11)                           | 0.1(2)                     |
|   | C(1)-K(1)-N(10)-K(2)                  | -13.63(5)                | O(5)-K(1)-C(1)-O(1)                                                                      | -119.8(2)               | K(1)-N(10)-C(6)-N(11)                           | 153.30(15)                 |
|   | O(3 <sup>#4</sup> )-K(2)-N(10)-C(6)   | 133.09(13)               | N(10)-K(1)-C(1)-O(1)                                                                     | 46.30(12)               | K(2)-N(10)-C(6)-N(11)                           | -105.94(14)                |
|   | O(1)-K(2)-N(10)-C(6)                  | -140.41(13)              | N(2 <sup>#3</sup> )-K(1)-C(1)-O(1)                                                       | 129.23(12)              | N(9)-N(10)-C(6)-K(2)                            | 106.01(16)                 |
|   | O(6)-K(2)-N(10)-C(6)                  | -94.1(3)                 | K(2)-K(1)-C(1)-O(1)                                                                      | 34.37(10)               | K(1)-N(10)-C(6)-K(2)                            | -100.8(2)                  |
|   | N(8 <sup>#5</sup> ) -K(2)-N(10)-C(6)  | -46.46(13)               | $O(4^{\#1})-K(1)-C(1)-N(1)$                                                              | -173.62(12)             | N(12)-N(11)-C(6)-N(10)                          | 175.62(18)                 |
|   | N(16 <sup>#6</sup> )-K(2)-N(10)-C(6)  | 40.22(13)                | $O(2^{\#2})-K(1)-C(1)-N(1)$                                                              | 103.09(13)              | C(5)–N(11)–C(6)–N(10)                           | 0.2(2)                     |
|   | K(1)–K(2)–N(10)–C(6)                  | -139.58(15)              | O(5)-K(1)-C(1)-N(1)                                                                      | 115.0(2)                | N(12)–N(11)–C(6)–K(2)                           | 113.02(18)                 |
|   | $O(3^{#4})-K(2)-N(10)-N(9)$           | 21.60(11)                | O(1)-K(1)-C(1)-N(1)                                                                      | -125.19(19)             | C(5)–N(11)–C(6)–K(2)                            | -62.42(16)                 |
|   | O(1)-K(2)-N(10)-N(9)                  | 108.10(11)               | N(10)-K(1)-C(1)-N(1)                                                                     | -78.89(13)              | $O(3^{#4})-K(2)-C(6)-N(10)$                     | -49.57(13)                 |
|   | O(6)-K(2)-N(10)-N(9)                  | 154.4(3)                 | $N(2^{#3})-K(1)-C(1)-N(1)$                                                               | 4.03(12)                | O(1)-K(2)-C(6)-N(10)                            | 40.70(13)                  |
|   | $N(8^{#5})-K(2)-N(10)-N(9)$           | -157.95(11)              | K(2)-K(1)-C(1)-N(1)                                                                      | -90.82(12)              | O(6)-K(2)-C(6)-N(10)                            | 156.03(14)                 |
|   | $N(16^{\#6})-K(2)-N(10)-N(9)$         | -71.27(11)               | $O(4^{\#1})-K(1)-C(1)-N(3)$                                                              | 70.48(12)               | $N(8^{\#5})-K(2)-C(6)-N(10)$                    | 129.52(14)                 |
|   | C(6)-K(2)-N(10)-N(9)                  | -111.49(18)              | $O(2^{\#2})-K(1)-C(1)-N(3)$                                                              | -12.80(11)              | $N(16^{\#6})-K(2)-C(6)-N(10)$                   | -134.42(14)                |
|   | K(1)-K(2)-N(10)-N(9)                  | 108.93(11)               | O(5)-K(1)-C(1)-N(3)                                                                      | -0.9(3)                 | K(1)-K(2)-C(6)-N(10)                            | 30.92(12)                  |
|   | $O(3)^{#4} - K(2) - N(10) - K(1)$     | -87.33(5)                | O(1)-K(1)-C(1)-N(3)                                                                      | 118.91(19)              | $O(3^{#4})-K(2)-C(6)-N(11)$                     | 49.17(13)                  |
|   | O(1)-K(2)-N(10)-K(1)                  | -0.83(4)                 | N(10)-K(1)-C(1)-N(3)                                                                     | 165.21(12)              | O(1)-K(2)-C(6)-N(11)                            | 139.45(12)                 |
|   | O(6)-K(2)-N(10)-K(1)                  | 45.5(3)                  | $N(2^{#3})-K(1)-C(1)-N(3)$                                                               | -111.87(13)             | O(6)-K(2)-C(6)-N(11)                            | -105.22(16)                |
|   | $N(8)^{\#5} - K(2) - N(10) - K(1)$    | 93.12(6)                 | K(2)-K(1)-C(1)-N(3)                                                                      | 153.28(13)              | $N(8^{\#5}) - K(2) - C(6) - N(11)$              | -131.73(13)                |
|   | $N(16)^{#6} - K(2) - N(10) - K(1)$    | 179 80(5)                | N(1) - N(2) - C(2) - N(3)                                                                | 0.0(2)                  | $N(16^{\#6}) - K(2) - C(6) - N(11)$             | -35 67(12)                 |
|   | C(6)-K(2)-N(10)-K(1)                  | 139.58(15)               | $K(1^{#3})-N(2)-C(2)-N(3)$                                                               | -167.70(14)             | N(10)-K(2)-C(6)-N(11)                           | 98.75(18)                  |
|   | C(6) = N(11) = N(12) = N(13)          | 3 0(3)                   | N(4) - N(3) - C(2) - N(2)                                                                | -175 48(18)             | K(1) - K(2) - C(6) - N(11)                      | 129 66(13)                 |
|   | C(5) = N(11) = N(12) = N(13)          | 177 88(16)               | C(1) = N(3) = C(2) = N(2)                                                                | 0 3(2)                  | $K(1^{#5}) - O(4) - C(7) - N(15)$               | -21.0(3)                   |
|   | N(11) = N(12) = N(13) = N(14)         | -178 14(15)              | $K(1^{\#2}) - O(2) - C(3) - N(7)$                                                        | 13.7(3)                 | $K(1^{\#5}) - O(4) - C(7) - N(14)$              | 158 98(14)                 |
|   | N(12) - N(13) - N(14) - C(8)          | -14(3)                   | $K(1^{\#2}) - O(2) - C(3) - N(6)$                                                        | -166.94(13)             | N(16) - N(15) - C(7) - O(4)                     | 179.0(2)                   |
|   | N(12) - N(13) - N(14) - C(7)          | -179 69(16)              | N(8) - N(7) - C(3) - O(2)                                                                | 178 6(2)                | N(16) - N(15) - C(7) - N(14)                    | -1.0(2)                    |
|   | C(7) = N(15) = N(16) = C(8)           | 0.7(2)                   | N(8) - N(7) - C(3) - N(6)                                                                | -0.8(2)                 | N(13) - N(14) - C(7) - O(4)                     | -0.4(3)                    |
|   | $C(7) = N(15) = N(16) = K(2^{#6})$    | 17855(12)                | N(5) - N(6) - C(3) - O(2)                                                                | -1.7(3)                 | C(8) = N(14) = C(7) = O(4)                      | -179.09(19)                |
|   | K(2) = O(1) = C(1) = N(1)             | -29.9(3)                 | C(4) = N(6) = C(3) = O(2)                                                                | -178 39(19)             | N(13) = N(14) = C(7) = N(15)                    | 179.60(16)                 |
|   | K(1) = O(1) = C(1) = N(1)             | 85 7(2)                  | N(5) - N(6) - C(3) - N(7)                                                                | 177 78(16)              | C(8)=N(14)=C(7)=N(15)                           | 0.9(2)                     |
|   | K(1) = O(1) = O(1) = N(3)             | 151 58(14)               | $\Gamma(3) = \Gamma(3) = \Gamma(3) = \Gamma(7)$                                          | 1 1(2)                  | N(15) = N(16) = C(8) = N(14)                    | -0.1(2)                    |
|   | K(2) = O(1) = O(1) = N(3)             | _92 8(2)                 | N(7) = N(8) = C(4) = N(6)                                                                | 0.5(2)                  | $K(2^{\#6}) = N(16) = C(8) = N(14)$             | -176.81(14)                |
|   | K(1) = O(1) = C(1) = K(1)             | -11559(15)               | $K(2^{\#1}) - N(8) - C(4) - N(6)$                                                        | 163.79(15)              | N(13) = N(14) = C(8) = N(16)                    | -170.01(14)<br>-170.00(10) |
|   | N(2) = N(1) = C(1) = O(1)             | $-178 \ 30(19)$          | N(5) - N(6) - C(4) - N(8)                                                                | -177 16(19)             | C(7) = N(14) = C(8) = N(16)                     | _0.6(2)                    |
|   | N(2)-N(1)-C(1)-N(3)                   | 0.5(2)                   | $\Gamma(3) = \Gamma(0) = C(4) = \Gamma(0)$<br>$\Gamma(3) = \Gamma(0) = C(4) = \Gamma(0)$ | -1.0(2)                 | C(7) = N(14) = C(0) = N(10)                     | -0.0(2)                    |
|   | N(2) = N(1) = C(1) = K(1)             | -121.81(13)              | $K(2^{#4}) = O(3) = C(5) = N(9)$                                                         | 10.5(3)                 |                                                 |                            |
| 4 | $\Gamma(2) = \Gamma(1) = C(1) = K(1)$ | -121.81(13)<br>50.08(10) | R(2) = O(3) = C(3) = N(3)                                                                | 120.72(12)              | $C(2) O(1) C_{2}(1) O(2^{\#7})$                 | 27.01(12)                  |
| 4 | C(2)=O(1)=Cs(1)=O(1)                  | 30.98(10)                | $C_{(2)}=O(1)=C_{S}(1)=N(1)$                                                             | -120.72(13)             | $C(2)=O(1)=Cs(1)=O(2^{-1})$                     | 57.01(15)<br>108.17(6)     |
|   | $C(2) O(1) C_2(1) O(1^{\#1})$         | -94.20(0)                | $C_{S(1)} = O(1) = C_{S(1)} = IN(1^{-1})$<br>$C_{S(2)} = O(1) = C_{S(1)} = IN(1^{-1})$   | 94.11(9)                | $C_{3(1)} = O(1) = C_{3(1)} = O(2^{-1})$        | -100.1/(0)                 |
|   | $C_{(2)} = O(1) = C_{S}(1) = O(1)$    | 143.17(14)               | $C_{(2)} = O(1) = C_{(1)} = N(1)$                                                        | -00.10(12)              | $C_{c}(1^{\#1}) = O(1) - C_{c}(1) - N(4^{\#1})$ | -1/2.31(11)                |
|   | $C(2) O(1) C_2(1) O(1^{\#4})$         | 0.0                      | $C_{S(1)} = O(1) = C_{S(1)} = N(1^{-1})$                                                 | 140.73(3)<br>122.64(12) | $C_{3(1)} = O(1) = C_{3(1)} = IN(4)$            | 42.32(3)                   |
|   | $C_{(2)} = O(1) = C_{S}(1) = O(1)$    | 98.70(11)                | $C_{(2)} = O(1) = C_{(1)} = O(2)$                                                        | -133.04(13)             | $C_{c}(1^{\#1}) = O(1) - C_{c}(1) - N(4^{\#3})$ | 2.89(11)                   |
|   | $C_{3(1)} = O(1) = C_{3(1)} = O(1)$   | -40.47(3)                | $C_{S(1)} = O(1) - C_{S(1)} - O(2)$                                                      | 01.10(3)                | $C_{3(1)} = O(1) = C_{3(1)} = I_{3(4)}$         | -142.29(4)                 |

