Supplementary information

$\mathbf{L n}_{3} \mathbf{I}_{5}\left(\mathbf{S}_{\mathbf{2}} \mathbf{N}_{2}\right)\left(\mathbf{S}_{2}\right)(\mathbf{T H F})_{10}$ - a new type of molecular compounds

A.A. Fagin ${ }^{\text {a }}$, G.K. Fukin ${ }^{\text {a }}$, A.V. Cherkasov $^{\text {a }}$, A.F. Shestakov ${ }^{\text {b }}$, A.P. Pushkarev ${ }^{\text {a }}$, T.V. Balashova ${ }^{\text {a }}$, A.A.Maleev ${ }^{\text {a }}$ and M.N. Bochkarev ${ }^{\text {a* }}$
${ }^{a}$ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 603950 Tropinina 49, Nizhny Novgorod, Russian Federation. *e-mail: mboch@iomc.ras.ru
${ }^{b}$ Institute of Problems of Chemical Physics of Russian Academy of Sciences, Academician Semenov avenue 1, 142432 Chernogolovka, Russian Federation.

Supporting Information Contents

X-ray structure characterization 1
Computed molecular structures and calculations details 6
Absorption and luminescence spectra 7
References 8

X-ray structure characterization

The unit cell in 1 and 2 (Fig. 1, S1) (unlike complex 3 (Fig. S2)) contains two crystallographically independent molecules. The geometrical parameters of the independent molecules close to each other except the $\mathrm{Nd}(2)-\mathrm{N}(2)$ distances which is $2.523(7) \AA$ in one of the independent molecules of complex 1 but $2.460(8) \AA$ in the other molecule. The geometrical parameters of $\mathrm{S}_{2} \mathrm{~N}_{2}$ and S_{2} ligands in $\mathbf{1 - 3}$ (Table S 1) are close to literature data ${ }^{[1-5]}$ and reflect their dianione nature. The $\mathrm{S}_{2} \mathrm{~N}_{2}$ ligand in 1-3 shows a wide spectrum of coordination possibilities. The $\mathrm{M}(1)$ atoms are coordinated bidentately by the single $\mathrm{S}(1)-\mathrm{N}(1)$ bond of $\mathrm{S}_{2} \mathrm{~N}_{2}$ ligand. Towards the $\mathrm{M}(2)$ and $\mathrm{M}(3)$ atoms the $\mathrm{S}_{2} \mathrm{~N}_{2}$ ligand acts as chelate and bridge ones respectively. From this viewpoint the $\mathrm{S}_{2} \mathrm{~N}_{2}$ ligand is a central fragment in the molecules of complexes 1-3. In spite of difference in coordination environment of Ln atoms in $\mathbf{1 - 3}$ the $\operatorname{Ln}(1,2,3)-\mathrm{N}(1,2)$ distances vary in narrow limit of values in all the cases.

Table S1. Selected bond lengths (\AA) in the molecules $\operatorname{Ln}_{3} \mathrm{I}_{5}\left(\mathrm{~S}_{2} \mathrm{~N}_{2}\right)\left(\mathrm{S}_{2}\right)(\text { solv. })_{10}$

Bond	Compound		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{M}(1)-\mathrm{I}(1)$	$3.1045(9)$	$3.1086(8)$	$3.140(1)$
$\mathrm{M}(1)-\mathrm{I}(2)$	$3.1106(8)$	$3.1178(8)$	$3.135(1)$
$\mathrm{M}(1)-\mathrm{S}(1)$	$2.856(2)$	$2.861(3)$	$2.889(3)$
$\mathrm{M}(1)-\mathrm{N}(1)$	$2.488(8)$	$2.458(9)$	$2.453(9)$

