Supporting Information I

Supporting Information I

Bismuth(III)dichalcogenones: Highly Active Catalysts in Multiple C–C Bond Formation Reactions

Katam Srinivas, Arruri Sathyanarayana, Chatla Naga Babu and Ganesan Prabusankar*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi,

Medak, TS, INDIA-502 285.

Fax: +91 40 2301 6032; Tel: +91 40 2301 6089; E-mail: prabu@iith.ac.in

Fig. S1. Neat FT-IR spectrum of $[(mbit)_3Bi](OTf)[Bi_6(OTf)_{12}(\mu_3-OH)_8]$ (1).

Fig. S2. ¹H NMR spectrum of [(mbit)₃Bi](OTf)[Bi₆(OTf)₁₂(μ_3 -OH)₈] (**1**) in DMSO-d₆ at RT.

Fig. S3. ¹³C NMR spectrum of $[(mbit)_3Bi](OTf)[Bi_6(OTf)_{12}(\mu_3-OH)_8]$ (1) in DMSO-d₆ at RT.

Fig. S5. Neat FT-IR spectrum of [(mbis)₂(OTf)₂Bi](OTf).2CH₃OH (2).

Fig. S6. ¹H NMR spectrum of $[(mbis)_2(OTf)_2Bi](OTf).2CH_3OH$ (2) in DMSO-d₆ at RT.

Fig. S7. ¹³C NMR spectrum of $[(mbis)_2(OTf)_2Bi](OTf).2CH_3OH$ (2) in DMSO-d₆ at RT.

Fig. S9. Neat FT-IR spectrum of [(mbpit)₂(OTf)₂Bi](OTf) (3).

Fig. S10. ¹H NMR spectrum of $[(mbpit)_2(OTf)_2Bi](OTf)$ (3) in DMSO-d₆ at RT.

Fig. S11. ¹³C NMR spectrum of [(mbpit)₂(OTf)₂Bi](OTf) (3) in DMSO-d₆ at RT.

Fig. S13. Neat FT-IR spectrum of [(mbpis)₂(OTf)₂Bi](OTf) (4).

Fig. S14. ¹H NMR spectrum of [(mbpis)₂(OTf)₂Bi](OTf) (4) in DMSO-d₆ at RT.

Fig. S17. Neat FT-IR spectrum of [(mbit)₂BiCl₂][(mbit)BiCl₄] (5).

Fig. S18. ¹H NMR spectrum of [(mbit)₂BiCl₂][(mbit)BiCl₄] (**5**) in DMSO-d₆ at RT.

Fig. S20. Neat FT-IR spectrum of $[(mbit)Bi(Br)_2(\mu_2-Br)]_2$ (6).

Fig. S21. ¹H NMR spectrum of $[(mbit)Bi(Br)_2(\mu_2-Br)]_2$ (6) in DMSO-d₆ at RT.

Fig. S23. Neat FT-IR spectrum of $[(mbis)Bi(Cl)_2(\mu_2-Cl)]_2$ (7).

Fig. S24. ¹H NMR spectrum of [(mbis)Bi(Cl)₂(μ_2 -Cl)]₂ (7) in DMSO-d₆ at RT.

Fig. S25. ¹³C NMR spectrum of $[(mbis)Bi(Cl)_2(\mu_2-Cl)]_2$ (7) in DMSO-d₆ at RT.

Fig. S26. Neat FT-IR spectrum of $[(mbis)Bi(Br)_2(\mu_2-Br)]_2$ (8).

Fig. S27. ¹H NMR spectrum of [(mbis)Bi(Br)₂(μ_2 -Br)]₂ (8) in DMSO-d₆ at RT.

Fig. S28. ¹³C NMR spectrum of $[(mbis)Bi(Br)_2(\mu_2-Br)]_2$ (8) in DMSO-d₆ at RT.

Fig. S29. Neat FT-IR spectrum of $[(mbpit)Bi(Cl)_2(\mu_2-Cl)]_2$.CH₃CN (9).

Fig. S30. ¹H NMR spectrum of $[(mbpit)Bi(Cl)_2(\mu_2-Cl)]_2$.CH₃CN (9) in DMSO-d₆ at RT.

Fig. S31. ¹³C NMR spectrum of [(mbpit)Bi(Cl)₂(μ_2 -Cl)]₂.CH₃CN (9) in DMSO-d₆ at RT.

Fig. S32. Neat FT-IR spectrum of $[(mbpit)Bi(Br)_2(\mu_2-Br)]_2.CH_3CN$ (10).

Fig. S33. ¹H NMR spectrum of $[(mbpit)Bi(Br)_2(\mu_2-Br)]_2$.CH₃CN (**10**) in DMSO-d₆ at RT.

