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Table S1. A fewimportant crystal parameters for complexes 1 and 2

1.H,0 2
Empirical formula C,oH,5CIFsN;OPRuU C,,Hy7NsFPCIRuU
Formula weight 604.54 614.96
Temperature (K) 100.01(10) 99.8(4)
Wavelength(A) 0.71073 0.71073
Crystal system, monoc linic triclinic
space group P2:/n P1
a (A) 13.5912(3) 8.7779(4)
b (A) 8.7955(2) 12.0974(6)
c (A) 20.0691(5) 12.3892(5)
a (deg.) 90.00 113.365(4)
B (deg.) 101.465(2) 93.289(4)
v (deg.) 90.00 97.822(4)
Volume (A% 2351.22(10) 1187.48(9)
Z, Calculated density (Mg/m®) 4,1.721 2,1.720
F(000) 1215.0 620.0
w/mm™* 0.914 0.904
Max. and min. transmission 1.000, 0.841 1.000, 0.876
Goodness-of-fit on F? 1.020 1.052

Final R indices [I>2sigma(l)]
R indices (all data)

*R, = 0.0282, "wR, = 0.0624
°R, = 0.0314, "wR, = 0.0652

*R, = 0.0399, "wR, = 0.0979
°R, = 0.0463, "WR, = 0.1032

Ry =2IF,| - IFJIZIFL "WR, = [Z[W(F,” - F2)?)/ Zw(F,*)° T

Table S2. Selected bond lengths (A) and angles (°) for complex 1 and 2.

1150 2
RUL-CIT 2.416(9) | N2-RuLl-NI _ 76.41(11) | Rul-CIL 2.410(7) | NI-Rul-N3 __ 76.27(8)
RUI-NI 2.114(3) | NI-Rul-Cll _ 87.19(8) | RUI'NI 2.077(2) | NI-RuI-CIL _ 83.66(6)
RUI-N2 2.080(3) | N2-Rul-CIl _ 84.96(8) | RUI'N3 2.133(2) | N3-Rul-CIL _ 88.83(6)
RUL-C1l 2.195(3) | N2-Rul-C11 96.17(11) | Rul-C13 2.245(2) | NI-Rul-C13 160.95(9)
Rul-C12 2.161 N2-RuL-C12 122.85(11) | Rul-C14 2.216(2) | NI-Rul-C14 155.10(9)
Rul-C13 2.198(3) | N2-Rul-C13 159.96(11) | Rul-C15 2.192(3) | N1-Rul-C1I5 118.06(9)
Rul-C14 2.240(4) | N2-Rul-C14 15545(11) | Rul-C16 2.205(3) | NI-Rul-C16  93.62(9)
Rul-C15 2.185(4) | N2-Rul-C15 119.43(11) | Rul-C17 2.184(3) | NI-Rul-C17 _ 96.53(9)
RUL-CI16 2.175(3) | N2-RuL-C16 95.24(11) | Rul-CI8 2.179(3) | NI-RuI-CI8 122.94(9)
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Fig. S13 Hydrolysis of 1 measured by UV-Visible spectroscopy. 1% methanol-
aqueous phosphate buffer solution at pH 7.4 in presence of — (A) 4 mM and (B) 40
mM NaCl; at pH 6.7 in presence of — (C) 4 mM and (D) 40 mM NaCl. (E) in 1%
methanol-water mixture. The plots provided are for one independent experiment out
of the three independent experiments performed and the fitting is performed using

200 400 600
Time (min)

monoexponential decay function.

12



(A)

1.24

Abs

1.1

(B) 115,

1.10+

Abs

1.051

=]

(C) oo
0.85
‘8 0.80-

<t 0.751

0.701

200 400 600 0 200 400 600
Time (min)

0.65

=

(E) 1.05
1.044

1031

Abs

1.024

200 400 600
Time (min)

=
=
g

1.01

(=

200 400 600
Time (min)

Fig. S14 Hydrolysis of 2 wusing UV-Visible spectroscopy fitted using
monoexponential decay function. 1% methanol-aqueous phosphate buffer solution
at pH 7.4 using — (A) 4 mM and (B) 40 mM NacCl; at pH 6.7 using (C) 4 mM and
(D) 40 mM NaCl. (E) in 1% methanol-water mixture. The plots provided are for
one independent experiment out of the three independent experiments performed.

13



(A)

(B) 1.20

1.2
1.15-
un [/ 0]
ﬁ L1d 2 1.10-
1.05-
1.0-
. . ; 1.00 . : .
0 200 400 600 0 200 400 600
Time (min) Time (min)
(O) s (D) 115
P 1.101 P 1.101
4: 1.054 < 105
1.00-
0.95- . . . 1.004 . . .
0 200 400 600 0 200 400 600
Time (min) Time (min)
(E)ose
0.924
B
<r: 0904
0.884
0 200 400 600

Time (min)

Fig. S15 Hydrolysis of 3 measured by UV-Visible spectroscopy. 1% methanol-
aqueous phosphate buffer solution at pH 7.4 in presence of — (A) 4 mM and (B) 40
mM NaCl; at pH 6.7 in presence of — (C) 4 mM and (D) 40 mM NaCl. (E) in 1%
methanol-water mixture. The plots provided are for one independent experiment out
of the three independent experiments performed and the fitting is performed using
monoexponential decay function.