|   | $Cs(1^{\#1})-O(1)-Cs(1)-C(2)$                       | -145.17(14) | Cs(1 <sup>#1</sup> )-O(1)-C(2)-N(2)  | $-163.98(14)O(1^{#3})-Cs(1)-C(2)-N(2)$                               | 100.34(11)  |
|---|-----------------------------------------------------|-------------|--------------------------------------|----------------------------------------------------------------------|-------------|
|   | C(2)-O(1)-Cs(1)-C(2 <sup>#4</sup> )                 | 119.43(12)  | Cs(1)-O(1)-C(2)-N(2)                 | 59.5(2) $O(1^{\#1})$ -Cs(1)-C(2)-N(2)                                | -171.35(11) |
|   | Cs(1 <sup>#1</sup> )-O(1)-Cs(1)-C(2 <sup>#4</sup> ) | -25.74(6)   | Cs(1 <sup>#1</sup> )-O(1)-C(2)-N(3)  | 14.6(3) $O(1^{#4})$ -Cs(1)-C(2)-N(2)                                 | 129.70(10)  |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-O(1 <sup>#3</sup> ) | -38.27(3)   | Cs(1)-O(1)-C(2)-N(3)                 | -121.88(15)O(1)-Cs(1)-C(2)-N(2)                                      | -138.88(18) |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-O(1 <sup>#1</sup> ) | 35.79(3)    | Cs(1 <sup>#1</sup> )-O(1)-C(2)-Cs(1) | 136.49(15) N(1 <sup>#5</sup> )-Cs(1)-C(2)-N(2)                       | -35.00(18)  |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-O(1 <sup>#4</sup> ) | 49.37(5)    | N(1)-N(2)-C(2)-O(1)                  | 179.61(18) N(1 <sup>#6</sup> )-Cs(1)-C(2)-N(2)                       | -28.74(11)  |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-O(1)                | -43.04(4)   | N(1)-N(2)-C(2)-N(3)                  | 0.80(19) O(2)–Cs(1)–C(2)–N(2)                                        | -100.38(11) |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-N(1 <sup>#5</sup> ) | 142.40(3)   | N(1)-N(2)-C(2)-Cs(1)                 | -135.56(12)O(2 <sup>#7</sup> )-Cs(1)-C(2)-N(2)                       | 70.27(12)   |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-N(1 <sup>#6</sup> ) | -140.30(3)  | N(4)-N(3)-C(2)-O(1)                  | 6.8(3) $N(4^{\#1})$ -Cs(1)-C(2)-N(2)                                 | -130.66(11) |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-O(2 <sup>#7</sup> ) | 180.0       | C(1)-N(3)-C(2)-O(1)                  | -179.43(17)N(4 <sup>#3</sup> )-Cs(1)-C(2)-N(2)                       | 44.24(10)   |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-N(4 <sup>#1</sup> ) | 90.23(4)    | N(4)-N(3)-C(2)-N(2)                  | -174.30(15)C(2 <sup>#4</sup> )-Cs(1)-C(2)-N(2)                       | 149.55(11)  |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-N(4 <sup>#3</sup> ) | -95.97(3)   | C(1)-N(3)-C(2)-N(2)                  | -0.53(18) O(1 <sup>#3</sup> )-Cs(1)-C(2)-N(3)                        | -12.93(14)  |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-C(2)                | -57.52(3)   | N(4)-N(3)-C(2)-Cs(1)                 | -65.5(2) O(1 <sup>#1</sup> )-Cs(1)-C(2)-N(3)                         | 75.38(15)   |
|   | Cs(1 <sup>#2</sup> )-O(2)-Cs(1)-C(2 <sup>#4</sup> ) | 61.94(4)    | C(1)–N(3)–C(2)–Cs(1)                 | 108.31(16) O(1 <sup>#4</sup> )-Cs(1)-C(2)-N(3)                       | 16.43(17)   |
|   | C(1)-N(1)-N(2)-C(2)                                 | -0.8(2)     | $O(1^{#3})-Cs(1)-C(2)-O(1)$          | -120.78(11)O(1)-Cs(1)-C(2)-N(3)                                      | 107.9(2)    |
|   | $C_{s(1^{\#8})}-N(1)-N(2)-C(2)$                     | 171.31(11)  | $O(1^{\#1})-Cs(1)-C(2)-O(1)$         | $-32.47(13) \text{ N}(1^{\#5})-\text{Cs}(1)-\text{C}(2)-\text{N}(3)$ | -148.27(14) |
|   | C(1)-N(3)-N(4)-N(4 <sup>#9</sup> )                  | 20.58(19)   | $O(1^{#4})-Cs(1)-C(2)-O(1)$          | -91.43(12) N(1 <sup>#6</sup> )-Cs(1)-C(2)-N(3)                       | -142.01(16) |
|   | $C(2)-N(3)-N(4)-N(4^{\#9})$                         | -167.34(11) | $N(1^{\#5})-Cs(1)-C(2)-O(1)$         | 103.87(15) O(2)-Cs(1)-C(2)-N(3)                                      | 146.35(17)  |
|   | $C(1)-N(3)-N(4)-Cs(1^{\#1})$                        | 169.02(15)  | $N(1^{\#6})-Cs(1)-C(2)-O(1)$         | 110.14(12) $O(2^{\#7})$ -Cs(1)-C(2)-N(3)                             | -43.00(17)  |
|   | $C(2)-N(3)-N(4)-Cs(1^{\#1})$                        | -18.90(17)  | O(2)-Cs(1)-C(2)-O(1)                 | 38.50(11) $N(4^{\#1})$ -Cs(1)-C(2)-N(3)                              | 116.07(15)  |
|   | N(2)-N(1)-C(1)-N(3)                                 | 0.4(2)      | $O(2^{\#7})-Cs(1)-C(2)-O(1)$         | $-150.85(11)N(4^{\#3})-Cs(1)-C(2)-N(3)$                              | -69.03(15)  |
|   | $C_{s(1^{\#8})}-N(1)-C(1)-N(3)$                     | -167.73(13) | $N(4^{\#1})-Cs(1)-C(2)-O(1)$         | 8.22(12) $C(2^{\#4})$ -Cs(1)-C(2)-N(3)                               | 36.28(14)   |
|   | N(4)-N(3)-C(1)-N(1)                                 | 172.92(16)  | $N(4^{#3})-Cs(1)-C(2)-O(1)$          | -176.88(12)                                                          |             |
|   | C(2)-N(3)-C(1)-N(1)                                 | 0.1(2)      | $C(2^{\#4})-Cs(1)-C(2)-O(1)$         | -71.57(11)                                                           |             |
| 5 | N(3)-C(1)-N(1)-N(2)                                 | 0.3(2)      | O(1)-C(1)-N(3)-C(2)                  | -179.8(2) N(2)-C(2)-N(3)-N(4)                                        | 177.4(2)    |
|   | O(1)-C(1)-N(1)-N(2)                                 | 179.7(2)    | O(1)-C(1)-N(3)-N(4)                  | 2.6(2) N(8)–C(3)–N(6)–C(4)                                           | -1.3(2)     |
|   | N(1)-C(1)-N(3)-C(2)                                 | -0.3(2)     | N(3)-C(2)-N(2)-N(1)                  | -0.1(2) N(8)-C(3)-N(6)-C(4)                                          | -179.7(1)   |
|   | N(1)-C(1)-N(3)-N(4)                                 | -177.9(1)   | N(2)-C(2)-N(3)-C(1)                  | 0.2(2) O(2)–C(3)–N(6)–C(4)                                           | 177.9(2)    |
|   | O(2)-C(3)-N(6)-N(5)                                 | -0.5(3)     | N(6)-C(4)-N(7)-N(8)                  | 0.1(2) N(4)–N(5)–N(6)–C(3)                                           | 177.3(1)    |
|   | N(6)-C(3)-N(8)-N(7)                                 | 1.4(2)      | C(1)-N(1)-N(2)-C(2)                  | -0.1(2) N(4)-N(5)-N(6)-C(4)                                          | -0.7(2)     |
|   | O(2)-C(3)-N(8)-N(7)                                 | -177.7(2)   | C(1)-N(3)-N(4)-N(5)                  | 177.4(1) C(4)–N(7)–N(8)–C(3)                                         | -1.0(2)     |
|   | N(7)-C(4)-N(6)-C(3)                                 | 0.8(2)      | C(2)-N(3)-N(4)-N(5)                  | 0.5(2)                                                               |             |
|   | N(7)-C(4)-N(6)-N(5)                                 | 179.0(1)    | N(3)-N(4)-N(5)-N(6)                  | -179.8(1)                                                            |             |
| 6 | C(1)-N(1)-N(2)-C(2)                                 | -0.58(14)   | N(4)–N(3)–C(1)–O(1)                  | 2.52(18) N(5)–N(6)–C(3)–O(2)                                         | -4.98(16)   |
|   | C(2) = N(3) = N(4) = N(5)                           | -0.04(17)   | C(2) = N(3) = C(1) = O(1)            | 179.90(12) C(4) - N(6) - C(3) - O(2)                                 | 179 28(10)  |
|   | C(1)-N(3)-N(4)-N(5)                                 | 176.62(10)  | N(4)-N(3)-C(1)-N(1)                  | -177.73(9) N(5)-N(6)-C(3)-N(7)                                       | 175.14(9)   |
|   | N(3)-N(4)-N(5)-N(6)                                 | -179.38(8)  | C(2)-N(3)-C(1)-N(1)                  | -0.35(12) C(4)-N(6)-C(3)-N(7)                                        | -0.60(12)   |
|   | N(4)-N(5)-N(6)-C(4)                                 | -6.24(16)   | N(1)-N(2)-C(2)-N(3)                  | 0.33(13) N(7)–N(8)–C(4)–N(6)                                         | -0.06(12)   |
|   | N(4)-N(5)-N(6)-C(3)                                 | 179.21(10)  | N(4)-N(3)-C(2)-N(2)                  | 176.95(11) N(5)-N(6)-C(4)-N(8)                                       | -174.68(10) |
|   | C(3)-N(7)-N(8)-C(4)                                 | -0.33(12)   | C(1)-N(3)-C(2)-N(2)                  | 0.01(14) C(3)–N(6)–C(4)–N(8)                                         | 0.40(12)    |
|   | N(2)-N(1)-C(1)-O(1)                                 | -179.70(12) | N(8)-N(7)-C(3)-O(2)                  | -179.30(11)                                                          | ()          |
|   | N(2) - N(1) - C(1) - N(3)                           | 0.56(13)    | N(8) - N(7) - C(3) - N(6)            | 0.57(12)                                                             |             |
| 7 | O(5)-Ca(1)-O(1)-C(1)                                | -89.3(3)    | Ca(1)#1-Ca(1)-O(1)-C(1)              | 11.5(3) $O(4)#2-Ca(1)-O(3)-Ca(1)#1$                                  | -132.07(12) |
| , | O(6)-Ca(1)-O(1)-C(1)                                | 167 7(3)    | $C_{a}(1)#2-C_{a}(1)=O(1)-C(1)$      | 165 1(3) N(1)#1-Ca(1)-O(3)-Ca(1)#1                                   | 78 48(10)   |
|   | O(3)-Ca(1)-O(1)-C(1)                                | 49 5(3)     | O(1)-Ca(1)-O(3)-Ca(1)#1              | -82.52(10) Ca(1)#2-Ca(1)=O(3)-Ca(1)#1                                | -154 76(7)  |
|   | O(3)#1-Ca(1)-O(1)-C(1)                              | -25 5(3)    | $O(5)-C_2(1)-O(3)-C_2(1)\#1$         | 33 23(18) O(1) - Ca(1) - O(4) - Ca(1)#2                              | 81 29(10)   |
|   | O(4)-Ca(1)-O(1)-C(1)                                | 129.6(3)    | O(6)-Ca(1)-O(3)-Ca(1)#1              | 13379(10) O(5)-Ca(1)-O(4)-Ca(1)#2                                    | -44 11(17)  |
|   | O(4)#2=Ca(1)=O(1)=C(1)                              | -159 1(3)   | O(3)#1-Ca(1)-O(3)-Ca(1)#1            | $0 \qquad O(6)-C_2(1)-O(4)-C_2(1)\#^2$                               | _75 74(11)  |
|   | N(1)#1-Ca(1)-O(1)-C(1)                              | 21.7(4)     | O(4)-Ca(1)-O(3)-Ca(1)#1              | -168.90(11)O(3)-Ca(1)-O(4)-Ca(1)#2                                   | 156.80(11)  |
|   | (, )                                                | /           | - ( ) (-) - (-) - (-) - (-)          |                                                                      |             |