Fig. S35. Neat FT-IR spectrum of [(mbpis)Bi(Cl)₂(μ_2 -Cl)]₂.CH₃CN (**11**).

Fig. S36. ¹H NMR spectrum of [(mbpis)Bi(Cl)₂(μ_2 -Cl)]₂.CH₃CN (**11**) in DMSO-d₆ at RT.

Fig. S37. ¹³C NMR spectrum of [(mbpis)Bi(Cl)₂(μ_2 -Cl)]₂.CH₃CN (**11**) in DMSO-d₆ at RT.

Fig. S38. Neat FT-IR spectrum of $[(mbpis)Bi(Br)_2(\mu_2-Br)]_2.CH_3CN$ (12).

Fig. S39. ¹H NMR spectrum of $[(mbpis)Bi(Br)_2(\mu_2-Br)]_2$.CH₃CN (**12**) in DMSO-d₆ at RT.

Fig. S40. ¹³C NMR spectrum of $[(mbpis)Bi(Br)_2(\mu_2-Br)]_2$.CH₃CN (**12**) in DMSO-d₆ at RT.

Fig. S41. Neat FT-IR spectrum of $[(mbpis)Bi_2(Br)_3(\mu_2-Br_2)(\mu_3-Br)]_2$.CH₃CN (13).

Fig. S42. ¹H NMR spectrum of $[(mbpis)Bi_2(Br)_3(\mu_2-Br_2)(\mu_3-Br)]_2$.CH₃CN (**13**) in DMSO-d₆ at RT.

Fig. S43. ¹³C NMR spectrum of $[(mbpis)Bi_2(Br)_3(\mu_2-Br_2)(\mu_3-Br)]_2$.CH₃CN (**13**) in DMSO-d₆ at RT.

Catalysts 1-13 promoted triaryl- or tryheteroaryl methanes synthesis

The newly isolated bismuth(III) catalysts (1-13) were utilized for the synthesis of triaryl and tryheteroaryl methanes under very mild conditions. Bismuth(III) complex (0.050 mmol) was taken in a test tube along with arene or heteroarene (0.100 mmol) in toluene (0.50 mL) under ambient condition. Subsequently, the mixture was stirred at room temperature for 2-3 min followed by the addition of aromatic aldehyde (0.050 mmol). Finally, test tube wall was washed with toluene (0.50 mL) and allowed to stir at room temperature. The progress of reaction was continuously monitored by TLC. After the completion of the reaction, the crude mixture was purified by flash column chromatography to produce an expected product (eluent: gradient mixture of EtOAc/petroleum ether). The disappearance characteristic signals of starting materials and appearance characteristic peaks of products were conveniently surveyed by ¹H NMR spectroscopy.

1. 2,2'-(phenylmethylene)bis(1,3,5-trimethoxybenzene)ⁱ

Crystalline colorless solid, mp: 192-193 °C (decomposed to black); ¹H NMR (CDCl₃) 3.49 (s, 12H), 3.78 (s, 6H), 6.10 (s, 4H), 6.21 (s, 1H), 7.03-7.16 (m, 5H) (See Supporting Information 2, Fig. S2-1).

2. 2,2'-(p-tolylmethylene)bis(1,3,5-trimethoxybenzene)ⁱⁱ

Off-white solid, mp: 133-134 °C (decomposed to black); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 3.50 (s, 6H), 3.77 (s, 12H), 6.10 (s, 4H), 6.94-6.96 (d, 2H), 7.32-7.34 (d, 2H) (See Supporting Information 2, Fig. S2-2).

3. 2,2'-((4-methoxyphenyl)methylene)bis(1,3,5-trimethoxybenzene)ⁱⁱⁱ

White solid, mp: 133-134 °C (decomposed to black); ¹H NMR (400 MHz, CDCl₃) δ 3.50 (s, 3H), 3.76 (s, 12H), 3.78 (s, 6H), 6.10 (s, 4H), 6.16 (s, 1H), 7.03-7.04 (d, 2H), 7.17-7.19 (d, 2H) (See Supporting Information 2, Fig. S2-3).

4. 2,2'-((4-nitrophenyl)methylene)bis(1,3,5-trimethoxybenzene)ⁱ

Light yellow solid, mp: 156-158 °C (decomposed to black); ¹H NMR (400 MHz, CDCl₃) δ 3.44 (s, 12H), 3.71 (s, 6H), 6.02 (s, 4H), 6.18 (s, 1H), 7.07-7.09 (d, 2H), 7.92-7.94 (d, 2H) (See Supporting Information 2, Fig. S2-4).

5. 3,3'-(phenylmethylene)bis(1H-indole)iii

Reddish brown solid, mp: 138-139 °C (decomposed to black); ¹H NMR (400 MHz, DMSO) δ 5.83 (s, 1H), 6.83-6.88 (m, 4H), 7.02-7.06 (d, 2H), 7.15-7.19 (m, 1H), 7.25-7.29 (m, 4H), 7.34-7.38 (m, 4H), 10.82 (s, 2H) (See Supporting Information 2, Fig. S2-5).