14



e

B T +ld. ) B I
L | %lh ) od -
Lk i ﬁJ:k e J. 10d |
NN Ll ___J/ :"1 A J 0d -

Fig. S16 Time dependent '"H NMR spectra of complex 1-2 in 110 mM NaCl
solution using 30% DMSO-dg in D,O at 25°C. t = 0 d, stands for the spectra
recorded immediately after dissolving of respective complex.

Table S3. Rate of hydrolysis for complexes 1, 2 and 3 measured by UV-Vis

spectroscopy.
. 1 7 3
pH Chloride conc. - e = 16T k25D x 107 | K£SD % 107
(mM) () () ()
iy 1 75606 122203 39001
| 40 202009 312202 140201
- 4 610158 159211 860203
40 272£02 725221 20202
Water : 34604 91705 6.06 + 1.2

% Standard deviation
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Table S4. CT DNA binding constant for complex 1-3.

Binding constant (K, M™)
Complex 0 h of hydrolysis prior to 12 h of hydrolysis prior to
binding binding
1 3.03 (0.6) x 10" 3.04 (0.1) x 10"
2 1.11 (0.1) x 10° 1.11 (0.3) x 10°
3 “2.30 (3) x 10° 4,11 (2.9) x 10°

All the results are the mean of three experiments. “data was obtained from ref. 1. The values within
the bracket indicate standard deviation.
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Fig. S19 Stack plot of "H NMR spectra of reduced L-glutathione at 0 h and 8 h
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Fig. S23 Plots of cell viability (%) vs. log of concentration for 1 A) MCF-7, B)
A549, C) MIA PaCa-2, D) HepG2, E) NIH 3T3 and F) Human primary Foreskin
fibroblast cell lines after incubation for 48 h, under normoxic condition through
MTT assay. The plots provided are for one independent experiment out of the three
inde pendent experiments performed with each concentration.
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Fig. S24 Plots of cell viability (%) vs. log of concentration for 2 A) MCF-7, B)
A549, C) MIAPaCa-2, D) HepG2, E) NIH 3T3 and F) Human primary Foreskin
fibroblast cell lines after incubation for 48 h, determined from MTT assays under
normoxic condition. The plots provided are for one independent experiment out of
the three independent experiments performed with each concentration.
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Fig. S25 Plots of cell viability (%) vs. log of concentration for 3 A) MIA PaCa-2,
B) HepG2, C) NIH 3T3 and D) Human primary Foreskin fibroblast cell lines after
incubation for 48 h, determined from MTT assays under normoxic condition. The
plots provided are for one independent experiment out of the three independent
experiments performed with each concentration.
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Fig. S26 Plots of cell viability (%) vs. log of concentration from MTT assays under
hypoxic condition for 1 [A) MCF-7, B) A549] and 2 [C) MCF-7, D) A549] after
incubation for 48 h. The plots provided are for one independent experiment out of
the three independent experiments performed with each concentration.
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Fig. S27 Plots of cell viability (%) vs. log of concentration determined from MTT
assays under hypoxic condition in presence of 1 mM L-glutathione after incubation
for 48 h: for 1 A) MCF-7, B) A549 and for 2 C) MCF-7, D) A549 cell lines. The
plots provided are for one independent experiment out of the three independent
experiments performed with each concentration.
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Fig. S28 Cell cycle analysis of MCF-7 cells treated with 1 for 24h. (A) DMSO

control, (B) 2 uM and (C) 4 uM and D) 6 uM of 1. The figure represents one
independent experiment.
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Fig. S29 Cell cycle analysis of MCF-7 cells treated with 2 for 24h. A) represents

DMSO control while B), C) and D) represents 2, 4 and 6 uM of 2 treated cells. The
figure represents one independent experiment.
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Fig. S30 FACS analysis of JC-1 stained MCF-7 cells after treatment with 1 for 48
h. JC-1was used as a probe for observing the change in mitochondrial
transmembrane potential. (A) DMSO (0.2%); (B) 1 (2 uM); (C) 1 (4 uM); (D) 1 (8
uM) and (E) 1 (10 uM).
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Fig. S31 FACS analysis of JC-1 stained MCF-7 cells after treatment with 2 for 48
h. JC-1was used as a probe for observing the change in mitochondrial
transmembrane potential. (A) DMSO (0.2%); (B) 2 (2 uM); (C) 2 (4 uM); (D) 2 (8
uM) and (E) 2 (10 uM).
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Fig. S32 FACS analysis of JC-1 stained MCF-7 cells after treatment with 3 for 48
h. JC-1was used as a probe for observing change in mitochondrial transmembrane
potential. (A) DMSO (0.2%); (B) 3 (2 uM); (C) 3 (4 uM); (D) 3 (8 uM) and (E) 3
(10 uM).
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Fig. S33 Fluorescence microscopic images of MCF-7 after 24 h incubation with 1
and 2 (DAPI stained). The nuclear morphological changes in cells are indicated by
arrows upon the treatment of 1 and 2 (6 uM) with respect to control (DMSO treated

(< 0.2%)).
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Fig. S34 Haemolysis of blood samples upon treatment with complexes 1-3.

Table S5. Human blood compatibility test of complex 1-3 with three different
concentrations in presence of +ve and —ve control ?

Complex concentration
Complex SuM 10 uM 15 uM
1 0.45+0.3 0.5+0.3 0.98+0.5
2 0.70+0.73 1.66+0.26 1.31+0.33
3 1.31+0.26 1.91+0.49 2.57+0.28

®Three independent experiment were performed and average values with standard
deviations are reported.
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