| - |                                                                   |                        |                                                                                               |           |                                                                           |              |
|---|-------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|--------------|
| 7 | O(3)#1-Ca(1)-O(4)-Ca(1)#2                                         | 135.52(15)             | Ca(1)-O(1)-C(1)-N(1)                                                                          | -8.5(6)   | C(1)-N(3)-C(2)-N(2)                                                       | 0.0(4)       |
|   | O(4)#2-Ca(1)-O(4)-Ca(1)#2                                         | 0                      | Ca(1)-O(1)-C(1)-N(3)                                                                          | 170.8(2)  | N(8)–N(7)–C(3)–O(2)                                                       | -179.9(4)    |
|   | N(1)#1-Ca(1)-O(4)-Ca(1)#2                                         | -138.95(10)            | N(2)-N(1)-C(1)-O(1)                                                                           | 178.3(4)  | N(8)–N(7)–C(3)–N(6)                                                       | -0.1(4)      |
|   | Ca(1)#1-Ca(1)-O(4)-Ca(1)#2                                        | 149.56(7)              | Ca(1)#1-N(1)-C(1)-O(1)                                                                        | -7.6(6)   | N(5)-N(6)-C(3)-O(2)                                                       | -0.4(6)      |
|   | C(1)-N(1)-N(2)-C(2)                                               | 1.2(4)                 | N(2)-N(1)-C(1)-N(3)                                                                           | -1.1(4)   | C(4)-N(6)-C(3)-O(2)                                                       | 180.0(3)     |
|   | Ca(1)#1-N(1)-N(2)-C(2)                                            | -174.1(3)              | Ca(1)#1-N(1)-C(1)-N(3)                                                                        | 172.9(2)  | N(5)-N(6)-C(3)-N(7)                                                       | 179.8(3)     |
|   | C(2)-N(3)-N(4)-N(5)                                               | 6.8(5)                 | C(2)-N(3)-C(1)-O(1)                                                                           | -178.8(4) | C(4)-N(6)-C(3)-N(7)                                                       | 0.2(4)       |
|   | C(1)-N(3)-N(4)-N(5)                                               | -176.7(3)              | N(4)-N(3)-C(1)-O(1)                                                                           | 4.1(6)    | N(7)-N(8)-C(4)-N(6)                                                       | 0.1(4)       |
|   | N(3)-N(4)-N(5)-N(6)                                               | -178.2(3)              | C(2)-N(3)-C(1)-N(1)                                                                           | 0.7(4)    | N(5)-N(6)-C(4)-N(8)                                                       | -179.8(4)    |
|   | N(4)-N(5)-N(6)-C(4)                                               | 0.6(6)                 | N(4)-N(3)-C(1)-N(1)                                                                           | -176.4(3) | C(3)-N(6)-C(4)-N(8)                                                       | -0.2(4)      |
|   | N(4)-N(5)-N(6)-C(3)                                               | -179.0(3)              | N(1)-N(2)-C(2)-N(3)                                                                           | -0.7(4)   | C(1)-N(3)-C(2)-N(2)                                                       | 0.0(4)       |
|   | C(3)–N(7)–N(8)–C(4)                                               | 0.0(4)                 | N(4)-N(3)-C(2)-N(2)                                                                           | 176.9(4)  |                                                                           |              |
| 8 | O(1)#1-Sr(1)-N(1)-C(1)                                            | 33.3(6)                | N(3)-N(4)-N(5)-N(6)                                                                           | -179.4(4) | N(5)-N(6)-C(4)-N(8)                                                       | -179.3(6)    |
|   | O(5)-Sr(1)-N(1)-C(1)                                              | -175.3(6)              | N(4)-N(5)-N(6)-C(4)                                                                           | -1.0(8)   | C(3)-N(6)-C(4)-N(8)                                                       | -0.9(7)      |
|   | O(3)#1-Sr(1)-N(1)-C(1)                                            | -21.3(5)               | N(4)-N(5)-N(6)-C(3)                                                                           | -179.1(5) | N(1)-C(1)-O(1)-Sr(1)#1                                                    | -13.5(10)    |
|   | O(6)-Sr(1)-N(1)-C(1)                                              | -98.9(5)               | C(3)-N(7)-N(8)-C(4)                                                                           | -0.7(6)   | N(3)-C(1)-O(1)-Sr(1)#1                                                    | 165.7(4)     |
|   | O(4)#2-Sr(1)-N(1)-C(1)                                            | -159.2(5)              | N(2)-N(1)-C(1)-O(1)                                                                           | 179.2(6)  | O(1)#1-Sr(1)-O(3)-Sr(1)#1                                                 | 85.39(15)    |
|   | O(3)-Sr(1)-N(1)-C(1)                                              | 56.6(5)                | Sr(1)-N(1)-C(1)-O(1)                                                                          | -12.6(10) | O(5)-Sr(1)-O(3)-Sr(1)#1                                                   | -132.25(14)  |
|   | O(4)-Sr(1)-N(1)-C(1)                                              | 124.0(5)               | N(2)-N(1)-C(1)-N(3)                                                                           | 0.0(6)    | O(3)#1-Sr(1)-O(3)-Sr(1)#1                                                 | 0            |
|   | Sr(1)#1-Sr(1)-N(1)-C(1)                                           | 17.7(5)                | Sr(1)-N(1)-C(1)-N(3)                                                                          | 168.1(4)  | O(6)-Sr(1)-O(3)-Sr(1)#1                                                   | -36.5(3)     |
|   | Sr(1)#2-Sr(1)-N(1)-C(1)                                           | 153.5(5)               | N(4)-N(3)-C(1)-O(1)                                                                           | 2.7(9)    | O(4)#2-Sr(1)-O(3)-Sr(1)#1                                                 | 139.53(16)   |
|   | O(1)#1-Sr(1)-N(1)-N(2)                                            | -159.3(3)              | C(2)–N(3)–C(1)–O(1)                                                                           | -179.4(6) | O(4)-Sr(1)-O(3)-Sr(1)#1                                                   | 172.15(16)   |
|   | O(5)-Sr(1)-N(1)-N(2)                                              | -7.9(4)                | N(4)-N(3)-C(1)-N(1)                                                                           | -178.0(5) | N(1)-Sr(1)-O(3)-Sr(1)#1                                                   | -77.82(16)   |
|   | O(3)#1-Sr(1)-N(1)-N(2)                                            | 146.1(4)               | C(2)–N(3)–C(1)–N(1)                                                                           | -0.1(6)   | Sr(1)#2-Sr(1)-O(3)-Sr(1)#1                                                | 159.34(9)    |