6. 3,3'-(p-tolylmethylene)bis(1H-indole)iv

Blood red solid, mp: 102–103 °C (decomposed to black); ¹H-NMR (400 MHz, CDCl₃): δ 2.30 (s, 3H), 5.83 (s, 1H), 6.93 (s, 2H), 6.96-7.39 (m, 12H), 10.93 (s, 2H) (See Supporting Information 2, Fig. S2-6).

7. 3,3'-((4-Methoxylphenyl)methylene)bis(1H-indole)^v

Pink solid, mp: 189-190 °C (decomposed to black); ¹H NMR (400 MHz, DMSO) δ 3.94 (s, 3H), 6.06 (s, 1H), 6.79-7.60 (m, 14H), 10.82 (s, 2H) (See Supporting Information 2, Fig. S2-7).

8. 3,3'-((4-nitrophenyl)methylene)bis(1H-indole)vi

Red solid, mp: 219–221 °C (decomposed to black); ¹H-NMR (400 MHz, DMSO): δ 6.03 (s, 1H), 6.86-6.90 (m, 4H), 7.03-7.07 (t, 2H), 7.28-7.30 (d, 2H), 7.36-7.38 (d, 2H), 7.60-7.62 (d, 2H), 8.13-8.16 (d, 2H), 10.93 (s, 2H) (See Supporting Information 2, Fig. S2-8).

Fig. S44. Solid state UV-vis spectra of complexes 1-13 at 25 °C.

	1	2	3	4	5	6	7
Empirical	C ₃₉ H ₄₈ N ₁₂ O ₄₇ B	C ₂₃ H ₃₂ BiF ₉ N ₈ O ₁₁	$C_{29}H_{40}N_8O_9F_9S_7$	$C_{29}H_{40}N_8O_9F_9S$	$C_{54}H_{73}N_{24}Bi_4S_{12}Cl_1$	$C_{18}H_{24}N_8S_4Br_6$	C ₁₈ H ₂₄ N ₈ Se ₄ Cl
formula	i ₇ S ₁₉ F ₃₉	S ₃ Se ₄	Bi	₃Se₄Bi	2	Bi ₂	₆ Bi ₂
Formula	6408.07	1388.56	1249.12	1436.69	2704.49	1378.09	1286.86
weight							
Temperature	150	150	150	150	293	293	293
(К)							
Crystal system	Trigonal	triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	monoclinic
Space group	R-3c	Pī	P2 ₁ /n	P2 ₁ /n	C2/c P21/c		C2/m
a/Å	30.7421(7)	9.0767(5)	15.1033(3)	15.3075(6)	27.2866(11)	9.393(2)	14.559(5)
b/Å	30.7421(7)	15.2872(8)	13.2707(3)	13.2282(6)	27.1101(6)	17.461(2)	12.466(3)
c/Å	70.888(2)	16.4710(7)	22.9733(4)	23.4812(9)	29.9547(11)	11.491(2)	12.369(4)
α/°	90	71.308(4)	90	90	90	90	90
<i>в/</i> °	90	86.504(4)	94.6380(16)	94.758(4)	117.194(5)	113.29(3)	113.06(4)
γ/°	120	82.217(4)	90	90	90	90	90
Volume (Å ³)	58019(2)	2144.61(19)	4589.50(14)	4738.4(3)	19709.5(15)	1731.0(7)	2065.6(13)
Ζ	12	2	4	4	8	2	2
$ ho_{calc}/mg mm^{-3}$	2.2006	2.1501	1.8076	2.0138	1.8227	2.6438	2.0688
Absorption	20.189	14.222	11.358	12.868	19.514	30.304	24.306
coefficient							
(µ/mm⁻¹)							
F(000)	36339.3	1316.3	2474.7	2744.6	10314.2	1238.1	1145.5
Reflections	42164	16544	17863	20296	21580	3383	6258
collected							
R _{int}	0.0549	0.0483	0.0305	0.0477	0.0341	0.0284	0.1240
Data/restraints	12404/0/823	8065/0/538	8727/0/575	8961/0/576	14572/0/967	2520/0/173	2031/0/92
/parameters							
GOF on F ²	1.046	1.041	1.004	1.033	1.022	0.996	1.979
R1 (I>26(I))	0.0391	0.0493	0.0344	0.0361	0.0457 0.0439		0.2839
wR ₂ (<i>I</i> >2 <i>G</i> (<i>I</i>))	0.0918	0.1285	0.0939	0.1106	0.1126 0.1054		0.5764
R_1 values (all	0.0498	0.0549	0.0363	0.0473	0.0775 0.0575		0.3720
data)							
R_2 values (all	0.0975	0.1350	0.0960	0.1358	0.1377	0.1192	0.6593
data)							

Table S1. Structural parameters of compounds 1-6.