$\mathrm{M}(2)-\mathrm{I}(3)$	$3.2067(9)$	$3.2142(9)$	$3.221(1)$
$\mathrm{M}(2)-\mathrm{I}(4)$	$3.1812(9)$	$3.1865(9)$	$3.197(1)$
$\mathrm{M}(2)-\mathrm{S}(1)$	$2.890(2)$	$2.896(3)$	$2.943(3)$
$\mathrm{M}(2)-\mathrm{N}(2)$	$2.460(8)$	$2.493(8)$	$2.507(9)$
$\mathrm{M}(2)-\mathrm{S}(3)$	$2.839(3)$	$2.805(3)$	$2.826(3)$
$\mathrm{M}(2)-\mathrm{S}(4)$	$2.798(3)$	$2.834(2)$	$2.854(3)$
$\mathrm{M}(3)-\mathrm{I}(5)$	$3.1524(8)$	$3.1576(8)$	$3.174(1)$
$\mathrm{M}(3)-\mathrm{N}(2)$			
	$2.469(8)$	$2.482(8)$	$2.499(9)$
$\mathrm{M}(3)-\mathrm{S}(3)$			
$\mathrm{M}(3)-\mathrm{S}(4)$	$2.771(2)$	$2.795(2)$	$2.822(3)$
$\mathrm{S}(1)-\mathrm{N}(1)$	$2.794(2)$	$2.787(2)$	$2.797(3)$
$\mathrm{N}(1)-\mathrm{S}(2)$	$1.684(8)$	$1.706(8)$	$1.699(9)$
$\mathrm{S}(2)-\mathrm{N}(2)$	$1.573(8)$	$1.561(9)$	$1.591(9)$
$\mathrm{S}(3)-\mathrm{S}(4)$	$1.531(8)$	$1.500(9)$	$1.52(1)$

Fig. S1 Molecular structure of $\mathrm{Dy}_{3} \mathrm{I}_{5}\left(\mathrm{~S}_{2} \mathrm{~N}_{2}\right)\left(\mathrm{S}_{2}\right)(\mathrm{THF})_{10}$ (2). Carbon and hydrogen atoms of THF are omitted for clarity.

Fig. S2 Molecular structure of $\mathrm{Nd}_{3} \mathrm{I}_{5}\left(\mathrm{~S}_{2} \mathrm{~N}_{2}\right)\left(\mathrm{S}_{2}\right)(\mathrm{THF})_{9}\left(i-\mathrm{PrNH}_{2}\right)$ (3). Carbon and hydrogen atoms of $i-\mathrm{PrNH}_{2}$ and THF ligands are omitted for clarity.

Fig. S3 View of inorganic framework of $\mathrm{Nd}_{3} \mathrm{I}_{5}\left(\mathrm{~S}_{2} \mathrm{~N}_{2}\right)\left(\mathrm{S}_{2}\right)(\mathrm{THF})_{10}(\mathbf{1})$ molecule along the $\mathrm{Nd}(1) \mathrm{Nd}(2) \mathrm{Nd}(3)$ plane (left) and the $\mathrm{I}(5) \mathrm{Nd}(3) \mathrm{S}(3) \mathrm{S}(4)$ plane (right).

Fig. S4 Aligned inorganic frameworks of the complexes $\mathbf{1}$ (green), $\mathbf{2}$ (red) and $\mathbf{3}$ (blue).

The X-Ray data for 1-3 were collected on Bruker D8 Quest (1, 2) and Agilent Xcalibur E (3) diffractometers (graphite-monochromated, $M o K_{\alpha}$ radiation, ω-scans technique, $\lambda=0.71073 \AA, T$ $=100(2) K$). The structures were solved by direct methods and were refined on F^{2} using SHELX / SHELXTL ${ }^{[6,7]}$ and CrysAlis Pro ${ }^{[8]}$ packages. All non-hydrogen atoms were found from Fourier syntheses of electron density and were refined anisotropically. The unit cell in $\mathbf{1}$ and $\mathbf{2}$ contains two crystallographically independent molecules. Displacement parameters of most equivalent atoms of independent molecules were restrained with EADP instructions. All hydrogen atoms were placed in calculated positions and were refined in the riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ of their parent atoms. Pseudo merohedral twinning was found in 1 and 2 using PLATON / TwinRotMat ${ }^{[9]}$. A batch scaling factor was introduced to describe the twin volume fractions in $\mathbf{1 -}$ 3, resulting in a $0.503 / 0.497$ ratio for the volume of domains in $\mathbf{1}, 0.434 / 0.363 / 0.115 / 0.088$ for the volume of domains in 2 (including racemic twinning) and $0.982 / 0.018$ ration for the volume of domains in 3. SADABS ${ }^{[10]}$ and $A B S P A C K{ }^{[8]}$ were used to perform area-detector scaling and absorption corrections. CCDC-1056902 (1), 1056903 (2), 1056904 (3) contain the supplementary crystallographic data (excluding structure factors) for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via ccdc.cam.ac.uk/getstructures.

Table S2. Main crystallographic data and structure refinement details for complexes 1-3.