|   | O(6)-Sr(1)-N(1)-N(2)                                              | 68.5(4)                | N(1)–N(2)–C(2)–N(3)                                                                           | -0.2(7)   | O(1)#1-Sr(1)-O(4)-Sr(1)#2                                                 | -86.69(15)   |
|   | O(4)#2-Sr(1)-N(1)-N(2)                                            | 8.2(5)                 | N(4)–N(3)–C(2)–N(2)                                                                           | 177.9(5)  | O(5)–Sr(1)–O(4)–Sr(1)#2                                                   | 75.15(16)    |
|   | O(3)-Sr(1)-N(1)-N(2)                                              | -136.0(4)              | C(1)-N(3)-C(2)-N(2)                                                                           | 0.2(7)    | O(3)#1–Sr(1)–O(4)–Sr(1)#2                                                 | -145.38(17)  |
|   | O(4)-Sr(1)-N(1)-N(2)                                              | -68.6(4)               | N(8)-N(7)-C(3)-O(2)                                                                           | 179.8(6)  | O(6)-Sr(1)-O(4)-Sr(1)#2                                                   | 47.5(3)      |
|   | Sr(1)#1-Sr(1)-N(1)-N(2)                                           | -174.9(4)              | N(8)-N(7)-C(3)-N(6)                                                                           | 0.2(6)    | O(4)#2-Sr(1)-O(4)-Sr(1)#2                                                 | 0            |
|   | Sr(1)#2-Sr(1)-N(1)-N(2)                                           | -39 1(4)               | N(5) - N(6) - C(3) - O(2)                                                                     | -0.6(9)   | O(3) = Sr(1) = O(4) = Sr(1)#2                                             | -158 91(16)  |
|   | C(1) = N(1) = N(2) = C(2)                                         | 0.2(7)                 | C(4) - N(6) - C(3) - O(2)                                                                     | -179 2(5) | N(1)-Sr(1)-O(4)-Sr(1)#2                                                   | 137 51(15)   |
|   | Sr(1) = N(1) = N(2) = C(2)                                        | -170 3(4)              | N(5) - N(6) - C(3) - N(7)                                                                     | 179.0(5)  | Sr(1)#1-Sr(1)-O(4)-Sr(1)#2                                                | -154.04(10)  |
|   | C(2) = N(3) = N(4) = N(5)                                         | 5.0(8)                 | $\Gamma(3) = \Gamma(3) = \Gamma(3) = \Gamma(7)$                                               | 0.4(6)    | 51(1)/1 51(1) 5(1) 51(1)/2                                                | 15 1.0 1(10) |
|   | C(1) = N(3) = N(4) = N(5)                                         | -177.6(5)              | N(7) - N(8) - C(4) - N(6)                                                                     | 1.0(7)    |                                                                           |              |
| 0 | $O(3^{\#1}) B_{2}(1) O(2) C(3)$                                   | 6 1(3)                 | $\Gamma(1) \Gamma(0) C(1) \Gamma(0)$                                                          | 0.5(4)    | $N(9^{\#1}) P_0(1) O(3) P_0(1^{\#1})$                                     | 75 25(8)     |
| , | O(3) = Ba(1) = O(2) = C(3)<br>O(4) = Ba(1) = O(2) = C(3)          | 1.1(3)                 | V(1) - N(1) - N(2) - C(2)<br>N(6) $C(4) - N(7) - N(8)$                                        | -0.3(4)   | N(8) = Ba(1) = O(3) = Ba(1)                                               | =73.23(8)    |
|   | O(4) = Ba(1) = O(2) = C(3)                                        | 140.1(3)<br>156 $4(3)$ | $\Gamma(0) - C(4) - \Gamma(7) - \Gamma(8)$<br>$\Gamma(3) - \Gamma(8) - \Gamma(7) - \Gamma(8)$ | 0.4(4)    | O(5) = Ba(1) = O(5) = Ba(1)<br>$Ba(1^{\#2}) = Ba(1) = O(3) = Ba(1^{\#1})$ | 166.03(5)    |
|   | O(0) = Ba(1) = O(2) = C(3)<br>$O(4^{\#2}) = Ba(1) = O(2) = C(3)$  | -130.4(3)              | C(3) = N(8) = N(7) = C(4)                                                                     | -0.2(4)   | Da(1) = Da(1) = O(3) = Da(1)<br>$O(2^{\#1}) = Da(1) = O(4) = Da(1^{\#2})$ | 157.91(9)    |
|   | O(4) = Ba(1) = O(2) = C(3)<br>O(3) = Ba(1) = O(2) = C(3)          | -138.2(3)              | Ba(1) = N(0) = N(7) = C(4)<br>Ba(1) = O(2) = C(3) = N(8)                                      | 24.6(5)   | O(3) = Ba(1) = O(4) = Ba(1)                                               | 76 70(8)     |
|   | O(3) = Ba(1) = O(2) = C(3)                                        | -08.7(3)               | Ba(1) = O(2) = C(3) = N(6)                                                                    | 24.0(3)   | O(2)-Ba(1)-O(4)-Ba(1)                                                     | 70.70(8)     |
|   | V(3) = Ba(1) = O(2) = C(3)                                        | /3.3(3)                | Ba(1) = O(2) = O(3) = N(0)                                                                    | -155.0(2) | O(0) - Ba(1) - O(4) - Ba(1)                                               | -70.26(9)    |
|   | N(8) -Ba(1) -O(2) -C(3)                                           | -49.7(3)               | N(7) = N(8) = C(3) = O(2)                                                                     | -1/9.7(3) | O(4) -Ba(1) - O(4) -Ba(1)                                                 | 0.0          |
|   | U(3) = Da(1) = U(2) = U(3)<br>$Da(1^{\#2}) = Da(1) = O(2) = O(3)$ | δ2.0(3)                | Da(1)#1-N(0)-U(3)-U(2)                                                                        | 14.3(3)   | O(5) - Ba(1) - O(4) - Ba(1)                                               | 22.00(12)    |
|   | Ba(1) - Ba(1) - O(2) - C(3)                                       | -1/5.0(3)              | N(7) - N(8) - C(3) - N(6)                                                                     | -0.1(3)   | U(5) - Ba(1) - U(4) - Ba(1)                                               | -149.58(8)   |
|   | $Ba(1^{-1})-Ba(1)-O(2)-C(3)$                                      | -30.3(3)               | Ba(1)#1-N(8)-C(3)-N(6)                                                                        | -165.8(2) | $IN(\delta^{**}) - Ba(1) - O(4) - Ba(1^{**})$                             | -84.88(11)   |
|   | N(6)-N(5)-N(4)-N(3)                                               | 179.8(3)               | N(5)-N(6)-C(3)-O(2)                                                                           | -1.0(5)   | $U(5^{})-Ba(1)-U(4)-Ba(1^{})$                                             | 141.04(9)    |
|   | N(5)-N(4)-N(3)-C(2)                                               | 3.5(5)                 | C(4)-N(6)-C(3)-O(2)                                                                           | -180.0(3) | $Ba(1^{m})-Ba(1)-O(4)-Ba(1^{m})$                                          | 81.69(17)    |
|   | N(5)-N(4)-N(3)-C(1)                                               | 179.9(3)               | N(5)-N(6)-C(3)-N(8)                                                                           | 179.3(3)  | $O(5^{-1} - Ba(1) - O(5) - Ba(1^{-3})$                                    | 77.95(8)     |
|   | U(1)-C(1)-N(3)-N(4)                                               | 2.3(5)                 | C(4)–N(6)–C(3)–N(8)                                                                           | 0.3(4)    | $O(2)-Ba(1)-O(5)-Ba(1)^{*3}$                                              | 9.29(12)     |
|   | N(1)-C(1)-N(3)-N(4)                                               | -178.6(3)              | N(1)-N(2)-C(2)-N(3)                                                                           | -0.4(4)   | $O(4)-Ba(1)-O(5)-Ba(1^{\#5})$                                             | -72.08(8)    |