Table S2. Structural parameters of compounds 7-13.

8 9 10 11 12 13 14 15

Empirical	$C_{18}H_{24}N_4Bi_2Se_4$	C ₂₈ H ₄₃ N ₉ S ₄ Cl ₆	C ₂₈ H ₄₃ Bi ₂ Br	C ₂₈ H ₄₃ N ₉ Cl ₆	C ₂₈ H ₄₃ N ₉ S	$C_{30}H_{46}Bi_4Br$	C ₃₁ H ₄₀ N	$C_{23}H_{17}N_3O_2$
formula	Br_6	Bi ₂	₆ N ₉ S ₄	Se ₄ Bi ₂	e ₄ Bi ₂ Br ₆	$_{12}N_{10}Se_4$	O ₈	
Formula weight	1563.65	1261.63	1528.34	1449.20	1715.91	2657.37	512.58	367.41
Temperature (K)	293	293	293	293	293	150	293	293
Crystal system	monoclinic	tetragonal	tetragonal	tetragonal	tetragonal	monoclinic	triclinic	monoclinic
Space group	P2₁/n	P4₂/ncm	P4 ₂ /ncm	P4 ₂ /ncm	P4₂/ncm	P21/c	Pī	12/a
a/Å	9.549(2)	19.00307(17)	19.2248(3)	19.04444(1 8)	19.2323(2)	12.54238(1 9)	8.0626(4)	17.2917(6)
b/Å	17.6588(8)	19.00307(17)	19.2248(3)	19.04444(1 8)	19.2323(2)	21.6905(3)	12.3582(8)	10.6763(4)
c/Å	17.763(5)	12.04528(15)	12.2798(3)	12.15557(1	12.4100(2)	12.37785(1	13.8011(39.6733(1
				9)		8)	9)	5)
α/°	90	90	90	90	90	90	91.927(5)	90
6/°	143.57(6)	90	90	90	90	107.2678(1 6)	99.512(5)	91.757(4)
γ/°	90	90	90	90	90	90	101.537(5)	90
Volume (ų)	1779(2)	4349.75 (8)	4538.55	4408.71 (9)	4590.22	3215.62(8)	1325.66(7320.7(5)
Z	4	4	4	4	4	2	2	16
$\rho_{calc}/mg mm^{-3}$	2.8778	1.9264	2.2366	2.1832	2.4828	2.7443	1.2840	1.3333
Absorption coefficient (μ/mm ⁻¹)	31.974	21.151	23.211	22.875	24.877	32.666	0.776	0.087
F(000)	1325.1	2401.6	2808.7	2671.6	3078.6	2320.0	547.9	3073.4
Reflections collected	3330	9430	11356	9141	9414	14054	8480	21069
R _{int}	0.0645	0.0381	0.0543	0.0334	0.0370	0.0442	0.0170	0.0525
Data/restraints	2477/0/173	2182/0/125	2269/0/12	2201/0/12	2291/0/12	6092/0/27	5015/0/	8475/0/505
/parameters			4	5	5	9	341	
GOF on F ²	3.110	1.014	1.015	1.013	0.994	0.979	1.081	1.055
R ₁ (I>26(I))	0.2524	0.0347	0.0432	0.0297	0.0288	0.0478	0.0610	0.0776
wR2(<i>I</i> >26(<i>I</i>))	0.5931	0.0897	0.1234	0.0761	0.0707	0.1268	0.1799	0.2182
R ₁ values (all data)	0.3176	0.0437	0.0516	0.0336	0.0342	0.0566	0.0713	0.1578

R_2 values (all	0.6659	0.0973	0.1351	0.0795	0.0746	0.1371	0.1964	0.2932
data)								

ⁱ V. Nair, K. G. Abhilash and N. Vidya., *Org. Lett.*, 2005, **7**, 5857-5859. ⁱⁱ B. M. Babu, P. B. Thakur, N. N. Rao, G. S. Kumar and H. M. Meshram., *Tet. Lett.* 2014, **55**, 1868–1872.

ⁱⁱⁱ P. Thirupathi and S. S. Kim., *J. Org. Chem.* 2010, **75**, 5240–5249.
 ^{iv} P. Thirupathi and S. S. Kim., *J. Org. Chem.* 2009, **74**, 7755–7761.
 ^v E. L. Armstrong, H. K. Grover and M. A. Kerr., *J. Org. Chem.* 2013, **78**, 10534–10540.

^{vi} A. Z. Halimehjani, S. E. Hooshmand and E. V. Shamiri., *RSC Adv.*, 2015, **5**, 21772–21777.