	1	2	3
Empirical formula	$\begin{aligned} & \mathrm{C}_{40} \mathrm{H}_{80} \mathrm{I}_{5} \mathrm{~N}_{2} \mathrm{Nd}_{3} \mathrm{O}_{10} \mathrm{~S} \\ & 4,2 \mathrm{THF} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{40} \mathrm{H}_{80} \mathrm{I}_{5} \mathrm{~N}_{2} \mathrm{Dy}_{3} \mathrm{O}_{10} \\ & \mathrm{~S}_{4}, 2 \mathrm{THF} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{39.54} \mathrm{H}_{80.77} \mathrm{I}_{5} \mathrm{~N}_{2.57} \mathrm{~N} \\ & \mathrm{~d}_{3} \mathrm{O}_{9.44} \mathrm{~S}_{4}, 2 \mathrm{THF} \end{aligned}$
Formula weight	2088.72	2143.50	2082.82
$T, \mathrm{~K}$		100	
Wavelenght, \AA		0.71073	
Crystal system	Mono	clinic	Orthorhombic
Space group		(1)	P2(1)2(1)2(1)
a, \AA	12.393(1)	12.418(1)	12.5369(2)
b, \AA	43.389(5)	43.476(5)	12.7379(2)
c, \AA	12.684(1)	12.707(2)	43.8743(7)
$\alpha,{ }^{\circ}$	90	90	90
β, ${ }^{\circ}$	90.013(2)	90.030(2)	90
$\gamma,{ }^{\circ}$	90	90	90
Volume, \AA^{3}	6820(1)	6860(1)	7006.5(2)
Z	4	4	4
$\rho_{\text {calc }}, \mathrm{Mg} / \mathrm{m}^{3}$	2.034	2.075	1.975
Absorption coefficient, mm^{-1}	4.687	5.657	4.562
F(000)	4012	4084	4002
Crystal size, mm	$0.18 \times 0.09 \times 0.04$	$0.12 \times 0.10 \times 0.10$	$0.40 \times 0.40 \times 0.40$
θ range for data collection, ${ }^{\circ}$	$2.47-29.00$	$2.34-27.00$	$2.94-26.00$
Index ranges	$\begin{aligned} -16 & \leq h \leq 16 \\ -59 & \leq k \leq 58 \\ -17 & \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} -15 & \leq \mathrm{h} \leq 15 \\ -55 & \leq \mathrm{k} \leq 55 \\ -16 & \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -54 \leq 1 \leq 54 \end{aligned}$
Reflections collected	75809	68257	104407
Independent reflections	35242	29695	13746
$R_{\text {int }}$	0.0585	0.0348	0.0866

Completness to θ, $\%$	99.9	99.8	99.8
Goodness-of-fit on F^{2}	1.009	1.085	1.188
Final R_{l} indices $(I$ $>2 \sigma(I))$	0.0450	0.0340	0.0540
R_{2} indices (All Data)	0.0671	0.0851	0.1118
Largest diff. peak and hole, e $/ \AA^{3}$	$1.478 /-1.199$	$1.853 /-1.600$	$1.582 /-1.395$

$\mathrm{M}=\mathrm{Rh}, \mathrm{Co}, \mathrm{Ir}$

Fig. S5. Types of known complexes with $\mathrm{S}_{2} \mathrm{~N}_{2}$ ligands.

Computed molecular structures and calculations details

To calculate the structure (Fig. S6) and energy of $\mathbf{1 , 2}$ and $\mathbf{3}$ nonempirical PBE density functional method2 ${ }^{[11]}$ was used. All calculations were performed using the PRIRODA program package ${ }^{[12,13]}$ in scalar-relativistic approximation, which is based on the full four-component oneelectron Dirac equation with spin-orbit effects separated out ${ }^{[14]}$. This leads to four-component one-electron wave functions. The energy-optimized extended Gaussian basis set of doublepolarized quality for large components, and the corresponding kinetically balanced basis for small components was used: $\operatorname{Ln}(30 \mathrm{~s}, 29 \mathrm{p}, 20 \mathrm{~d}, 14 \mathrm{f}, 6 \mathrm{~g}) /[9 \mathrm{~s}, 8 \mathrm{p}, 6 \mathrm{~d}, 3 \mathrm{f}, 1 \mathrm{~g}] \mathrm{S}(15 \mathrm{~s}, 11 \mathrm{p}, 3 \mathrm{~d}) /[4 \mathrm{~s}, 3 \mathrm{p}, 1 \mathrm{~d}]$, $\mathrm{C}, \mathrm{N}, \mathrm{O}(10 \mathrm{~s}, 7 \mathrm{p}, 3 \mathrm{~d}) /[3 \mathrm{~s}, 2 \mathrm{p}, 1 \mathrm{~d}]$, and $\mathrm{H}(6 \mathrm{~s}, 2 \mathrm{p}) /[2 \mathrm{~s}, 1 \mathrm{p}]$. This basis is compatible with recently proposed basis $\operatorname{Ln}(23 \mathrm{~s}, 16 \mathrm{p}, 12 \mathrm{~d}, 6 \mathrm{f}) /[18 \mathrm{~s}, 12 \mathrm{p}, 9 \mathrm{~d}, 3 \mathrm{f}]^{[15]}$ for scalar relativistic calculation of
lanthanide complexes. The calculations were carried out at the Joint Supercomputer Center of Russian Academy of Sciences, Moscow, Russia.