| O(1)-C(1)-N(3)-C(2) | 179.5(3)  | N(4)-N(3)-C(2)-N(2)                                 | 177.8(3)   | $O(6)-Ba(1)-O(5)-Ba(1^{#3})$                         | -141.90(9) |
|---------------------|-----------|-----------------------------------------------------|------------|------------------------------------------------------|------------|
| N(1)-C(1)-N(3)-C(2) | -1.4(3)   | C(1)-N(3)-C(2)-N(2)                                 | 1.1(4)     | O(4 <sup>#2</sup> )-Ba(1)-O(5)-Ba(1 <sup>#3</sup> )  | -119.84(9) |
| N(4)-N(5)-N(6)-C(4) | -2.8(5)   | O(3 <sup>#1</sup> )-Ba(1)-O(3)-Ba(1 <sup>#1</sup> ) | 0.0        | O(3)-Ba(1)-O(5)-Ba(1 <sup>#3</sup> )                 | 116.84(10) |
| N(4)-N(5)-N(6)-C(3) | 178.6(3)  | O(2)-Ba(1)-O(3)-Ba(1 <sup>#1</sup> )                | 89.55(9)   | N(8 <sup>#1</sup> )-Ba(1)-O(5)-Ba(1 <sup>#3</sup> )  | 149.72(9)  |
| N(7)-C(4)-N(6)-N(5) | -179.3(3) | O(4)-Ba(1)-O(3)-Ba(1 <sup>#1</sup> )                | 152.93(7)  | O(5 <sup>#3</sup> )-Ba(1)-O(5)-Ba(1 <sup>#3</sup> )  | 0.0        |
| N(7)-C(4)-N(6)-C(3) | -0.5(4)   | O(6)-Ba(1)-O(3)-Ba(1 <sup>#1</sup> )                | -130.50(8) | Ba(1 <sup>#2</sup> )-Ba(1)-O(5)-Ba(1 <sup>#3</sup> ) | -91.39(7)  |
| O(1)-C(1)-N(1)-N(2) | -179.7(3) | O(4 <sup>#2</sup> )-Ba(1)-O(3)-Ba(1 <sup>#1</sup> ) | 176.84(9)  | Ba(1 <sup>#1</sup> )-Ba(1)-O(5)-Ba(1 <sup>#3</sup> ) | 92.66(7)   |
| N(3)-C(1)-N(1)-N(2) | 1.1(3)    | O(5)-Ba(1)-O(3)-Ba(1 <sup>#1</sup> )                | -40.11(14) |                                                      |            |
|                     |           |                                                     |            |                                                      |            |

