Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Scaling-down Antibody Radiolabeling Reactions with Zirconium-89

James C. Knight,^{*a*} Stephen J. Paisey,^{*b*} Adam M. Dabkowski,^{*b*} Cristina Marculescu,^{*a*} Anwen S. Williams,^{*c*} Christopher Marshall,^{*b*} and Bart Cornelissen^{**a*}

^a CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK.

^b Wales Research & Diagnostic PET Imaging Centre (PETIC), Institute for Translation, Innovation, Methodology & Engagement (TIME), School of Medicine, Heath Park, Cardiff University, Cardiff, Wales, UK.

^c Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.

bart.cornelissen@oncology.ox.ac.uk

Table of Contents

Supplemental Methods	
Zr-89 Production	2
Figure S1. Representative MALDI-TOF MS spectrum of unmodified tocilizumab	3
Figure S2. Representative MALDI-TOF MS spectrum of DFO-modified tocilizumab	3
Figure S3. Isotopic dilution experiments to determine the efficiency of antibody modification by p- SCN-Bn-DFO	4
Figure S4. Determination of immunoreactive fraction of ⁸⁹ Zr-trastuzumab	4
References	4

Zr-89 Production

Zirconium-89 was produced via the methods of Dabkowski et al.¹ and purified via the methods of Walther et al.² We developed a remote handling rig from an Eckert & Ziegler 6 valve dispensing cassette and syringes to allow us to carry out all steps of the Y-89 target dissolution and Zr-89 purification without radiation exposure. This also allowed us to apply compressed air pressure to the Zr-89 separation column to considerably decrease elution times without reducing separation efficiencies. In our hands, we found it most effective to elute the Zr-89 in 3×1 mL fractions of 1 M oxalic acid with the middle fraction routinely containing 1 GBq of purified Zr-89 in 76% yield. (90% recovery is achieved when summing all 3 fractions).

Supplemental Figures

Figure S1. Representative MALDI-TOF MS spectrum of unmodified tocilizumab

Figure S2. Representative MALDI-TOF MS spectrum of DFO-modified tocilizumab

Figure S3. Isotopic dilution experiments to determine the efficiency of antibody modification by p-SCN-Bn-DFO

Figure S4. Determination of immunoreactive fraction of ⁸⁹Zr-trastuzumab on MDA-MB-231/H2N cells by linear extrapolation to conditions representing an infinite antigen excess

References

- 1. A. M. Dabkowski , S. J. Paisey, M. Talboys, C. Marshall, *Acta Phys. Pol.*, 2015, **127**, 1479-1482.
- M. Walther, P. Gebhardt, P. Grosse-Gehling, L. Würbach, I. Irmler, S. Preusche, M. Khalid, T.
 Opfermann, T. Kamradt, J. Steinbach, H.-P. Saluz, *Appl. Radiat. Isot.*, 2011, 69, 852-857.