Fig. S6 Calculated molecular structure and bond lengths in $\mathrm{Nd}_{3} \mathrm{I}_{5}\left(\mathrm{~S}_{2} \mathrm{~N}_{2}\right)\left(\mathrm{S}_{2}\right)(\mathrm{THF})_{10}(\mathbf{1})$.

Table S3. The charge (q) and spin density (s) on the selected atoms in the complexes $\mathbf{1 , 2}$ and $\mathbf{3}$.

	$\mathbf{1}$		$\mathbf{2}$		$\mathbf{3}$	
atom	q	s	q	s	q	s
$\mathrm{Ln}(1)$	0.208	3.116	0.268	4.779	0.209	3.115
$\mathrm{I}(1)$	-0.336	-0.034	-0.339	0.034	-0.334	-0.035
$\mathrm{I}(2)$	-0.331	-0.033	-0.337	0.035	-0.330	-0.033
$\mathrm{Ln}(2)$	0.142	3.100	0.204	4.854	0.141	3.096
$\mathrm{I}(3)$	-0.347	-0.024	-0.333	0.053	-0.341	-0.028
$\mathrm{I}(4)$	-0.335	-0.032	-0.329	0.061	-0.329	-0.024
$\mathrm{Ln}(3)$	0.212	3.107	0.266	4.814	0.204	3.104
$\mathrm{I}(5)$	-0.344	-0.018	-0.339	0.021	-0.339	-0.020
$\mathrm{~S}(1)$	-0.030	-0.034	-0.040	0.059	-0.031	-0.029
$\mathrm{~N}(1)$	-0.127	-0.013	-0.128	0.031	-0.127	-0.008
$\mathrm{~S}(2)$	0.255	0.004	0.248	0.001	0.248	0.003
$\mathrm{~N}(2)$	-0.240	-0.018	-0.247	0.014	-0.241	-0.021
$\mathrm{~S}(4)$	-0.142	-0.058	-0.140	0.095	-0.139	-0.055

$\mathrm{S}(3)$	-0.137	-0.054	-0.141	0.087	-0.140	-0.053

Fig. S7a. IR spectra of $\mathbf{1}$ (Nujol mulls).

Fig. S7b. Calculated IR spectra of $\mathbf{1}$.

Fig. S8 Absorption spectra of $\mathbf{1}$ (red) and $\mathbf{2}$ (blue) in acetonitrile solution.

References

1. V. Matuska, et al. Eur. J. Inorg. Chem., 2009, 4483-4490.
2. P. G. Waddell, A. M. Z. Slawin, N. Sieffert, M. Bühl and J. D. Woollins, Eur. J. Inorg. Chem., 2010, 3185-3194.
3. A. M. Z. Slawin, P. G. Waddell and J. D. Woollins, Acta Cryst., 2010, E66, M418.
4. Y. Li, et al. Organometallics, 2005, 24, 1982-1988.
5. E. C. Brown, et al. Inorg. Chem. 2004, 43, 3335-3337.
6. G. M. Sheldrick, SHELXTL v.6.12: Structure Determination Software Suite. Bruker AXS, Madison, WI, 2000.
7. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
8. CrysAlis Pro, Agilent Technologies Ltd, Yarnton, England, 2011.
9. A. L. Spek, Acta Cryst., 2009, D65, 148-155.
10. Sheldrick, G.M. SADABS v.2.01. Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS, Madison, WI, 1998.
11. J. P. Perdew, K. Burke and M. Ernzerhof, Rev. Lett., 1996, 77, 3865-3868.
12. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151-156.
13. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116-120.
14. K. G. Dyall, J. Chem. Phys., 1994, 100, 2118-2127.
15. D. A. Pantazis and F. Neese, J. Chem. Theor. Comput., 2009, 5, 2229-2238.