| Compound | D–H···A               | d(D····H) | d(H····A) | ∠DHA | d(D····A) |
|----------|-----------------------|-----------|-----------|------|-----------|
| ZTO      | N(2)–H(2)····O(1)     | 0.90      | 2.53      | 129  | 3.17      |
|          | N(2)-H(2)····N(1)     | 0.09      | 2.08      | 149  | 2.89      |
| 2        | O(3)–H(3WC)····O(2)   | 0.86      | 1.92      | 167  | 2.76      |
|          | N(1)-H(1A)····N(7)    | 0.86      | 1.78      | 173  | 2.63      |
|          | O(3)-H(3WB)····N(2)   | 0.86      | 1.98      | 172  | 2.83      |
|          | O(4)–H(4WB)····O(2)   | 0.86      | 1.99      | 174  | 2.85      |
|          | O(4)–H(4WA)····O(3)   | 0.86      | 2.01      | 176  | 2.87      |
| 3        | N(1)–H(1)····N(7)     | 1.05      | 1.66      | 176  | 2.70      |
|          | O(5)–H(05A)···O(1)    | 0.80      | 2.32      | 151  | 3.04      |
|          | O(5)–H(05B)····O(3)   | 0.82      | 2.12      | 158  | 2.89      |
|          | O(5)–H(05B)····N(12)  | 0.82      | 2.60      | 130  | 3.18      |
|          | O(6)–H(06A)····O(4)   | 0.89      | 2.07      | 153  | 2.89      |
|          | O(6)–H(06A)····N(13)  | 0.89      | 2.54      | 131  | 3.20      |
|          | O(6)–H(06B)····O(2)   | 0.82      | 2.10      | 155  | 2.86      |
|          | O(6)–H(06B)····N(5)   | 0.82      | 2.62      | 132  | 3.23      |
|          | N(15)-H(15)····N(9)   | 1.06      | 1.65      | 172  | 2.71      |
| 4        | N(2)–H(2A)····N(2)    | 0.86      | 1.81      | 172  | 2.67      |
|          | C(1)–H(1A)····O(2)    | 0.93      | 2.42      | 166  | 2.33      |
| 5        | N(8)–H(1N)····N(1)    | 0.95      | 1.80      | 176  | 2.75      |
|          | N(9)–H(2N)····O(2)    | 0.89      | 2.34      | 150  | 3.14      |
|          | N(9)–H(3N)····N(7)    | 0.91      | 2.20      | 160  | 3.08      |
|          | N(10)-H(10A)····O(1)  | 0.89      | 1.90      | 166  | 2.77      |
|          | N(10)-H(10B)····O(1)  | 0.89      | 1.96      | 163  | 2.83      |
|          | N(10)-H(10C)····N(2)  | 0.89      | 2.09      | 155  | 2.92      |
| 6        | N(1) - H(1N) …N(7)    | 0.98      | 1.76      | 177  | 2.75      |
|          | O(3) - H(3A) ····O(2) | 0.87      | 2.19      | 147  | 2.97      |
|          | O(3) - H(3A) …N(5)    | 0.87      | 2.51      | 141  | 3.23      |
|          | O(3) - H(3B) …N(2)    | 0.86      | 2.01      | 165  | 2.85      |
|          | O(4) - H(4A) ····O(6) | 0.82      | 1.93      | 174  | 2.74      |
|          | O(4) - H(4B) ····O(2) | 0.87      | 1.92      | 174  | 2.79      |
|          | O(5) - H(5A) ····O(1) | 0.90      | 1.83      | 178  | 2.73      |
|          | O(5) - H(5B) …N(8)    | 0.87      | 1.99      | 169  | 2.85      |
|          | O(6) - H(6A) ····O(2) | 0.90      | 1.80      | 166  | 2.68      |
|          | O(6) - H(6B) ····O(7) | 0.82      | 1.93      | 158  | 2.71      |
|          | O(7) - H(7A) ····O(6) | 0.88      | 1.91      | 164  | 2.76      |
|          | O(7) - H(7B) ····O(1) | 0.92      | 1.97      | 171  | 2.88      |

Table S5. The selected hydrogen bond distances (Å) and angles (  $^{\circ}$ ) of ZTO and its salts

#### Table S5 (continue)

| 7 | O(3)–H(3A)····O(2)  | 0.99 | 1.71 | 174 | 2.70 |
|---|---------------------|------|------|-----|------|
|   | O(3)–H(3B)····N(7)  | 0.99 | 1.94 | 165 | 2.91 |
|   | O(4)–H(4A)····O(2)  | 0.84 | 1.92 | 161 | 2.73 |
|   | O(4)–H(4B)····N(7)  | 0.85 | 2.17 | 162 | 2.99 |
|   | O(5)–H(5A)····O(2)  | 0.85 | 1.89 | 167 | 2.72 |
|   | O(5)–H(5B)····N(7)  | 0.84 | 2.49 | 125 | 3.05 |
|   | O(5)–H(5B)····N(8)  | 0.84 | 2.08 | 158 | 2.87 |
|   | O(6)–H(6A)····O(1)  | 0.82 | 1.93 | 166 | 2.74 |
|   | O(6) -H(6B)····N(2) | 0.84 | 2.07 | 136 | 2.74 |
| 8 | O(3)–H(3A)····O(2)  | 0.99 | 1.69 | 175 | 2.68 |
|   | O(3)–H(3B)····N(7)  | 0.99 | 1.95 | 165 | 2.91 |
|   | O(4)–H(4A)····N(7)  | 0.83 | 2.16 | 148 | 2.89 |
|   | O(5)–H(5A)····O(1)  | 0.84 | 1.99 | 156 | 2.78 |
|   | O(5)–H(5B)····N(2)  | 0.85 | 2.10 | 135 | 2.77 |
|   | O(6)–H(6A)····O(2)  | 0.83 | 1.91 | 168 | 2.73 |
|   | O(6)–H(6B)····N(8)  | 0.84 | 2.17 | 149 | 2.91 |
| 9 | O(3)–H(03A)····O(1) | 0.84 | 1.83 | 169 | 2.65 |
|   | O(3)–H(03B)····N(1) | 0.84 | 2.11 | 164 | 2.93 |
|   | O(4)–H(04A)····O(1) | 0.85 | 1.94 | 150 | 2.71 |
|   | O(4)–H(04B)····N(1) | 0.84 | 1.98 | 169 | 2.81 |
|   | O(5)-H(05A)····N(1) | 0.83 | 2.58 | 135 | 3.22 |
|   | O(5)-H(05A)····N(2) | 0.83 | 2.19 | 168 | 3.01 |
|   | O(5)–H(05B)····O(1) | 0.84 | 1.98 | 156 | 2.77 |
|   | O(6)–H(06A)····O(2) | 0.84 | 2.03 | 155 | 2.82 |
|   | O(6)-H(06B)····N(7) | 0.84 | 2.07 | 149 | 2.82 |
|   |                     |      |      |     |      |

| Compound | $\beta$ / °C min <sup>-1</sup> | endothermic stage                        |                      | exothermic                      | exothermic stage   |                    |                   |  |
|----------|--------------------------------|------------------------------------------|----------------------|---------------------------------|--------------------|--------------------|-------------------|--|
|          |                                | $\overline{T_{\rm ol}}/{}^{\circ}{ m C}$ | $T_{\rm pl}/{\rm C}$ | $T_{\rm o2}/{}^{\circ}\!{ m C}$ | $T_{ m p2}/{ m C}$ | $T_{ m o3}/{ m C}$ | $T_{\rm p3}$ / °C |  |
| ZTO      | 2                              | _                                        | _                    | 278.98                          | 282.40             | _                  | -                 |  |
|          | 5                              | -                                        | -                    | 287.44                          | 288.75             | _                  | _                 |  |
|          | 10                             | -                                        | _                    | 293.86                          | 295.80             | _                  | -                 |  |
|          | 20                             | -                                        | -                    | 300.41                          | 304.61             | _                  | _                 |  |
| 1        | 2                              | 228.08                                   | 240.70               | 246.14                          | 256.17             | 266.19             | 273.27            |  |
|          | 5                              | 241.19                                   | 251.67               | 257.81                          | 268.97             | 276.91             | 284.35            |  |
|          | 10                             | 249.98                                   | 261.39               | 275.09                          | 294.76             | 329.88             | 340.62            |  |
|          | 20                             | 260.91                                   | 273.27               | 289.44                          | 312.12             | 339.66             | 351.79            |  |
| 2        | 2                              | 86.91                                    | 123.45               | 209.59                          | 214.58             | 234.66             | 245.41            |  |
|          | 5                              | 88.70                                    | 132.10               | 216.88                          | 224.78             | 365.16             | 257.23            |  |
|          | 10                             | 91.58                                    | 143.88               | 222.02                          | 233.00             | 381.42             | 268.13            |  |
|          | 20                             | 125.85                                   | 153.66               | 230.94                          | 244.09             | 394.58             | 279.20            |  |
| 3        | 2                              | 130.35                                   | 135.10               | 259.33                          | 269.25             | -                  | -                 |  |
|          | 5                              | 136.80                                   | 145.29               | 274.26                          | 278.09             | _                  | -                 |  |
|          | 10                             | 140.12                                   | 149.39               | 279.70                          | 284.23             | -                  | -                 |  |
|          | 20                             | 146.86                                   | 162.29               | 285.34                          | 291.09             | _                  | -                 |  |
| 4        | 2                              | 200.21                                   | 206.03               | 218.31                          | 222.96             | -                  | -                 |  |
|          | 5                              | 210.02                                   | 218.34               | 229.19                          | 233.99             | _                  | -                 |  |
|          | 10                             | 220.31                                   | 227.14               | 237.67                          | 242.09             | _                  | _                 |  |
|          | 20                             | 229.01                                   | 237.92               | 247.05                          | 252.43             | -                  | -                 |  |
| 5        | 2                              | 141.69                                   | 148.08               | 276.29                          | 278.06             | _                  | -                 |  |
|          | 5                              | 153.41                                   | 159.29               | 284.30                          | 285.97             | _                  | _                 |  |
|          | 10                             | 161.83                                   | 169.64               | 290.42                          | 292.78             | _                  | _                 |  |
|          | 20                             | 166.09                                   | 179.29               | 294.70                          | 299.01             | _                  | _                 |  |
| 6        | 2                              | 106.67                                   | 122.58               | 142.81                          | 190.82             | 269.87             | 270.84            |  |
|          | 5                              | 114.74                                   | 134.38               | 154.80                          | 207.06             | 281.44             | 288.73            |  |
|          | 10                             | 120.47                                   | 143.73               | 167.89                          | 219.40             | 287.66             | 300.19            |  |
|          | 20                             | 127.28                                   | 156.74               | 197.82                          | 235.61             | 299.90             | 311.03            |  |
| 7        | 2                              | 115.96                                   | 128.65               | 177.87                          | 208.57             | 307.46             | 329.04            |  |
|          | 5                              | 118.56                                   | 138.04               | 187.54                          | 226.15             | 318.38             | 344.38            |  |
|          | 10                             | 122.39                                   | 145.64               | 199.51                          | 237.68             | 326.07             | 355.77            |  |
|          | 20                             | 125.77                                   | 156.77               | 218.36                          | 257.88             | 341.78             | 368.02            |  |
| 8        | 2                              | 125.74                                   | 143.62               | 257.75                          | 274.94             | -                  | _                 |  |
|          | 5                              | 134.94                                   | 152.94               | 265.90                          | 286.99             | 374.55             | 378.18            |  |
|          | 10                             | 136.66                                   | 159.79               | 275.04                          | 297.54             | 400.43             | 405.82            |  |
|          | 20                             | 147.46                                   | 172.33               | 292.51                          | 307.18             | 445.42             | 454.17            |  |

Table S6. Thermal decomposition peak temperature of ZTO and its salts

| 9 | 2  | 81.84 | 94.28  | 228.55 | 241.15 | 264.18 | 281.90 |
|---|----|-------|--------|--------|--------|--------|--------|
|   | 5  | 83.52 | 99.88  | 232.91 | 248.77 | 275.67 | 293.38 |
|   | 10 | 89.49 | 109.37 | 243.50 | 260.44 | 286.63 | 302.57 |
|   | 20 | 94.92 | 117.86 | 247.91 | 272.93 | 297.24 | 313.44 |

<sup>\*</sup> $\beta$ : heating rates;  $T_e$ : extrapolated onset temperature in the DSC curve;  $T_p$ : maximum peak temperature in the DSC curve; 1, 2 and 3 represents the decomposition stage of title compounds.

#### Table S6 (continue)

| Compound | parameters                          | endothermic stage           | exothermic stage       |                        |  |
|----------|-------------------------------------|-----------------------------|------------------------|------------------------|--|
|          |                                     | $\overline{T_{\rm pl}}/$ °C | $T_{\rm p2}$ / °C      | $T_{\rm p3}$ / °C      |  |
| ZTO      | $E_{\rm K}/{ m kJ}~{ m mol}^{-1}$   | _                           | 263.612                | _                      |  |
|          | r <sub>K</sub>                      | _                           | 0.991                  | _                      |  |
|          | $A/s^{-1}$                          | -                           | $1.552 \times 10^{22}$ | _                      |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | _                           | 259.633                | _                      |  |
|          | r <sub>K</sub>                      | -                           | 0.991                  | _                      |  |
|          | $E_{\rm a}/{ m kJ}~{ m mol}^{-1}$   | -                           | 261.622                | _                      |  |
| 1        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 157.109                     | 89.724                 | 56.618                 |  |
|          | r <sub>K</sub>                      | 0.998                       | 0.982                  | 0.922                  |  |
|          | $A/s^{-1}$                          | $2.518 \times 10^{13}$      | $1.793 \times 10^{6}$  | $5.585 \times 10^{2}$  |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 157.778                     | 94.117                 | 63.060                 |  |
|          | r <sub>K</sub>                      | 0.998                       | 0.985                  | 0.942                  |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 157.444                     | 91.921                 | 59.839                 |  |
| 2        | $E_{\rm K}/{ m kJ}~{ m mol}^{-1}$   | 97.141                      | 156.220                | 152.570                |  |
|          | r <sub>K</sub>                      | 0.993                       | 0.997                  | 0.999                  |  |
|          | $A/s^{-1}$                          | $2.213 \times 10^{10}$      | $1.546 \times 10^{14}$ | 6.152×10 <sup>12</sup> |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 98.869                      | 156.486                | 153.537                |  |
|          | r <sub>K</sub>                      | 0.994                       | 0.997                  | 0.999                  |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 98.005                      | 156.353                | 153.054                |  |
| 3        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 120.220                     | 260.361                | _                      |  |
|          | r <sub>K</sub>                      | 0.981                       | 0.999                  | _                      |  |
|          | $A/s^{-1}$                          | $8.543 \times 10^{12}$      | $2.667 \times 10^{22}$ | _                      |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 120.987                     | 256.338                | _                      |  |
|          | r <sub>K</sub>                      | 0.983                       | 0.999                  | _                      |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 120.604                     | 258.349                | _                      |  |
| 4        | $E_{\rm K}/{ m kJ}~{ m mol}^{-1}$   | 139.866                     | 163.231                | _                      |  |
|          | r <sub>K</sub>                      | 0.999                       | 0.999                  | _                      |  |
|          | $A/s^{-1}$                          | $3.822 \times 10^{12}$      | $3.288 \times 10^{14}$ | _                      |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 140.812                     | 162.330                | _                      |  |
|          | r <sub>K</sub>                      | 0.999                       | 0.999                  | _                      |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 140.339                     | 163.266                | _                      |  |
| 5        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 108.706                     | 276.923                | _                      |  |
|          | r <sub>K</sub>                      | 0.999                       | 0.999                  | _                      |  |
|          | $A/s^{-1}$                          | $9.450 \times 10^{10}$      | $3.863 \times 10^{23}$ | _                      |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 110.265                     | 272.212                | _                      |  |
|          | r <sub>K</sub>                      | 0.999                       | 0.999                  | _                      |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 109.485                     | 274.567                | _                      |  |

**Table S7.** Thermal Kinetic parameters obtained by the data in Table 6

 ${}^{*}E_{K} \& E_{O}$ : the apparent activation energy calculated by Kissinger's method and Ozawa–Doyle's method, respectively; A: the pre–exponential factor;  $r_{K} \& r_{O}$ : linear correlation coefficient determined by Kissinger's method and Ozawa–Doyle's method, respectively.

| Compound | parameters                          | endothermic stage      | exothermic stage       |                        |  |
|----------|-------------------------------------|------------------------|------------------------|------------------------|--|
|          |                                     | $T_{\rm pl}/~{\rm C}$  | $T_{\rm p2}/$ °C       | $T_{\rm pl}/~{ m C}$   |  |
| 6        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 89.151                 | 93.600                 | 141.205                |  |
|          | r <sub>K</sub>                      | 0.997                  | 0.998                  | 0.996                  |  |
|          | $A/s^{-1}$                          | 1.938×10 <sup>9</sup>  | $9.150 \times 10^7$    | $8.160 \times 10^{10}$ |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 91.277                 | 96.666                 | 143.178                |  |
|          | r <sub>K</sub>                      | 0.997                  | 0.999                  | 0.997                  |  |
|          | $E_{\rm a}/{ m kJ}~{ m mol}^{-1}$   | 90.214                 | 95.132                 | 142.191                |  |
| 7        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 111.374                | 92.335                 | 179.732                |  |
|          | r <sub>K</sub>                      | 0.995                  | 0.994                  | 0.999                  |  |
|          | $A/s^{-1}$                          | $1.053 \times 10^{12}$ | $2.648 \times 10^{7}$  | $8.467 \times 10^{12}$ |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 112.467                | 95.792                 | 180.716                |  |
|          | r <sub>K</sub>                      | 0.995                  | 0.995                  | 0.999                  |  |
|          | $E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ | 111.921                | 94.064                 | 180.224                |  |
| 8        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 117.493                | 178.111                | _                      |  |
|          | r <sub>K</sub>                      | 0.989                  | 0.999                  | _                      |  |
|          | $A/s^{-1}$                          | $1.862 \times 10^{12}$ | $2.303 \times 10^{14}$ | _                      |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 118.547                | 178.277                | -                      |  |
|          | r <sub>K</sub>                      | 0.991                  | 0.999                  | -                      |  |
|          | $E_{\rm a}/{ m kJ}~{ m mol}^{-1}$   | 118.020                | 178.194                | _                      |  |
| 9        | $E_{\rm K}/{\rm kJ}~{\rm mol}^{-1}$ | 105.189                | 154.449                | 188.886                |  |
|          | r <sub>K</sub>                      | 0.985                  | 0.985                  | 0.999                  |  |
|          | $A/s^{-1}$                          | $3.808 \times 10^{12}$ | $1.493 \times 10^{12}$ | $1.468 \times 10^{14}$ |  |
|          | $E_{\rm O}/{\rm kJ}~{\rm mol}^{-1}$ | 106.004                | 155.248                | 188.635                |  |
|          | r <sub>K</sub>                      | 0.987                  | 0.986                  | 0.999                  |  |
|          | $E_{\rm a}/{\rm kJ}~{ m mol}^{-1}$  | 105.597                | 154.849                | 188.635                |  |
|          |                                     |                        |                        |                        |  |

 ${}^{*}E_{K} \& E_{O}$ : the apparent activation energy calculated by Kissinger's method and Ozawa–Doyle's method, respectively; A: the pre–exponential factor;  $r_{K} \& r_{O}$ : linear correlation coefficient determined by Kissinger's method and Ozawa–Doyle's method, respectively.